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ON THE DECOMPOSITION OF GRAPHS*
F. R. K. CHUNG+

Abstract. In this paper, we study the decompositions of a graph G into edge-disjoint subgraphs all of
which belong to a specified class of graphs . Let a(G; ) denote the minimum value of the total sum of
the sizes of subgraphs in into which G can be decomposed, taken over all such decompositions of G.
Let a(n; ) denote the maximum value of a(G; Y() over all graphs G with n vertices.

In this paper, we settle a conjecture of Katona and Tarjfin by showing

a(n; Yf) [nZ/2J,

where .7/" denotes the set of all complete graphs. Moreover, we show that the complete bipartite graph G on
[n/2J and In/2] vertices is the only graph with a(G; Yf) a(n; Yf).

Io Introduction. Many interesting problems in graph theory can be described in
the following general framework.

Suppose G is a finite connected graph with vertex set V(G) and edge set E(G).
Consider a decomposition of G into subgraphs G1, Gz, , Gt, such that any edge in G
is an edge of exactly one of the G’s, and all G’s belong to a specified class of graphs .
Such a decomposition will be called an Yf-decomposition of G.

Let f be a cost function of graphs which assigns certain nonnegative values to all
graphs. It is often of interest to consider the -decomposition of a given graph so that
the total "cost" (i.e., the sum of the f values of all subgraphs in the a%decomposition)
is minimized. We define

cq(G; ) min E f(G,),
P

where P {G1," "’, Gt} ranges over all -decompositions of G.
Typical questions one asks are to find at(G; ) or to determine

at(n ) min at(G; a),

where G ranges over all graphs on n vertices.
Before proceeding to our main results, we shall first survey some of the known

related results in this area. We abbreviate c(G; )=at,(G; ) and a(n; )=
ctl(n;) where [(G)=IV(G)I. We also write oz,(G;Yg)=o%(G;) and
a,(n; )= ato(n ) where f0(G)= 1 for any graph G.

Let denote the set of all complete biparite graphs. The problem of determining
a(n; ) arises in the study of the networks of contacts realizing certain symmetric
monotone Boolean functions (see [9], [13] and [16]). For this problem G. Hensel [9]
obtained the estimate

n log2 n _-< a (Kn; ) -< n log2 n + (1- log2 e + log2 log2 e)n,

where e is the base of the natural logarithm. This question was also investigated by P.
Erd6s, A. R6nyi and V. T. S6s [5], and the first part of the preceding inequality was also
proved independently by G. Katona and E. Szemer6di [11].
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The bounds for a (n ) were found by F. R. K. Chung, P ErdSs and J. Spencer [2];
namely,

2 2n n
<a(n; )<(l+e)

logn’
(1 e)2elogn

for a given e and large n, where e 2.718....
A theorem of R. L. Graham and H. O. Pollak [6] asserts that for the complete

graph K,, on n vertices,

a.(K,; )=n-1.

It is easily seen that a graph on n vertices can be decomposed into n 1 stars. Thus,
we have

a.(n;)=n-1.

Let * be the set of all bipartite graphs. It can be easily verified that

and

a(n; *) a(K,; *) a (K, ) a(n; 3),

a, (n *) a, (Kn *) [logz n ],

where Ix] denotes the least integer greater than or equal to x.
Let denote the class of all forests, (i.e., acyclic graphs). In this case a. (G, ) is

usually called the arboricity of G (see [8]). Nash-Williams [17] gives the following
expression for a (G; )"

a.(G;’)=max[ [E(S)[ ]s [v(s)l-a
When S ranges over all nontrivial induced subgraphs of G.

It is immediate that

a, (n ’) a, (K, ’) In/2].

Let " denote the class of all trees. F. R. K. Chung [1] showed that

a, (n; ’) In/Z].

It can be easily seen that

a(G; )=IF-(G)I+a,(G; )
and

Thus we have

a (G; ) => a (G; -).

a(n ) a(n ’) [nZ/2].
Finally, we should mention the striking work of R. M. Wilson [18] who investigated

the decomposition of the complete graph into subgraphs which are all isomorphic to a
specified graph, i.e., the case G K and {H}. If such an -decomposition of G
exists, then it follows immediately that: (a) the number of edges in H divides the
number of edges in K, ;(b) the greatest common divisor of the degrees of vertices in H
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divides n- 1. Wilson showed that these two necessary conditions are sufficient for n
sufficiently large (as a function of H).

A 15 year-old conjecture of T. Gallai asserts that for , the set of all paths, the
following equality holds"

CONJECTURE (Gallai). c, (n ) [n/2].
Let c denote the set of all simple cycles. G. Haj6s conjectured that any graph on n

vertices having all degrees even can always be decomposed into Ln/2J or fewer simple
cycles. For a graph G containing vertices having odd degree, we set a, (G; c)= 0. We
can write Haj6s’s conjecture as follows"

CONJECTURE (Haj6s). a,(n;)= [n/2J, where [x denotes the greatest integer
less than or equal to x.

L. Lovfisz [15] proved a variation of the above conjecture by showing

a. (n Y) [n/2J,

where Y( is the class of all paths and cycles. P. ErdSs, A. W. Goodman and L. P6sa
showed in [4] that a graph on n vertices can always be decomposed into [n2/4j
complete subgraphs, i.e., for Y{’, the set of all complete subgraphs,

a, (n; Y{’)= [n2/4j.

In fact, they sharpened the above result by showing

a, (n; {K2, K3}) [n2/4J.
Finally G. Katona and T. Tarjin [12] conjectured that

a(n; Y{’) [n2/21.
In this paper, we prove this conjecture. Moreover, we show that the complete

bipartite graph on In/2] and In/2] vertices, denoted by B,,, is the only graph with
t G Y{ a n Y{).

2. On a(n; ff’) and a,(n; Y{). First we remark that a(G; Y{) can still be defined (in
the obvious way) if G is not connected. In the remaining part of the paper, the graphs we
consider are not necessarily connected.

The main theorem of the paper will be the following:
THEOREM. Any graph on n vertices can be decomposed into complete subgraphs so

that the sum of the sizes of all subgraphs in this decomposition does not exceed [n2/2j.
That is,

(1)
a(n;Y{)= max a(G; ff’)= ln2/2j.

Iv(G)l--n

The only graph on n vertices satisfying a(G; if/’) [n2/2j is the complete bipartite graph
nn.

Proof. It is easy to see that the complete bipartite graph B, has the property that

a(B,, Yg’) [nZ/2J
To prove a(n Y{’) [n/2J, it suffices to show that for any graph on n vertices, we have

(2) a(O; if{) <_- [n2/2].
Let Gx," , G, be a decomposition of G into complete subgraphs. Let Pi denote

the number of G’s which are isomorphic to the complete graph on ] vertices (denoted
by Ki).
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Thus,

since

a(G; X) <- ip, 2e- . pi(i-2),
i=2 i=3

We note that inequality (2) holds if and only if there exists a Yf- decomposition of G
which satisfies the following"

(3) 2e . pi(i- 2) -< [n2/2J.
i=3

It is easily seen that the theorem holds for n 1 or 2. We may assume n -> 3, and for
any graph H on rn vertices, rn < n, we have

c(n; Y()-<_ [m2/21,
with equality if and only if H is

Let v* be a vertex of G such that the degree of v* does not exceed the degree of any
other vertex in G; i.e.,

deg v* 6 min deg v.
v V(G)

Let L denote the induced subgraph on the set of vertices of G which are adjacent to v*.
A vertex decomposition of L is defined to be a set of vertex-disjoint complete subgraphs
of L, say M1, M2,’", Mr, such that Y. Iv( )I=IV(L)I. m vertex decomposition
M1," ", Mr, where V(M1)I--> V(M2)I 2’’’ >=IV(Mr)l, of t is said to be maximal if for
any vertex decomposition N1, , Nt either we have V(Mi)I V(N,)I for 1, , r
where r= t, or there exists k such that V(M )I> V(N )I and V(M,.)I- V(N,.)I eor
] < k. Lst Xi denote the set of all complete subgraphs on vertices in a fixed maximal
vertex decomposition P {M1," , Mr} of L.

We consider the graph G’ with vertex set V(G)-{v*} and edge set
{{u, v}eE(G): v* : {u, v}, and {u, v} is not an edge of any Mi, 1,. ., r}.

By the induction assumptions and (3), there exists a decomposition of G’ into
complete subgraphs, p of which are isomorphic to Ki, 2,. , n 1, such that

n-1

(4) .. p i(i-2)>=2e’- [(n-1)2/2j,
i=3

where

and xi denotes
We consider a decomposition P* of G consisting of the union of the preceding

decomposition of G’ and xi complete subgraphs isomorphic to K/I with v* as one of the
vertices, 1 -< -< n.

The number of subgraphs in P* which are isomorphic to K is just

p pl "" Xi-1 for 2-<_i _-<n.
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We want to show that this choice of pi satisfies (3). We have

pi i(i- 2) (p + xi-x)i(i- 2)
i=3 i=3

(5)

>-2e’- L(n 1)2/2] + 2 xi(i + 1)(i- 1)
i_-_.1

i->2 il

2e [n2/2] +( t  /21 + E (i-
il

In order to establish (3) it suffices to show that

(6)

where

Y’. (i- 1)x _-> 28 [n2/2] + [(n 1)2/21
i_-_.1

26 n + e,,.,

0 ifn is even,
en=

1 ifnisodd.

We note that (6) is obviously true if 26 n + en < 0. We may assume that 28 n + e, ->

0.
We consider the subgraph L. By the minimality of 6 it is easy to see that any vertex

in L has degree at least 28-n in L. Let u* be an arbitrary vertex of Mr. By the
maximality of P, u* is adjacent to at most ] 1 vertices of any subgraph in X.. Therefore,
we have

(7) 26-n _--<degL u*<_ Y’. (i- 1)x.
il

Consider first the case where n is even. Then (6) follows from (7) so that (3) is
established and (2) is valid. Now, suppose G is a graph with a(G; Yg’)= [n2/2]. We
consider the Y/- decomposition P* of G. It is easily seen that

2e= Y’. pi(i-2)= , ipi>-ot(G; if{)= [n2/2].
i>__3 i>>.2

Thus, equality in (4), (5) and (6) holds. By the induction assumptions, G’ is isomorphic
to B,_x. Hence 6 is at most [(n- 1)/2]. From the equality in (6), 6 is at least n/2.
Therefore we have

6=n/2 and Y’. (i-1)xi O.
i.l

Thus x 0 for all > 1 and L is the trivial graph on n/2 vertices. Therefore G is B,.
Next, consider the case where n is odd. From (6) and (7), we note that (3) holds

unless

28 n degL u* Y’. (i 1)xi,
il

and therefore we will assume the equality in (7).
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Suppose equality in (4) holds. By the induction assumption, G’ is, in fact,
isomorphic to Bn-1. Since is the minimum degree in G, 8 is at most (n-1)/2.
However, we are assuming that 28 n + en --> 0. Thus 28 n + 1 0 and inequality (3)
holds. We may assume equality in (4) does not hold. This implies that the equality in (5)
also becomes strict. Therefore we have

(8)
E pii(i 2) _--> 2e [n2/2] + 1 + Y (i 1)xi- 28 + n 1
i=3 il

=2e-[n2/2].
Thus (3) is valid for n odd.

Suppose G is a graph satisfying a(G; Y/’)= [n2/2] and n is odd. We consider the
following two possibilities:

(a) a(G’; Y{’)= [(n-1)2/2]. It follows that equality in (4) holds. Thus G’ is
isomorphic to Bn-1 and 8 is equal to (n-1)/2. Equality in (5) and (6) also holds.
Therefore , (i-1)xi O.

il

Thus, xs 0 for > 1 and G is isomorphic to B,.
(b) a(G’; 9’/’)< [(n 1)2/21. Therefore equality in (4) does not hold. However, it

follows from a(G; Yt’)= [n2/2J that equality in (8) holds. Thus

(9) (i 1)xs 28 n degL u*,
i_>_l

(10) a(G’; Y{’)= [(n 1)2/2] 1.

In Case (b) we will prove a sequence of claims to establish that G is a complete
t-partite graph, t-> 3. This will then show by Lemmas 1 to 4 that G does not satisfy
a(G; Y{)= [n2/2].

Since we assume the equality in (7), it follows immediately that any vertex in Mr is
then adjacent to exactly/"- 1 vertices of any graph in X.. Moreover, based on the fact
that Y.i=/xi 8, we have i- xi n- 8 r.

CLAtM 1. Any vertex in L is ad/acent to at least V(Mr)[- 1 vertices of
Proof. Suppose to the contrary that a vertex w in L is not adjacent to u and u’ in

Mr. Assume w is a vertex ofM for some i. Thus u and u’ are adjacent to all vertices of
except for w. Then the induced graph ofL on (V(M)-{w}) LI {u, u’} is a complete graph
with more vertices than Ms. This contradicts the maximality of P.

CLAIM 2. Let ui be a vertex of M such that ui is not adjacent to u*= Ur for
1, , r 1. Then ui, 1 <-_ <- r, is adfacent to exactly 1 vertices of any graph in X..
Proof. Suppose u is adjacent to all vertices in Mr. It follows that r > > i. We

consider another vertex decomposition of L, called P’ {Nx,. , Nr}, such that N. M.
if/" i, t, r; Ni is the induced subgraph of L on (V(iVI,.)-{ui})LJ{u*}; Nt is the induced
subgraph of L on V(Mt)L] {u}; and Nr is the induced subgraph of L on V(Mr)-{u*}.
Thus P is not maximal. This is impossible. Therefore ue, 1 _-< _-< r is adjacent to at most
/"- 1 vertices of any graph in X.. Since

degL ui >- 28 n (.i 1)xj,

we conclude that ui is adjacent to exactly - 1 vertices of any graph in X.. 71
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CLAIM 3. Ui, 1, ., r, is adfacent to every vertex in V(G) V(L) and the degree
of ui in G is 8.

Proof. It follows from Claim 2 that the degree of ui is at most

r+ (]-l)xi=(n-6)+(26-n)=8.
11

On the other hand, 8 is the minimum degree in G. Thus the degree of ui in G is
and ui is adjacent to any vertex in V(G)- V(L).

CLAIM 4. Let w be a vertex in L which is not ad.iacent to u for some i. Then w is of
degree 8.

Proof. Suppose r. It follows from Claim 3 that w has degree 8. We may assume
# r. We can also assume w # u and w is not a vertex of M. Let w be a vertex of M..

Suppose/" r. Then w has degree 8. We consider the case/" r. Suppose w is adjacent to
all vertices in Mr. If r, we consider the following vertex decomposition P"=
{L1,’’ ", Lr} such that Lk Mk if k i, , t, r; L is the induced subgraph of L on
(V(Mi)-{ui}) I,.J {u*}; Lj is the induced subgraph of L on (V(M.)-{w})I..J {ui}; Lt is the
induced subgraph of L on V(Mt)LJ{w}; and Lr is the induced subgraph of L on
V(M)-{u*}. This contradicts the maximality of P. Thus, w is adjacent to at most/’- 1
vertices of any graph in X.. If r, we consider the following vertex decomposition
P" {L’, , L’r} such that L Mk if k i, , r; Li is the induced subgraph of L on
(V(Mi)-{ui})LJ{u*, w}; L. is the induced subgraph of L on (V(M.)-{uj})U{ui}; and
L’ is the induced subgraph of L on V(M,.)-{u*}. This again contradicts the maximality
of P. Since the degree of w is at least 8 in G and 28 n in L, we conclude that the degree
of w is 8 in G and w is adjacent to exactly ]- 1 vertices of any graph in X.. I-1

CLAI 5, V( )l V(M )I .for i= 1,..., r.

Proof. We choose w in G’ with minimum degree 8’ in G’. Let L’ be the induced
subgraph on the set of vertices of G’ which are adjacent to w. LetM,M, , M’s be a
maximal vertex decomposition of L’. We consider G" with vertex set V(G’)-{w} and
edge set {(u, v)E(G’)" w{u, v} and (u, v) is not an edge of any M, i= 1,..., s}.

By the induction assumptions, there exists a decomposition of G" into complete
subgraphs, p,’.’ of which are isomorphic to K, 2,. , n -2, such that

n-2

(11) E p’i(i-2)= 2e"-c(G"; Y{)>=2e"- [(n -2)2/2j,
i=3

where

e"=lE(G")l=e’-,’- x

and x denotes the cardinality of the setX which consists of all complete subgraphs on
vertices in the maximal vertex decomposition P’= {M,..., M’s } of L’.

We consider a decomposition of G’ consisting of the union of P" and x complete
subgraphs isomorphic to K/ with w as one of its vertices, 1 _-< _<- 8’. Let q denote the
number of subgraphs in this decomposition of G’ which are isomorphic to Ki. From (10)
we have

n-2

2e’- [(n 1)2/2J + 1 E qi(i- 2).
i=3
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From (11) and .i>-1 ix =/’, we also have

n--2 n-2.. qii(i-2)= ., (p: +x_)i(i-2)
i=3 i=3

2e’-a(G"; ffg’)-t’- xi.
i__>l

By the maximality of P’, we have

(12) 28 -(n 1)-<minimum degree in L’<- (i- 1)xi.
i>_l

Therefore we have

(13) ’> [(n 1)2 (G"" if{)-8’n 1-8’>= Xi /2/-a 1,

i.e., a(G"; gc)=> [(n-2)2/2/- 1.
Suppose a (G"; yc)= [(n -2)2/2]. Then by the induction assumptions, G" is

and 6’ is at most (n-1)/2. On the other hand, 8’ is at least (n-l)/2. (Suppose
8’ < (n 1)/2-1 Since ..i>-a ix’ =6’, we have n-3-6’>=i>__x xi. From (13), we will
then have a(G"; Y{)> [(n-2)2/2j, which contradicts the induction assumptions.)
Therefore 6’=(n-1)/2. From (13), we also have Zi>=lxi=n- -2, i.e.
i__>1 (i- 1)x =< 1. Suppose Zi_x (i- 1)x =0. Then G’ is B,-1, which contradicts (10).
Therefore we have x 1 and x 8’-2. It can be easily verified that G’ has a
Y{- decomposition which contains one K3 and (n- 1)2/4-3 K2. This contradicts (10).
Thus we may assume a (G"; ’)= [(n -2)2/21 1, and

(14) Y. (i- 1)x[ 28’-n + 1 minimum degree in L’.
i__>l

We note that Claim 1 to Claim 4 all follow from (9) and the maximality of P.
Therefore we can show in a similar manner that for any vertex w with degree t’ there
exists a vertex w* with degree 8’ in G’, so that the n- 1-8’ vertices which are not
adjacent to w* are of degree 8’ in G’ and w adjacent to w* in G’.

Let k be the size of V(M1). Then it can be easily seen that t’ t k. We also note
that any vertex in M has degree at least 8-I V(M)I in G’.

Since u has degree t’ in G’, there is a vertex rP which is adjacent to ul in G’ such
that all the n 1 t’ vertices which are not adjacent to ff are of degree 8’ in G. Since any
vertex in G’-L had degree at least t which is greater than ’, we may assume r is a
vertex of ]O M, where ]V(M)I k. Since all vertices of/Q are not adjacent to in G’,
all vertices ofM have degree t’ in G’. Without loss of generality, we may assume that all
vertices in M have degrees t’ in G’.

Now, let M* be the set of vertices in M1 which are not adjacent to some vertex in
Mr. Since every vertex in Mr is adjacent to exactly k 1 vertices inM and any vertex in
M is adjacent to at least k’-1 vertices in Mr, where V(M )I- k’, we have IM*I-
V(M )I, Suppose M* is a proper subset of V(M1). We may choose w to be a vertex in
V(M)-M*. Thus u* is in L’. From Claims 1 to 4, there exists a vertex w* with degree
8’ in G’ so that the n 1 t’ vertices which are not adjacent to w* are of degree t’ in G’.
We may assume, without loss of generality, that w* is a vertex of M.. Either u* is
nonadjacent to w* or u* is nonadjacent to a vertex in M2 which is nonadjacent to w* in
L’. Thus, by Claims 3 and 4, the degree of u* is 8’ in G’. This implies V(Mr)I k IM*I,
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This contradicts our assumption that M* is a proper subset of V(M1). Therefore, we
have shown that V(Mi)I V(M1)[ k.

CLAIM 6. Each vertex in L is adjacent to exactly- 1 vertices of a graph in X. and
has degree 8.

Proof. This follows from Claims 2 and 5. ]
CLAIM 7. For any i, ], 1 <-- i, <-- r, ui and uj are not adjacent to each other.
Proof. Suppose ui and uj are adjacent, u is adjacent to exactly k 1 vertices of Mi.

Let w denote the vertex inM which is not adjacent to ui. From Claim 6, we have that w
is adjacent to all vertices in M. except for ui. Now, we consider a vertex decomposition
P {R 1, , Rr} of L, where Rt Mt if i,/’, r; M. is the induced subgraph of L on
V(M.)-{ui}LJ{u*, w}; M/ is the induced subgraph of L on V(Mi)-{ui}; Mr is the
induced subgraph of L on V(Mr) -{u*} {ui}. This contradicts the maximality of P.

CLAIM 8. Any vertex v in L has the property that the n 8 1 vertices which are not
adjacent to v are mutually nonadjacent.

Proof. This follows from Claims 5 and 7. [3
CLAIM 9. Any vertex v in G has the property that the degree of v is 8 and the n 8 1

vertices which are not adjacent to v are mutually nonadjacent.
Proof. This follows from Claim 8 and the fact that the choice of v* is arbitrary. 1
CLAIM 10. G is a complete t-partite graph, where n/(n 8) >- 3. V(G) is a disfoint

union of sets ofcardinality n 8, and two vertices in G are adjacent ifand only if they do
not belong to the same set.

Proof. Let 11 be the set of vertices of G each of which is vl or is not adjacent to vl. It
follows from Claim 9 that any vertex in I1 is adjacent to all vertices not in 11 and not
adjacent to any vertex in 11 in G. If Ix is a proper subset of V(G), we choose a vertex v2
in V(G) 11. Let 12 be the set of vertices of G which is v2 or is not adjacent to v2. After a
finite number of steps, we have sets 11, ", It and G is a t-partite graph and [Ig n -8.
Since n _->3, we have a(G; :7[) [n2/2]>0. Therefore G is not the trivial graph; i.e.,
t> 1. Since n is odd, is not 2. We have t->3.

We have shown that G is a complete t-partite graph where _-> 3. In the following
there are some auxiliary lemmas dealing with the value a (G; :7) for complete t-partite
graphs G.

LEMMA 1. Let Q be a complete t-partite graph on V(Q) I1 It and [Ig for
i, ., t. Suppose is a prime number. Then a (Q; ’[)= 3.

Proof. Let vj, 1 _-< _-< t, be vertices in I. Let iQk denote the complete graph on
V.z,i=l,...,t, where z=-(i-1)(k-1)+](modt) and l<-z<-t. We note that
{iQk" 1 <-- , k <-_ t} is a ff[-decomposition of Q. Thus

a(O; ff{) <= 3.

On the other hand, the maximal complete subgraph contained in Q is Kt. Let P be a
Y{- decomposition of Q. For any edge e in Q, define w as follows"

w(e)
f(e)- 1’

where f(e) is the number of vertices of the graph in P which contains e.
It is easy to see that
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We note that

a(Q; Yc) min Y w(e)>=lE(Q)l._l= t-1P

Therefore, c (O; Y/’) 3.

LEMMA 2. Let Q be a complete 3-partite graph on I1 U I2 U 13 and II, for
1, 2, 3. Then (Q;Y{)= 3t2.
Proof. Let v,i, 1 -< <- t, be vertices in I,. We consider a ’{- decomposition of Q which

consists of the following graphs: Qj.k, 1 <= , k <= t, where Qi.k is the complete graph on
/31j, )2,s, /33,k where s=-k+] (mod t) and l<-s<-t. Thus a(Q;fff)<-3t2. By a similar
proof to that in Lemma 1 we have a (Q; Y{)= 3t2. Il

LEMMA 3. Let Q be a complete t-partite graph on I1 I2 t.J It and Ili 3 for
1, 2,..., t. Then c(Q; ff{)<-3t2.
Proof. We consider the following two possibilities:
Case 1. 0(mod 2). We consider a ff{-decomposition consisting of
(a) Qi, 1 -<_ ] _-< 3, where Q is the complete graph on v,a, 1, , t; and
(b) Qk, 1 <- ] <- t, 1 <-_ k <- t, ] k, where Qk is the complete graph on vj.1. /)s,2, Dk,3

and s -= o’-(/" + k) (mod t) and tr is the permutation tr(i) 2i.
Case 2. =-0 (mod 2). We consider a -decomposition consisting of
(a) Qi, 1 _-<] _<- 3; and
(b) Q;k, 1 <- 1’ -< , 1 -< k -< t, : k, where Q;k is the complete graph on vi.,, vs.2, /.)k,3

and s -a f(j + k) where

x if x _-< t,

]’(x)= x-t-1 ifx>t+l,
ifx=t+l,

and " is the permutation f(i)=/(2i).
It is easy to check that in both cases we have ff’-decompositions and

a(O; if/’) -< 3t2.

LEMMA 4. LetO be a complete t-partite graph on V(G) I Land II, sfor
1 <- <- t. Let q max (s, t). We have

a(G; tr) <=n(2q-2),

where

V(G)] n st.

Proof. By Bertrand’s postulate (see [10]), there exists a prime p between q and
2q- 2. We will show that c (G; ff{)-<_ np.

It is easy to see that G is a subgraph of the complete p-partite graph Q on
I t.J. I where [I1 p. From the proof of Lemma 1 there is a -decomposition P
of Q which consists of subgraphs isomorphic to Kp. We consider a ff{-decomposition P’
of G which is defined to be {Gi f’) G: G, P}. Therefore, we have

a(G;yt")<= y’. IV(G, f3G)i<-np<-n(2q-2),
GP

since every vertex is in at most p of the Kp’s. l1
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Now, from Lemmas 2 and 3 and the fact that 3t2 < [(3t)2/2j for positive, we may
assume r n 6 > 3, n/(n 6) > 3. Since rt n, we have q <- n/4. From Lemma 4,
we have

a(G; Y{)<-n(2q-2)<-n(n/2-2).

This contradicts the assumption that a(G; ’) [n2/2J. Thus we have shown that
Case (b) is impossible.

We also note that

2a, (G; STg)) <-a(G; Y:).

Any graph G with a, (G; Y{) c, (n, {) [n-/4] must then have a(G; {) [n/2]
a(n; ’). Therefore, a graph G on n vertices having a(G; {) a(n; Y{) or a,(G; Y{)
c, (n; Yg) is the complete bipartite graph on In/2] and In/2] vertices. This completes
the proof of the main theorem.

3. Condudlng remarks. Problems of the type we have discussed in this paper are
not only interesting in their own right, but also have potential applications in com-
munication and switching networks. Sometimes it is desirable to decompose a com-
munication or switching network into parts of certain specified types. The problem of
determining a (G; ) or a,(G; ) is equivalent to the problem of minimizing the "cost"
of building the network (with the corresponding graph G) by using certain types of parts. In fact, the study of c(n, 9) was first motivated by consideration of contact
networks.

There are many interesting problems left open in this area. For example, the Gallai
conjecture on a(n; 9a) still remains unsolved. We can ask the question of determining
c(n; ) for a class of graphs with certain specified properties, e.g., each graph has
connectivity <--0, has chromatic number _-<z, etc.

We can consider a variation of the above problems. For a graph G and a class of
graphs , we define an -covering of G to be a family of subgraphs, G, G’c, such
that every edge is in at least one of the G’ and every G’ is in . For a cost function f, we
define

/t(G; )=min Y.f(G’t),
P’

where P’ {G,. , G’t, } ranges over all -coverings of G,
and

Bt(n ) max Or(G; ),

where G ranges over all graphs on n vertices.
We note that an -decomposition of G is also an -covering of G. Therefore

and

&(G; )_<-at(G; ),

Or(n; :) <- at(n; :).

The preceding equalities sometimes hold and sometimes do not. For example,
from the main result of this paper it is easily seen that

at,(n Y() flt,(n ) [n/ZJ.
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However,

Bto(Kn;/3)- flog2 n] and ato (Kn;/3)= n- 1.

Also from [3] we have
11/14+n -n < ao(n ;/3)<n -c log n,

for a given e > 0 and some constant c if n is sufficiently large.
We can ask the corresponding question of determining/3f(G; ) or/3f(n g) for

various classes of graph and cost functions f.
We could also consider another kind of variation of this problem in which we wish

to decompose a graph G into induced subgraphs of some certain type . We can then
ask the corresponding question of determining a)(G; o), the minimum cost of sub-
graphs over all possible decompositions of G, and a}(n; ), the maximum value of
a}(G; ) over all graphs G on n vertices.

Remarks. J. Kahn [7] proved that tl(n; Y/’) [n2/2]. E. Gy6ri and A. V. Kostozka
[10] have recently proved the main result in this paper by a completely different
method.

Acknowledgment, The author wishes to thank T. H. Foregger for his helpful
comments.
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A PROBLEM WITH TELEPHONES*

RICHARD T. BUMBY"

Abstract. This paper deals with the "telephone problem," also known as the "gossip problem".
Suppose n persons each have a piece of information. Pairs of them can share whatever information they
possess by making a telephone call. The question arises, what minimum number of calls allows all n persons to
obtain all n pieces of information. The answer is 2n -4. One can then ask about properties of such minimal
sets of calls. In particular, we prove that the graph whose edges are the calls must contain a four-cycle.

1. Introduction. The "telephone problem" has often been solved in the literature
[1], [3], [7], and various extensions of the problem have been proposed [2], [4], [5]. This
paper is devoted to the proof of the "four-cycle conjecture" introduced in [4] with the
words: "We are so convinced of the next statement that even though it is by definition a
conjecture, we shall call it a True confecture (italics theirs). The rumor of its
solution, hastily added in proof in [4], proved to be premature.

We now establish the notation for the proof. We assume that there are n persons
and k calls between them. The persons form a set U and the calls form an ordered set
T (tl, ", tk) of (unordered) pairs of distinct elements of U. T is called a "system of
calls."

It is natural to think of T as determining a graph G(T) whose verticles are U and
whose edges are the elements of T. Thus, the elements of U are also called "vertices" or
"nodes."

The ordering on T can be used to introduce a relation a b which holds iff there is
a path a Xo, , x,, b such that there is an increasing subsequence (si: 1 -< <- m) in
T and si {xi-1, xi}. The relation a b means that b learns a’s information in the
system of calls T. If a b, we then have a path between a and b in G(T), so these points
lie in the same component of G(T).

DEFINrrION. A system T is called pooling if a - b for each a, b U.
This paper proves"
THEOREM 1. If T is pooling, then k >= 2n-4.
THEOREM 2. If T is pooling and k 2n -4, then G(T) contains a four-cycle.

2. The minimal partial ordering o| T. We have described T as a sequence of
calls; that is, the ti are totally ordered in time. However, note that whether a b holds
depends only on the following partial order on T:

DEFINI:ION. The minimal order on T is the transitive closure of the relation
{(ti, ti): -< j and ti 1 ti f}.

Thus, two calls are ordered in the minimal order only if information can flow
through one call into another, or equivalently, if it is the case that their order in time
could not be reversed without changing information paths. If we consider all ti
containing a fixed node, the minimal order gives a linear order on them. Since all the
essential properties of T are given by the minimal order, we will henceforth ignore the
original linear ordering.

If we consider any linear ordering (time sequencing) of T that is compatible with
the minimal ordering, and select a time between two of the calls, we partition T into the
calls ! before that time, and the calls F after that time. The pair (I, F) has the following
nice properties:
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(i) T=ItAF,
(ii) I F ,
(iii) s I and _-< imply s/,
(iv) ]" s F and _->/" imply s F.

That is, I and F are complementary lower and upper ideals of the partially ordered set
T. Conversely, if (L F) has the properties (i)-(iv), then there is a time ordering of T that
performs the calls I before the calls F.

DEFINITION. (/ F) satisfying (i)-(iv) above is a splitting of T.
If we give a splitting (/, F) and we have defined only one component, the other

component is its complement in T.

3. Components and closures. If (/, F) is any splitting and u is a node that is
involved in some call in F, we define min (u) to be the first call in F involving u. Clearly,
if utF, then min (u)<_-t. If t=(Ul, UE)F, then t_->min (Ul), min (u2). Unless t=
rain (ul)-min (u2), there is a call in F strictly smaller (earlier) than t. Also, if > rooF,
then information can flow from to through an increasing sequence of calls to t. The last
call of this chain before must share a node u with t, and so t min (u). This proves:

PROPOSITION 1. For any splitting (I, F), a call (u, v) of F is minimal in F iff
min (u) min (v).
DEFINITION. Given a splitting (/, F) with I-_> n- 2 and G(I) not connected, any

component of G(I) is a component of T.
Starting from the splitting (, T), we can successively "bring down" minimal

elements ofF fromF into I. Thus, we can construct splittings (/, F) in which I (or F) has
any size from 0 to k. Clearly, any pooling must have k _-> n 1, so selecting III n 2
shows that all poolings have components.

The basis of our proofs will be constructions involving the components of T. The
first construction will be closure.

Suppose that X is a component of T defined by the splitting (I0, Fo). Define Ax to
be the splitting (/, F) with the largest I

_
I0 such that X is a component of G(I). Define

Bx to be the splitting (/, F) with the largest I
_

Io that has a component with the same
vertices as X.

DEFINITION. If Bx is (/, F), then the component of G(I) with the same vertices as
X is the closure of X, denoted X. IfX X, Bx Ax andX is closed, and (L F) is called
the canonical splitting for X.

PROPOSITION 2. Given a splitting (I, F), if no minimal element ofF/Dins two nodes
of X, then Ax Bx, and hence, X is closed. In addition, i/every minimal element ofF
joins a node ofX to a node not in X, then Ax Bx (I, F). Conversely, if (I, F) is the
canonical splitting of a closed X, every minimal element ofF/Dins a node ofX to a node
not in X.

Proof. Let Ax (IA, FA) and Bx (In, FB). I is IA with some additional calls from
FA that connect nodes of X. But, if no minimal element of F joins two nodes of X, no
such call can be moved into In without connecting X to some other component. If, in
addition, every minimal element of F joins a node of X to a node not in X, then no call
in F can be moved to IA without connectingX to some other component. Conversely, if
a minimal element of F connects two nodes of X, X is not closed, and if a minimal
element of F connects two nodes not in X, then (/, F) is not the canonical splitting of X.

COROLLARY. IfX consists oj a single point, then X is closed.
We use the convention that all "lemmas" have the standing hypothesis that T is a

pooling system on U. "Propositions" deal with general call systems.
LEMMA 1. If any componentX consists of a single point x, then k >- 2n 3. Hence,

Theorems 1 and 2 hold in this case.
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Proof. From the corollary to Proposition 2, X is closed. Let (!, F) be its canonical
splitting. Except in the trivial case n 1, no node of U has received all the information
yet, so each node u has a min (u). From Proposition 2, {min (u): u x} are distinct, and
so F has ->_n 1 elements. Since III >-- n 2, the result follows.

From Lemma 1, if k 2n-4, then T can have no component consisting of a
single point. Let mino (u) be the first call involving u in T; i.e., mino (u) is min (u) for
the splitting (, T). Then for any splitting (L F) with Irl >_-n- 2, mino (u) I for any
node u.

4. Minimal trees. Suppose we have a closed component X which is a tree. After
Lemma 1, we may assume that IxI > x. Let (/, F) be its canonical splitting. As X is a
component of G(I), ! is a disjoint union Ix t.J Iy, where Ix is all calls between nodes ofX
and !y is the rest. Let to (Xo, xl) be a maximal element of Ix. In G(!- to), X falls into
two parts Xo, X1 with xi Xi (i 0, 1).

Suppose F has a minimal element tl (x2, y) with yX and x2 Xo, x. Then to
and tx are incomparable in T. If we bring t down into I and raise to up into F, we get a
new splitting (I’, F’) with II’1 III. What does G(!’) look like?

Say x2 Xo; then the addition of t to !-to causes Xo to be connected to the
component containing y. As y must be outside Xx, this leaves X as a component or
G(I’). The minimal elements of F’ are to, some minimal elements of F, and some
elements of F having nodes in common with tt. None of these can have both nodes in
Xx. From Proposition 2, X is closed, with canonical splitting (I", F"), 1’

_
I".

Induction on this construction proves:
PROPOSITION 3. If X is a closed tree component of T corresponding to a splitting

(I, F), then we can find a closed component Xo X (so Xo is a tree) corresponding to a
splitting (!o, Fo) with Ilol -> III and, if IXol > 1, a maximal element (x’, x") in 1o with
x’, x" Xo such that the only possible minimal elements ofFo are min (x’) and min (x").

DEFINITION. The component X0 above is a minimal tree.
LEMMA 2. If some closed component of T is a tree, then k >- 2n -4.
Proof. From Proposition 3, we have a minimal tree X with canonical splitting (/, F)

such that III--> n 2. Either IX] 1 and Lemma 1 applies, or we have elements x’, x" X
such that min (x’) and min (x") are the only possible minimal elements of F. Since no
node except x’ and x" can have received information from both x’ and x" during the calls
of/, all nodes other than x’ and x" are members of some call in F. By Proposition 3,
{min (u): u x’, x"} are distinct elements of F, so IFI--> n 2.

LEMMA 3. If k 2n -4, and some closed componentX corresponding to a splitting
(!, F) is a tree, then III- IFI n- 2. If x is a minimal tree, then F has precisely two
minimal elements, and every element off is min (u) for some u.

Proof. By Proposition 3, construct a minimal tree Xo inX and its canonical splitting
(!’, F’). However, while proving Lemma 2, we showed that II’1, IF’I >-- n 2, so we must
have II’1 IF’l n- 2. By construction, III <--II’1, and Itl >-n- 2 since (/, F) generates
components, so III-IFI--n-2. If X is a minimal tree, {min (u): u x’, x"} already

Xgives all n 2 elements of F. Because III n 2, X U, and x’, must receive future
calls, so min (x’) and min (x") must exist and be min (u) for some u x’, x". This implies
that they are distinct, and Proposition 1 shows they are exactly the minimal elements
of F.

If k 2n 4 andX is a minimal tree with canonical splitting (/, F), Lemma 3 shows
that X and F determine x’ and x". Note that G(F) must consist of two trees with all
information flowing outward from x’ and x".

This lemma demonstrates why minimal trees are called "minimal." Suppose that a
minimal tree X contained a smaller tree component. This could only be if X had a
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maximal element other than {x’, x"}. But, this would allow us to construct a splitting that
contradicts Lemma 3: Raise this other maximal element into F and lower min (x’) and
min (x") into I. Since X is closed, all these calls are incomparable, and the part of X left
without {x’, x"} is a closed tree. But, we have now made III n- 1, so the canonical
splitting for this tree must have III->- n 1. Thus, in a minimal tree, the calls of I transfer
information inward along the tree into x’ and x". This fact about minimal trees is not
needed for our proofs, but is a useful tool; see, e.g., [6].

5. Completion of the proof of Theorem 1. We begin with a construction.
PROPOSITION 4. Suppose (I, F) is a splitting with II[ >- n 2 such that at least two

components of G(I) are trees. Then one of these components is closed or both contain
closed components (which must be trees).

Proof. Call the components X and Y. If either is closed we are done, so we may
assume by Proposition 2 that F has a minimal element y which joins two nodes of Y.
X is not a point, so I contains a maximal element x s X.

Interchange x and y, that is, raise x into F and lower y into/, to form a splitting
(I’, F’). Thus, II’l =III, and in G(I’) the points ofX fall into two components Xo and X1,
while the nodes of Y no longer span a tree in G(I).

Each Xi is a tree, so we may apply this construction inductively to produce a closed
component inside X. Reversing the roles of X and Y produces a closed component
inside Y.

LEMMA 4. There is a closed component o]: T which is a tree.

Proof. Let (/, F) be any splitting with III n 2. Counting edges of G(I) shows that
at least two components of G(I) are trees. Proposition 4 gives the desired result.

Proof of Theorem 1. Lemma 2 and Lemma 4 prove Theorem 1.
Proposition 4, together with Lemma 3, gives additional insight into the structure of

pooling systems with k 2n 4. The remainder of this section is devoted to such results
which are not needed for the proof of Theorem 2, but are of independent interest. So we
now concentrate on T which are pooling with k 2n-4. We let (/, F) be a splitting
satisfying the hypothesis of Proposition 4.

If one of the tree components, say X, is closed, then Lemma 3 implies that

III n 2 and every minimal element of F has one end in X. Thus, all components are
closed. Now applying the same analysis to Y, we find that the minimal elements of F
must linkX and Y. There can be no further tree components, so every other component
must have the same number of edges as nodes. If u is a minimal element of F, then one
component of G(I u) is a tree containing X and Y. Again, Lemma 3 tells us that this
component is not closed, so adding an element of its closure gives a splitting (I’, F’) with
II’l- n and all components of G(I’) having the same number of edges as nodes. Call
such a splitting "balanced."

Now suppose that the tree components of G(I) are not closed. The construction of
Proposition 4 does not change III, nor does it alter any component disjoint from the
treesX and Y. When we are finished, we have a closed tree component. Thus, III n 2
and any component other than X or Y is closed and has the same number of edges as
nodes. If we add a minimal element of F joining two nodes ofX and a minimal element
of F joining two nodes of Y to the given/, we will obtain a balanced splitting (I’, F’).

We now show that a balanced splitting has at most two components and that these
components are closed. A single component arises only from a splitting (/, F) for which
G(I) has only two components, both closed trees. We may then limit ourselves to the
case in which G(I’) has more than one component. Remove any maximal element from
I’. The resulting graph has one tree component, and the total number of components is
either the same or increased by one. By Lemma 3, the tree cannot be closed and hence,
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by the corollary to Proposition 2, cannot consist of a single point. Now remove a
maximal element of this tree to get a splitting satisfying the hypothesis of Proposition 4.
As we have already noted, all components other than the trees are closed, so all
components of G(I’) except the one we dissected are closed. But we could have chosen
any component, so all components are closed.

If G(I’) has more than two components, add a minimal element of F’. This
connects only two components. Dissecting any other components leads to a splitting
satisfying the hypothesis of Proposition 4 for which III > n- 2, which we have seen
contradicts Lemma 3. Thus, G(I’) can have only two components. Also, if the removal
of a maximal element of I’ were to give a graph with three components, we could add a
link to the tree component to give a new balanced splitting with three components.
Thus, this possibility is also ruled out. Finally, removing a maximal link from the tree
component gives a splitting with III n 2 and two tree components. If these trees were
not closed, we could construct a balanced splitting with three components by closing
them. Thus:

THEOREM 3. If T is pooling with k 2n -4 and (I, F) is a splitting with III >- n 2
with at least two tree components in G(I), then II[ n 2 and one of these cases holds:

Case I. The two trees are closed, and they are the only components.
Case II. The two trees are closed and there is one other component. If one removes a

maximal link from this component, one gets a single tree; and if one removes a maximal
linkfrom this, then one gets two closed trees. There is an I"

_
Isuch that G(I") is the union

offour closed trees.
Case III. The trees are not closed. Now there can be no further components. Removal

of a maximal link from each of the components again gives closed trees.

6. Blocks. Let T be a pooling system with k 2n-4 and (/, F) a splitting with
some minimal tree component X. This gives, from Lemma 3, elements x’, x"X
such that F {min (u): u x’, x"}. This X will be fixed for the rest of the section.

PROPOSITION 5. With these assumptions, if u U-X, then there are elements u’, u"
such that u u’ and u u" in I and min (u’) {u’, x’} and min (u") {u", x"}.

Proof. Consider the path u Uo, u 1, , u-l, u x’ proving u - x’ in T. Since u
and x belong to different components of G(I), some step must be in F, and hence, all
steps from that point on must be in F. The last step, {u-l, x’} must be min (u-l), but
then {u-2, u-l} cannot belong to F. The element ui-1 is the desired u’. We find u" the
same way, starting from u - x".

Note that u’ and u" must lie on the same component of G(I) as u does. From a
count of edges of G(I), there is a component Y of G(I), different from X, which is a
tree. The component Y is an example of a "block."

DEFINITION. A tree component Y is a block if for each y Y, there are y’, y" Y
such that y - y’, y" in Y and min (y’)= {x’, y’} and min (y")= {x", y"}.

Knowing that blocks exist, we will construct "minimal blocks" by inductively
reducing the size of a block until certain properties hold. If t {yo, yl} is a maximal
element in Y, then any sequence ot calls that proves u v in Y must prove u - v in Y-
or else the last step is t. In the latter case, v yo and u - yl in Y- t or v y and u - yo
in Y-t. G(Y-t) has two components Yo, Y1 with y Yi(i 0, 1).

If min (yl) {yl, x’} or {yl, x"}, then yl can never be a y’ or y". From this it follows
that Yo is a block. Similarly, if min (yo) {yo, x’} or {yo, x"}, then Y1 is a block. In either
case, we get a smaller block.

Now suppose that min (yo) and min (yl) both involve the same element of X, say x’.
If y Yo, then y - y" in Y- so y" Yo. Either y’ Yo, in which case we also have y - y’
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in Y- t; or y’ yl. In the latter case, y yo in Y- t, so we could use yo for y’ instead. In
either case, Yo is a smaller block than Y. (In fact, Y1 is also.)

LEMMA 5. Minimal blocks exist, and if Y is a minimal block with yo, y a maximal
edge, then either (x’-x"-yo-y-x’) or (x’-x"-y-yo-x’) is a four-cycle in G(T).

Proof. Induction on the above construction gives a minimal block. The only
minimal blocks are where yo and y are adjacent to different elements of {x’, x"}.

This completes the proof of Theorem 2.

Acknowledgment. The present form of the paper owes much to the careful reading
of earlier versions by the referee. The author would also like to express special thanks to
Dale Worley for editorial work in the preparation of the final manuscript.
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ON THE SENSITIVITY OF THE GRAVITY MODEL*

TOMMY ELFVING"

Abstract. The gravity model is perhaps the most widely used mathematical method for predicting travel
between subareas in an urban region. In this paper, we will consider the Evans-Kirby version of the model
[Transpn. Res., 8 (1974), pp. 105-122]. A formula is derived which shows the sensitivity of the model to
errors in data from the prediction year, say ten years in the future, and to errors in data from the base year.

1. Introduction. A study of transportation in a region usually involves partitioning
the region into zones. In the trip generation step of transportation planning, the number
of future trips leaving each zone and the number of trips arriving in each zone are
estimated. Given these numbers, the next step is to predict how trips will be distributed
among zones, on a pairwise basis. This phase is called the trip generation step. The
gravity model is probably the most widely used method for making this distribution.
The model is based on the assumption that trips tend to be distributed in inverse
proportion to the distance (or more generally, to the cost of travel) between zones. We
refer to a recent paper, including a comprehensive bibliography, by Erlander [4], for a
survey of different aspects of the model. Stewart in [9] surveys several traffic assignment
and distribution models, including the gravity model.

In this paper, we will analyze the sensitivity of the gravity model, calibrated with
the procedure proposed by Evans and Kirby [5], to errors from the trip generation step.
In [6], Jensen and Stewart have studied the same subject. The purpose of this paper is to
simplify and extend their results. In the following section, we will introduce notation
and formulate the problem. The sensitivity analysis is carried out in 3, and is
summarized in (3.9) and the error bounds (3.10) and (3.11).

2. The problem. Let S {k, k2," , kz} be the set of all zones where a trip may
begin and T {m, m2, mr} the set of all zones where a trip may end. Denote by
the number of trips from zone k to zone mi. If it is desired to avoid predicting intrazonal
trips, any unknown xii such that ki mi should be excluded from the model. Let {gi}Zt
and {ai} be estimates of the number of trips departing and arriving in each zone. Then
the transportation constraints become

xi=g, i=1,2,...,I,

(2.1) =
I

Y. xi=a, ]= 1,2,... ,J.
i=1

Define x (x11, x12," , Xl, x21," ", xt), b’ (gl, g2," , gz)7- and b"=
(a, a2,’’’, a)r. We then write (2.1) in compact form,

(2.2) ax=b, withar=(a(,A) and br=(b’r,b"r).
The following example, where I J 3, illustrates the nonzero structure of the

matrix,

A1 1 1 1 A2 1 1 1
111 1 1 1

* Received by the editors October 3, 1979 and in revised form July 12, 1980.
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20 TOIIMY ELFVING

In the gravity model, the predicted number of trips is assumed to have the form

xii pif(cii)q,

where the positive numbers pi, q are unknowns. The function f is called the deterrence
function and measures the effect of the cost on the amount of travel from zone ki to zone

m. The word cost may be interpreted very liberally, to include monetary cost, travel
discomfort, etc. The name gravity model comes from the possible choice f 1/c(i, j),
where here c(i, ) is the squared distance between zone ki and zone m.

We will now introduce some further notation. Following [6], we distinguish
between data from the calibration year (or base year), which will be denoted by
superscript 0 (for vectors subscript c), and data from the prediction year, denoted by
superscript 1 (for vectors subscript p). Let I, 12, I be K finite disjoint intervals on
the nonnegative real line. Assume that the following base year data are known:

(o)o 2o, o), where c equals the cost of travel(i) cc=(Cl),c,’’’,clJ,c ’,ctj 0"
from zone k to zone m in the calibration year.

(0) (0) ,.,(0)\ T(ii) b tgl g2 ,"’, st where equals the number of trips departing
from zone k in the calibration year.

(iii) b (a), a2), a), where a equals the number of trips arriving in
zone m in the calibration year.

vv (0)(iv) b (s(, s(2, , s(r) r, where S(k equals the number of trips with c, Ik
in the calibration year.

We also introduce the notation:
(v) bf (b ’7" b"r, b")
(vi) x=(x() (o) (o) (o o T

11 X12 XlJ X21 XIJ
The first step is the calibration of the model in the base year. This means finding a

function f(ci) such that the frequency distribution of the costs in the base year matches
the distribution produced by the model. This implies that the following calibration
condition shall be satisfied:

(o s (k>, 1 < k < K.(2.3) E Xi.i
(i,])

The summation is over all (i, ]) such that cI s I. The following compact notation will
be used for this condition:

(2.4) A3)x b "

We illustrate the nonzero structure of the matrix A3) by the following example. Let
! J K 3 and take 11 (0.1, 1), 12 (1.1, 2) and I3 (2.1, 3). Assume that Cc
(2.3, 1.6, 0.7, 2.9, 2.2, 1.5, 0.1, 1.7, 2.5), and hence that s)= 2, s2) 3 and s3) =4.
The matrix A3) then becomes

I 1 1]A3)= 1 1 1
1 1 1 1

The calibration problem has been solved by Evans and Kirby 15] by assuming that f is
piecewise constant,

{r() ifcIk,
(2.5) f(cii) otherwise.
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The calibration step can be summarized as follows. Find qj and r(), given
estimates of cc and bc such that the following relations are fulfilled:

(2.6a) _(o) o)f(cl)x =p )qO),
(2.6b) ax b, x >-_0, where A= (alr, A, a(3*).
This process can also be viewed as a rule for choosing the so-called socioeconomic
factors in such a way as to match exactly any given histogram of trip costs in the
calibration year [8] (see also [9, Chapt. 1]).

The second step of the process is called the prediction step. Here, we assume
(1) al) and gl) from the prediction year. The vectors cp, bp, bpknown the values of cij,

and x, are defined analogously to (i), (ii), (iii) and (vi) above. The prediction step can be
summarized as follows. Find pl1) and ql), given estimates of co, b, b and {r(k)}, such
that

(1)(2.7a) xl
(2.7b) Apxt,=b,, x, >0, whereArp=(A’,A)andb T (b ’T,,b"19

We remark that, given a deterrence function f(cii), the vectors xp and xc (occurring in
(2.6) and (2.7) respectively) are always uniquely determined. However, the factors pi, qj

and, in the calibration case, r(k), are not unique unless the matrices of the side conditions
have full rank; see, e.g., [3]. As observed in [2], this creates a problem if rank
(A) < I +J + K, since then the function f(cij) in (2.5) is not unique. The matrixA has,
in general, two redundant rows [6]. We will assume, to avoid this difficulty, that the
redundant rows have been deleted in A. We will also mention the well-known fact that
the matrix Ap has one redundant row. Whether this row is deleted or not does not
influence the vector xp. We remark, however, from computational experience, that
the rate of convergence of algorithms for solving (2.7) decreases if a full rank matrix is
used. In fact, for a special case, it is shown [3], that the so-called balancing method for
solving (2.7) converges quadratically if all rows are kept in Ao, but only linearly if one
row is deleted.

3. The sensitivity analysis. In this section we will carry out a first-order sensitivity
analysis, i.e., neglecting error terms higher than one, of the process described in 2. Let
x be a vector of length n. We will use the notation for the perturbed value of x. The
absolute error, Ax, is defined from the relation x + Ax. For a nonzero x, the relative
error is defined as 8x =D;1Ax, where Dx is a diagonal matrix such that the /’th
diagonal element equals the ]th component of x. To avoid trivial exceptions, we will
assume that both x and x are positive so that relative errors are well defined.

In the calibration step, possible errors originate from bc and from the generalized
costs c. For a detailed discussion of possible sources for these errors, see [6]. Consider a

_-(o) _(o) I) _-(o)specific cost ci ci + Ac We note that unless Ac ()i is such that c i I1 and

cl I:, k I k2, the error in the cost is irrelevant. If however, k I k 2, then two
elements are changed in the matrix A(3), cf. (2.3), whose nonzero elements equal +1.
This is, of course, not a small change. Hence, we can expect that a first-order analysis
will not cover this case. In fact, Jensen and Stewart give a simple example which shows
that the gravity model can predict completely different outcomes due to such errors. We
shall in the sequel exclude the case k I k2 in our analysis (both in the calibration and
prediction step) and hence ignore errors in the generalized costs. One way to avoid
having cj and 5 fall into different cost intervals is to choose these intervals well
separated with respect to the errors [6].
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We will now estimate the errors in the deterrence function due to errors in the
vector be. Consider, therefore, the following perturbed calibration problem, cf. (2.6):

(3 la) ,(o) (o)x, (o)
X ii i f,C i] )4"0),

(3.1b) Ac? =/.

By neglecting higher-order terms, we obtain

(3.2a) 6x)) 6p(O) (oa o+6f(cii ,+oqi

(3.2b) AAxc=Ab.

Define 8/c=(p(), .,@?), qO),...,qO), 8r(O),...,Sr())r. Then it is
straightforward to verify that (3.2a) can be written in vector form as

(3.3) Ax DxcA[6B.

Substituting (3.3) into (3.2b) yields

(3.4) AD,,cA6[3c Abe.

We now consider the prediction step and note that possible errors come from bo
and {r)}. The perturbed prediction problem is

(3.5a) ()i] /1)/(1)ff(1)i/qi with U~(1)i] --f(Cq"(1)),
(3.5b) Ap.p bp.

Note, in contrast to the calibration step, that {5ii} is now a given estimate of the trip
destination table. By neglecting higher-order terms we get

(3.6a) 6xl’’) 6P -- 6uij(1) + oqi,, (a),
(3.6b) ApAxp=Abp.

Define rc (6r), $r))r, dt0 (rl), p(’), 6q),. ., q(,))r and
(" ..,j, u diu() Let A be defined from co in the same

way as the matrix A(3), (2.4), was defined from the cost vector co. Then (3.6a) can be
written

(3.7) Axp D,pArpBp +DxpUp with

From (3.6b) and (3.7) follows

(3.8) AoO oA2 ab,

We now introduce some further notation. Denote by D/: the Choleski factor of
Dx, and by I the identity matrix. Let p A D/: and define += fi.rp(ApAArp)+ thep xp p

pseudoinverse of Ap. From (3.7) and (3.8), it follows after some calculations that

(3.9) Axp ri/2+Abp + r)/2(i_+ . /2
Xp p xp pZp xp OUp,

whereP=I +pAp is the orthogonal projector onto the nullspace of Ap (and hence,
IIPll-<- 1). Note that although (3.8) does not have a unique solution, the perturbation Axp
is always unique. Denote by u(p)= IIA+ll= IIA ll= the Euclidean condition number of

22 2 2p. We remind the reader of the relations X(p)= u (Ap)= O’max/O’min, where O’max
and O’ma are the largest and smallest (nonzero) Telgenvalues of the matrix AAp,
respectively, [1, p. 241]. Before we give the bound for the perturbation in xp, we will
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need some minor results. We first note that

’ ,-,,1/2bp Apxp ta,pUx, e with e (1, 1, , 1)r.
The following relations between norms are easily verified"

IID1/2eIID/=II IIx, lloo and, xp [l -IIx.lllxp

Let k2p IIxlll/llxllo, From (3.9)follows

IIAx"II= k.(A) +llu.ll.(3.10) IIx,lloo Ilboll
Let c=AcD/2xc From (3.4), (3.10) and the inequality 1lSupll2=llAg)*arll
IIA)II" IlaBll, we arrive at

(3.11)

where k2 =llxoll/llxoll and k =llmg)ll= IImxll=/llmOxmll=. We remark that the
parameter k is invariant under scaling of the constraints Ax bo the reason being
that in the preceding derivations, cf., e.g., (3.3), we used precisely the original
definition of A.

We now compare the results given here with those obtained by Jensen and Stewart.
In order to analyze the effects of possible errors in the costs, a three-dimensional model
(with unknowns Xk) is used in [6]. As discussed earlier, these errors are neglected here.
When comparing results, we therefore used the relation x kXk. It is then possible to
verify that the relations (3.4) and (3.8) correspond to the relations (19) and (23),
respectively, in [6]. However, the analysis in [6] is not carried further.

By making this extension, some further conclusions can be drawn. For instance, it
is seen from (3.10) that possible perturbations in the initial estimate, {u () }, of the trip
destination table are not magnified by the condition number (p), cf. [6]. For the case
when (p) and () are of the same order relation, (3.11) shows that the bound for
the final error is less sensitive to errors in data from the prediction year, say ten years in
the future, than to errors from the base year.

In a recent report [7], Murchland presents an easily computable first-order formula
8()for i, due to possible errors in the prediction data )), g)) and a)). Although

no derivation is given, his result is apparently an approximation of the right-hand side of
(3.9). It is stated that the formula is valid provided the balancing algorithm for solving
problem (2.7), converges rapidly. The approach in [7] does not seem to lead easily to a
bound corresponding to (3.10).

We remark finally that another way to carry out this analysis would be to consider
the related maximum entropy problem with linear constraints. This approach also
conveniently allows for perturbations in the matrix elements. We will return to this
sensitivity problem elsewhere.

Acknowledgment. The author is grateful to Professor Neil F. Stewart, Universit6
de Montr6al, Canada, for a critical reading of the manuscript.
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SENSITIVE GROWTH ANALYSIS OF MULTIPLICATIVE SYSTEMS I: THE
DYNAMIC APPROACH*

URIEL G. ROTHBLUMS"

Abstract. Consider a system in which a vectorial input x is transferred, in one time period, into a
vectorial output xP, where P is a nonnegative matrix (not necessarily irreducible). We study the asymptotic
behavior of the n-period output of such a system. For each i, we define two growth coefficients: the geometric
growth rate, say r, and the power growth rate, say ug. We show that if x(n)g is the n-period output of the ith
coordinate and r 0, then rT,nx(n) can asymptotically be a Cesaro average approximated by a polynomial. A
combinatorial characterization of u- which turns out to be the degree of the approximating polynomial is
obtained. We also show that rT,nx(n) has a polynomial periodic asymptotic behavior.

1. Introduction. Consider a multiplicative system in which a nonnegative vectorial
input x is transferred, during a single period, into an output vector xP, where P is a
square nonnegative matrix. Assume that this system is operating for a number of
periods by using the output at the end of each period as the input of the system at the
beginning of the next period. There are many examples for systems that operate in this
way. In particular, finite state Markov chains have the above structure with the
input/output vector representing probability distributions. Also, branching processes
(e.g., Harris (1963)), Markov reward processes with exponential utility (e.g., Howard
and Matheson (1972)) and age distribution models have this structure. The terms we
use for our analysis are motivated by a simple production model of a self-sustained
economy in which there are a finite number of commodities. During each time period
the bundle of commodities available at the beginning of that period undergoes a
production process in which Pij units of the ]th commodity are produced from each unit
of commodity i. So, each commodity can (under the production process) create a variety
of output commodities. We point out that this model is different from the closed
Leontief model in which a variety of input commodities are used to produce one unit of
an output product. This model is the general von Neumann model with the input matrix
being the identity and the output matrix being arbitrary.

If a multiplicative system is operated for n periods, then every input vector x (0) is
transferred into x(n) x(0).Pn. In this paper, we study the asymptotic behavior of the
n-period output as n becomes large. This asymptotic-behavior has been studied
extensively under various assumptions on the structure of the transition matrices. It has
been shown that if r is the spectral radius of the transition matrix and the system is either
indecomposable (see 3) or satisfies some other structural restrictions, then r-nx (n) has
a nonvanishing finite (possibly Cesaro average of order one) limit as n c. For specific
examples, see Karlin (1959), (1966), Kemeny and Snell (1960), Jaquette (1975), Harris
(1963), Gale (1960), Nikaido (1968), Howard and Matheson (1972) and many others.
When r-nx(n) converges, r can be considered to be the growth rate of the system.
Unfortunately, this convergence does not always hold. McKenzie (1967), (1971)
showed that, qualitatively, the n-period output of some production system might have a
polynomial behavior on top of the geometric growth. In this paper, we give a complete

* Received by the editors August 24, 1979 and in revised form May 19, 1980. This research was
supported by the National Science Foundation under grant ENG-78-25182. This work also relates to the
U.S. Department of the Navy contract ONR 00014-76-C-0085 issued under U.S. Office of Naval Research
contract authority NR047-006.

" Yale University, School of Organization and Management, New Haven, Connecticut 06520. This

paper was revised while the author was visiting the Faculty of Industrial Engineering and Management at the
Technion, Haifa, Israel.
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and precise expansion of the n-period output. Of course, examining the ih element of
the nth power of the nonnegative matrix P amounts to considering Ix (0)P ]j where x (0)
is the ith unit vector.

Our analysis uses the expansions of partial sums of matrix powers developed
in Rothblum and Veinott (1975) and Rothblum (1980) (summarized in 2) with the
spectral class structure of a nonnegative matrix first observed in Rothblum (1975)
(summarized in 3). We then combine these structural studies in 4. Specifically, for
each commodity we define the geometric and power growth rates, respectively, by

and if ri .0,

r/-= inf {a >0 -x }lima (n)i=0

vi--=inf {k =0, 1,’" lim n-kr"x(n)i=O}.
We study some properties and characterizations of these growth coefficients. In
particular, we show that t,i equals the number of independent nondegenerate subsys-
tems producing each other all of which can produce and have the maximal geometric
growth rate among all subsystems producing i. We then show that for each commodity
i, rC,nx(n)i is Cesaro-average approximated by a polynomial of order ’i-1, and this
sequence has also a periodic approximation by polynomials whose degree does not
exceed t,i- 1 (see 4 for details). Specifically, we show the existence of integers ri and
qi and of (computable) vector-polynomials (’),o(’),’",q,_1(’) of degree
d, do," ", dq-1, respectively, such that

(1.1) lim {r;nx(n)i-b(n)}=O (C, "l’i)

and

(1.2) lim {r’q’+Jx(mqi+t)i-(m)}=O, ]=0," ,qi-1,

where (C, ’i) stands for the Cesaro average of order ’i (see 2 for a precise definition)
and d maxo___zq,_l d ’i 1. We emphasize that x(n)i is normalized by a term which
depends on i. If x(n)i is normalized, r where r> ri, we trivially would have that
lim,_,o r-"x(n)i 0 and little information is gained on x(n)i.

2. Notational conventions and preliminary results. We say that a (real) matrixA is
nonnegative (resp., positive) written A >_-0 (resp., A >>0) if all its coordinates are
nonnegative (resp., positive). We say that A is semipositive, written A > 0, if A -> 0 and
A # 0. We write A >= (resp., >> or >) B if A -B >- (resp., >> or >) 0. Similar definitions
apply to vectors.

The real line will be denoted R. Let B Rss and let J, K
_

{1,. , S}. Then by
BjK R IJllKI we denote the corresponding submatrix of rows and columns of B.2 Let
BzB. For x R s and J

_
{1,..., S} we denote by x R IJI the corresponding

subvector of x. If I {i} and J {]} we put (as usual) Bii Bz and xj x. Superscripts
of matrices will stand for powers, whereas superscripts of vectors will be used for
enumeration. In particular, B (B")zz.

We refer to the indices of the input-output vectors as commodities.
2 For a finite set L, ILl denotes the number of elements in L. For a complex number A, IAI denotes the

absolute value of A. No confusion should occur.
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For a given sequence {a, ln 0, 1,...}, let {a"ln 0, 1,...} be the sequence of
m-order averages of {a,}; i.e., for n 0, 1,. .,

a (no) an,

and for every positive integer m

a,(") (n + 1)- ai(m-1).
i=0

We say that a is the (C, m) (Cesaro average of order m) limit of {a,}, written
lim_.o a, a (C, m), if lim_.oo a (") a.3 It is known that if lim,_.o a, a (C, m) and
k _->m >_-0, then lim,_.oo a, =a(C, k) (see Hardy (1949, p. 100)).

We next summarize a number of definitions of spectral concepts which we need to
summarize results concerning the asymptotic behavior of powers of matrices obtained
in Rothblum and Veinott (1975) and Rothblum (1980).

Let P be a square matrix, A a complex number and (2--P--AI. The index of h for
P, denoted ux (P), is the smallest nonnegative integer n such that the null spaces of
and Q/ coincide. The coindex of h 0 for P, denoted ’x (P), is defined by

ra (P) max {,, (P)[tz # A, I ,l IA I},

It is known (e.g., Halmos (1958, p. 113)) that there exists a unique projection whose
range is the null space of O and whose null space is the range of O, where --- x (P).
This projection is denoted Ex (P) and is called the eigenprojection of P at h. We remark
that h is an eigenvalue of P if and only if ’x (P)> 0 or equivalently Ex (P)# 0. In this
case, ux (P) is the size of the largest block in the Jordan form corresponding to the
eigenvalue h. Also observe that if P is an S x S matrix, then t,x (P)_-< S.

Let P be square. Then r(P) will denote the spectrum of P and r(P) will stand for its
spectral radius; i.e., r(P) max {IA[I h r(P)}. It was shown in Rothblum and Veinott
(1975) and Rothblum (1980, Theorem 4.2) that for every square matrix P with
r=-r(P)#O,

OE 0 (C, ),
n-*oo i=0

where u u(P), z=-(P), Q= r-aP-I and E=E(P). It is known that if P is
nonnegative then z _-< u (e.g., Vandergraft (1968)) and if r 0 then P is nilpotent and
u(P) min {kiP 0} (e.g., Rothblum (1981)). Moreover, it is also shown in Rothblum
(1980) that for some integer q and computable matrix-polynomials o,’" ",

(2.2) lim {r-mq+tPmq+t- Oi(m)} 0, 0, , q 1,

and

maxo<__t_<q-1 deg (4’t)= v- 1.

We remark that the (C, z)-average is needed in order to smoothen fluctuations of
order n"- of the sequence whose limit is considered in (2.1). Combinatorial bounds on
the order of these fluctuations, namely r, for nonnegative matrices were obtained in
Rothblum (1980, App. C). These bounds demonstrate that, typically, z is considerably
less than u.

The definition given here is actually that of H61der limits which are known to be equal to the Cesaro
limits (e.g., Hardy (1949, p. 103)).
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3. The structure of multiplicative systems. In this section, we introduce a few
concepts concerning the structure of multiplicative systems. Most concepts are taken
from the theory of nonnegative matrices (e.g., Rothblum (1975)).

Formally, a multiplicative system is a triplet (S, x(O), P), where S is a positive
integer, x (0) is a 1 S nonnegative row vector and P is an S S nonnegative matrix. We
will sometimes omit the term multiplicative and refer to a system. The integers 1, , S
are called the commodities of the system, the matrix P is called the transition matrix, and
the vector x(0) the initial input. The n-period output of a multiplicative system
(S,x(O),P) is defined as x(n)=x(O)P, where n =0, 1,.... The subsystem of
(S, x(0), P) corresponding to K {1,. ., S} is the system (Igl, x(0), e). The
n-period output of this subsystem is x:(n)=-x(O)rP:, where n =0, 1,.... We will
usually identify the commodities of a subsystem with the corresponding commodities of
the original system.

Let (S, x(0), P) be a given multiplicative system. We say that Commodity produces
commodity /, or commodity f is produced by commodity i, if for some integer
n->0, (P")>0. Two commodities and /’, each producing the other, are said to
communicate. It is known (e.g., Karlin (1966, p. 42)) that the communication relation is
an equivalence relation. Hence, we may partition the totality of commodities into
equivalence classes. The commodities in an equivalence class are those which com-
municate with each other. In the sequel, a class will always mean a nonempty
equivalence class of communicating commodities. We will use the concept that a class
produces (resp., is produced) if this is so for some, or equivalently every, commodity in
that class. The classes are partially ordered by the production relation.

We say that our transition matrix is indecomposable (sometimes called irreducible)
if the equivalence relation induces only one class, i.e., if all commodities communicate.
It is known that P is indecomposable if and only if (I + p)S- >> 0 (e.g., Varga (1962, p.
26)). We say that a multiplicative system is indecomposable if this is so for its transition
matrix.

Let (S, x(0), P) be a multiplicative system. We say that a subset of commodities
K
_

{1,. , S} is essential (resp., final) is no commodity in {1,.. , S}\K produces
(resp., is produced by) any commodity in K. Of course, every system has at least one
essential and one final class. Moreover, every essential (resp., final) set of commodities
includes at least one essential (resp., final) class. The following lemma is an immediate
result of the definition of an essential set.

LEMMA 3.1. Let K be an essential set. Then/’or n O, 1,. , x (n)s: x s: (n).
A class J of commodities is called basic if r(P) r(P). A class J is called nonbasic if

it is not basic, i.e., if and only if r(P)< r(P) (cf. Varga (1962, p. 30)). Note that the
definition of basic class depends on P and not only on P; i.e., even if two classes have
the same "internal structure" it is possible that when viewed in different systems one is
basic and the other is not. However, if K is a union of classes with r(Ps:) r(P), then a
class is basic in the subsystem corresponding to K if and only if it is basic in P. Of course,
every system has at least one basic class.

Let P be a square nonnegative matrix. A chain of classes is a collection of classes
such that each class in the collection either produces or is produced by each of the other
classes in the collection. A chain of classes with essential class J and final4 class K is
called a chain from J to K. The length of a chain is the number of basic classes it
contains. The height of a basic class is the length of the longest chain of classes in which
that class is final.

4 Here essential and final are with respect to the subsystem corresponding to the union of the classes in
the chain.
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We next illustrate the above definitions by an example. Let our transition matrix be

1 0 8 0 0 8 0 0 0
3 6 7 0 0 0 0 0

2 0 1 0 0 0 0
3 3 0 4 0 0

3 5 0 0 0
3 0 0 0

0 2 0
3 3

Obviously, every class consists of a single state. This is done for simplicity only. The
basic classes are {2}, {4}, {5}, {6} and {8} and the nonbasic classes are {1}, {3}, {7} and {9}.
The production relation between classes can be represented by a directed graph, as
done in Fig. 1, where circles are used for basic classes and squares stand for nonbasic

FIG.

classes. It is easily seen from Fig. 1 that the essential classes are {1} and {2} and the final
classes are {6} and {9}. The height of the basic classes is given by

Basic Class Height

2
4 2
5 3
6 4
8 3

The concepts introduced in this section with respect to the system (S, x (0), P) will
sometimes be used with respect to the matrix P; e.g., we will refer to a basic class of a
nonnegative matrix P.

4. Asymptotic behavior of the n-period output and growth rate analysis. It is clear
from the results summarized in 2 (see (2.1) and (2.2)) that the asymptotic behavior of
the n-period output of a multiplicative system (S, x(0), P) with r--r(P) 0 has the
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asymptotic expansion given by

v 0 (C,
n--,oo =0

and

(4.2) lim {r-"q+tx(rnq+t)-4,(rn)}, t=0,...,q-l,

where v x(O)OJE(f 0,. ., u 1), u =- ur(P), " =- ’r(P), O =- r-lp I, E =- Er(P), q
is some positive integer and b0,’’’, &q-1 are (computable) vector polynomials. We
remark that since - -< u, (C, -) can be replaced by (C, u). This expansion shows that once
we normalize geometrically by r", the n-period output has the corresponding asymptotic
polynomial behavior. Previous analysis of models with restrictive structure (e.g.,
stochastic, indecomposable and age distribution systems) guaranteed that u 1. In this
case, (4.1) shows that r-"x(n) has a (C, 1) limit (which equals Er(P)). However, i
general, we see that there is a polynomial growth on top of the geometric growth. We
remark that an efficient method to compute E(P) is described in Rothblum (1976).
Thus, one can compute the coefficients v i, f 0,. , u- 1 explicitly.

The expansion given in (4.1) is obviously of no interest if one studies the growth of a
particular commodity for which it happens that v 0 for f 0,.. , u 1. For this
reason, it follows that when a particular commodity is concerned, the expansion (4.1) is
not necessarily helpful. For example, if

P= 0 2 0 and x(O)7"= 1
0 0 1 1

then r 2, and

r-"x(n)T 1
0.5

The expansion given in (4.1) tells us that

lim 2-x(n)r- 1 -n 0
0 0

No information about the n-period output of the third commodity is obtained, except
that 2-"x(n)30 as n. It is also clear that when the second commodity is
concerned, one does not need the second term of the expansion. In order to obtain a
more sensitive analysis, we next introduce two growth coefficients for each commodity.

For each commodity 1,..., S define the geometric growth rate of by

(4.3) ri inf c > 0 lim (n) 0

If r O, the power growth rate of is defined by

(4.4) ,=min{k=O, 1,... ,-.lim n-r[x(n)=O].
If r O, define the power growth rate oI by

(4.5) u=min{k=O, 1,... Ix(n)=Oforalln =k,k+l,...}.
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It follows from (4.1) and the discussion thereafter that

(4.6) rg <-r(P) for every commodity i,

and

(4.7) t,i <= t’r(e)(P) for every commodity with ri r(P).

We will later show (Theorems 4.3 and 4.4) that the minima in (4.1) and (4.2) are never
aken over an empty set.

We say that commodity dominates if either ri > r. or ri 5 and ’i => ’i. We next
explore the connection between the domination relation and the production relation.

THEORZM 4.1. If commodity produces commodity f then f dominates i.

Proof. Since produces , (pm)gj > 0 for some integer m => 0. By the definition of rj it
now follows that for a > 5

__{ -nX }(pro)i,> 00 lim a-"x(n + rn) > lim sup a (rt)i

Since x(n) >=0 it follows that lim,_. ce-nx(n)i 0 for all c > r., proving that ri <= ri. Next
assume that ri r O, and we will show that /}i /]" For every integer k > ,,

0 lim n-r-x(n + m), >=/lim sup ->_0.
J

Since x(n) >= 0 it follows that lim_. n-rS,x(n)i 0 for all integers k > ,, proving that
/i /] If ri r] 0 and x(n)i 0 for some integer n =>0, then x(n + m) >=x(n)i(pm)ii
0, showing that ti ->/i -- m, thus completing the proof of Theorem 4.1.

The conclusion of Theorem 4.1 is intuitive. It says that if a commodity which
produces some other commodity enjoys a certain growth, then the second commodity
enjoys at least that growth.

Theorem 4.1 implies that the domination relation is a class property. An immedi-
ate corollary of this fact is the following result"

COROLLARY 4.2. The geometric growth rate as well as the powergrowth rate are class
properties.

In the sequel, we will use the relation of domination with respect to classes. We will
use the notation rj (resp., ,j) for the joint geometric (resp., power) growth rate of the
commodities in class J.

Let (S, x(0), P) be a given multiplicative system. We say that a commodity is
degenerate if no commodity j with x (0)i > 0 produces i. A class of commodities is called
degenerate if some, or equivalently every, commodity in the class is degenerate. The set
of all degenerate (resp., nondegenerate) commodities will be denotedD (resp., N). The
system is called degenerate if D rs . Of course, a system is degenerate if and only if
x (0) 0for some essential class J. A subsystem is called degenerate if it is degenerate as
an independent system.

We will next obtain a characterization of the growth coefficients.
THEOREM 4.3. Let (S, x(O), P) be a multiplicative system and J a nondegenerate

class of commodities with r =- rz. LetK N {ili produces J}, L =-N {i[J dominates i}
andM N {ilri <= r}. Then J

_
K
_
L
_
Mand

(1)5 x(n)z x: (n):r xL(n)j X
M (n)].

(2) r r(Pz) r(Pc)= r(PM).
(3) t,’j tzr(PI,)"- t"r(PL).

Since J
_
K
_
L

__
M, we identify the commodities of J with the corresponding commodities of the

three subsystems.
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(4) vj equals the height of J in each of the three subsystems corresponding to K,
L and M.

In addition, if is a degenerate commodity, then ri vi- x(n)i 0 for all n
0,1,....

Proof. We first assume that our system is nondegenerate; i.e., D- Q5 and N
{1,..., S}. In this case, obviously, K is an essential set of commodities and by Theorem
4.1 so are L and M. By Lemma 3.1 and the obvious fact that J_K_L_M,
x(n)j x: (n) xL(n) xM(n).r, proving (1). It now follows that the growth
coefficients of J in the three subsystems equal the growth coefficients of J in the original
system. By (4.6) and Varga (1962, p. 30), r <= r(Pr.) <- r(PL)<-r(PM). Thus, in order to
prove (2) it suffices to show that r >=p =-r(P). This result is trivial in the case where

Applying the expansion given in (4.1) for the subsystem corresponding to M, one
gets that if p 0, then

vl (n) xM(4.8) lim p-nx(n)- (0)QE 0 (C, v),
j=0

where v vp(Pm), OM =- p-IpM--[ and Em Ep(Pm). By Rothblum (1975, Theorem
3.1, part (3)), there exist a vector y R IMII and an essential class C, with EMy y and
(o-ly)c >>0. By the nondegeneracy assumption, a xm(0)O-ly >0. It now follows
from (4.8) and arguments similar to those in Hardy (1949, p. 101) that

lim n-"+(v 1)p-"xM(n)y =a (C, v).

Since a # 0, it now follows that for some M the limit of n-"+xp-"xM(n)i as n --> oo is
not zero, proving that ri _-> p. By the definition of M, r _-> ri _-> p, completing the proof of
(2) in the nondegenerate case.

Applying a similar analysis to the subsystem corresponding to K shows that if
r 0, then for some K, the limit of n -+r-"x: (n)i as n oo is not zero, where here
v =- vr(PK). Since ri <= r(PK) r, the latter implies that r r and v => v. If r 0 then by
Rothblum (1975, Theorem 3.1, part (3)) there exists a vector y RIrl and an essential
class C, such that (P:-ly)c >>0, where (as before) v vr(Pr.). By the nondegeneracy
assumption, xr (v 1)y xr (0)P,-Xy # 0, which implies that for some
K, x(v 1)i # 0. By (4.6), r -< r 0. Thus, the above implies that in the case where r 0
we also found a state K with r r and v => v. By Theorem 4.1 u => v >_-v, and by
(4.7) vj =< v, proving that v v. The proof that vr v,(P) follows similarly, thus
completing the proof of (3) in the nondegenerate case.

We next prove (4). By (2), J is a basic class of each of the three subsystems
corresponding to K, L and M. By Rothblum (1975, Corollary 3.3), the height of a basic
class equals the index of its spectral radius, for the submatrix associated with all
commodities producing that class. This implies that the height of J in each of the three
subsystems equals vr(P:)= v(J), completing the proof of (4) and Theorem 4.3 for the
nondegenerate case.

We next consider the case in which our system is degenerate, i.e., D # . By
possibly permuting rows and corresponding columns one can assume that
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It now follows that for n 0, 1,.

pn (9 A) n-1

DXDB-rBp whr An 2 DiD Dn--J-1

j=O

and therefore, since x(O)D 0,

(4.9) x(n )D x(O)DP9 O,

and

(4.10) x(n)v x(O)DA + x(0)vPv xlV (n).
It immediately follows from (4.9) and (4.10) that if is a degenerate commodity then
ri ui 0 and if J is a nondegenerate class, then rj and ,j are the growth rate
coefficients of J in the nondegenerate subsystem corresponding to N. The conclusions
of (1)-(4) for the degenerate case now follow immediately from the previously proved
conclusions for the nondegenerate case. Thus, the proof of Theorem 4.3 is completed.

We pointed out that when a particular commodity is concerned, then the expansion
given in (4.1) is not necessarily helpful since we might normalize the n-period output of
that commodity by too much. By part (1) of Theorem 4.3, we can apply the expansion
(4.1) to a subsystem without changing the n-period output of a particular commodity.
Applying our expansion to the subsystem, we next get a more satisfactory expansion of
the n-period output.

THEOREM 4.4. For every class J with r O, x(n) 0 for all integers n >- uj. IfJ is a

class with r -- rj O, put K =-N f-) {ili produces J}. Then

(4.11) ,,-.limr-"x(n)K-l()wJ=Oj=o (C,r)

and

(4.12) lim {r-’q+x(mq+t)K-t(m)}=O, t=0,...,q-l,

where u uj>= l, wi= x(O)rQr-XE: (]=0,..., u-l), Qr. r-lpk-I, E: =E(P:),
-= ’(P:), q is a positive integer and o," ",- are vector-polynomials. Moreover,
(W-) >> 0 and max0_t_<_- deg (Ot) u- 1.

Proof. The expansion follows immediately from (4.1) and part (1) of Theorem 4.3.
The last conclusion follows from the fact that , u (part (3) of Theorem 4.3).

Remark. Equation (4.11) can be considered coordinate by coordinate. This
enables one to get, for each commodity i, a nonvanishing Cesaro-average polynomial
expansion of rV,"x(n)i as n --> . Now, for each commodity i, let ’i be the minimal integer- for which the corresponding expansion holds (C, ’). We mention without proof that "/’i

is a class property. Upper bounds on - can be obtained directly from the corresponding
results in Rothblum (1980, App. C).

5. Specific results for some structured models. If P is stochastic, then the basic
classes are the recurrent classes (e.g., Rothblum (1975)). In the stochastic case, every
recurrent class is final, and therefore the height of every basic class is one. Thus, by
Theorem 4.3, , 1 for every recurrent class J and, therefore, X(rt)j converges (C, 1).
The (C, 1) limit can be replaced by regular limits when the period of the class is one or
0.

If we consider the age distribution model, then, in general, there is only one
basic class which is the group of ages prior to the end of fertility, and the period of this
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class is one. It therefore follows that in (4.1), u 1, and that the (C, -) limit can be
replaced by a regular limit.
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A GROUP TESTING PROBLEM ON TWO DISJOINT SETS*

GERARD J. CHANGer AND F. K. HWANG

Abstract. Recently the following group testing problem has been studied. We have two disjoint sets of
items with cardinalities rn and n respectively, where each set is known to contain exactly one defective
item. The problem is to find the two defective items with a worst-case minimum number of group tests. It was
conjectured that [Iog2 mn tests [x denotes the smallest integer not less than x) always suffice. In this paper
we prove that the conjecture is true.

1. Introduction. In 1] the following group testing problem was studied. We have
two disjoint sets of times M- {M1,’’’, M,,} and N- {NI,’’’, Nn}, where each set
contains exactly one defective item (the others are good items). The problem, called an
(m,n)-problem, is to find the two defective items by means of a sequence of group tests.
A group test is a simultaneous test on a group of items with two possible outcomes. The
group is identified as good if it contains no defective item and identified as defective if
otherwise. In the latter case the test outcome does not reveal how many or which items
are defective.

Let tg(m, n) denote the number of tests required for the algorithm g to solve the
(m, n)-problem, assuming the worst case. Define

t(m, n) min t(m, n).
g

It was conjectured in [1] that t(rn, n)= [logz rnn] (where Ix] denotes the smallest
integer not less than x), the information-theoretic lower bound, with some partial
evidence provided. In this paper we prove the conjecture in its full generality.

2. Some preliminary remarks. A solution of the (m, n)-problem is a pair (Mi, N.)
such thatM is the defective item inM and N. the defective item in N. A solution space is
a set of possible solutions. We also use the notation (M’x N’), M’_ M, N’_ N, to
denote the solution space

Since the outcome of each test is binary in nature, any algorithm to solve the
(m, n)-problem can be represented by a rooted binary tree. At each nonterminal node
of the tree, a test is specified and the two links from this node represent the two possible
outcomes of the test. The path from the root to any node then indicates a sequence of
outcomes for each of the tests made at the nodes along the path (the path on which all
outcomes are defective is called the all-defective path). Using this information we can
associate with each node v a solution space $o which consists of all possible solutions
consistent with the outcomes of the tests on the path from the root to v. For the
(m, n)-problem, the solution space associated with the root is (M N). Furthermore,
the solution space associated with a terminal node is always of cardinality one. From
now on we will consider an algorithm always in its binary tree form.

* Received by the editors January 29, 1980, and in revised form July 18, 1980.

" Department of Operations Research and Industrial Engineering, Cornell University, Ithaca, New
York.

Bell Laboratories, Murray Hill, New Jersey 07974.
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A solution space is said to be M-distinct if no two pairs in the space share the same
M. Let Ixl denote the cardinality of the set X. Suppose $ is a solution space with

Isl 2 + 2r-1 +" + 2-p + q,

where 2-p-1 > q -> 0. An algorithm g for S is called M-sharp if it satisfies the following
conditions:

(i) g solves S in r + 1 tests.
(ii) Let v(i) be the ith node on the all-defective path (the root is labeled as v(0),

and let v’(i) be the good son of v(i). Then Iso,. l 2 for 0, 1, , p.
(iii) ISo.+l =q and S+) is M-distinct.

If ISI 2, then the above conditions are replaced by the single condition
(i’) g solves S in r tests.
LZMMA 1. There exists an M-sharp algorithm for any M-distinct solution space.
Proof. We can ignore the N-items in a M-distinct solution space. Then it is trivial to

find an M-sharp algorithm.

3. The main results. For m fixed, define nk to be the largest integer such that
rank <= 2k Then clearly, there exists an nk whose value is one

THEOREM 1. t(m, rig) k for all nk 1. Furthermore, if nk is odd, then there exists
an M-sharp algorithm for the solution space (m rig).

Proof. By the definition of rig, t(m, nk)>=k. Therefore we need only to show
t(m, nk)<--k.

The solution space’for the (m, 1)-problem is M-distinct. Therefore there exists an
M-sharp algorithm by Lemma 1. For general nk > 1, we prove Theorem 1 by induction
on nk.

Note that

implies

2k-2 < mnk- <--2k-1 < m(nk- + 1)

2k-1 < m (2nk-) --< 2 k < m (2nk-1 + 2).

Therefore nk is either 2nk-1 or 2nk- + 1. In the former case we test half of the set N and
use induction on the remaining (m, nk_x)-problem. In the latter case, let r be the largest
integer such that

nk 2rnk-r + 1.

Then r-> 1 and nk-r is necessarily odd. Let

mnk-r 2k-r-I + 2k-r-2 +" + 2k-r-p + q,

where

Then

0 <- q < 2 k-r-p-1.

mnk m (2rnk_ + 1)

2k- + 2k-2 +" + 2k-p + 2rq + m.

Let g be an M-sharp algorithm for the (m, nk_)-problem. The existence of g is
assured by our induction hypothesis. Let v be the node on the all-defective path of g
associated with q solutions. Let J be the set of j such that (M,.,/V.) Sv for some 34.. For
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] J, let Lj denote a set consisting of those M’s such that (Mi, N.) So. Since So is
M-distinct, the Lj’s are disjoint.

We now give an M-sharp algorithm for the (m, nk)-problem. For easier writing, we
will use n for nk-r and n’ for nk. Then N will refer to the set of n items andN to the set
of n’ items. Partition N’-{N,,,} into n groups of 2 items G1,"’, G,. Consider g
truncated at the node v; i.e., delete the subtree rooted at v from g. Let g’ be an
algorithm for the (m, n’)-problem where g’ is obtained from g by replacing each item N.
in a test by the group Gi and adding N,, to every group tested on the all-defective path.
Then each terminal node of g’, except the node v’ corresponding with v, will be
associated with a set of solutions (Mi Gi) for some and/’. Since the only uncertainty is
on G and IG] 2r, r more tests suffice.

Therefore, we need only to give an M-sharp algorithm for the solution space

S,=/U (Ljx G)} U (M x N,,,),

with ISo’l 2"q + m. Let Gil, , Giz denote the 2 items in Gj. Define

T { ,.:G/} U R,

where R is a subset of M-items not in any of the Li, / s J, with IRl 2’q + m 2-- q.
Note that there are a total of m-q M-items not in any of the Li. We now prove
that m q => IRI> 0. The former inequality follows immediately from the fact that

2rq < 2r2k-r-t’-. 2k-l"-.
Furthermore, since

it follows that

2k-a < m (nk- + 1) m (2r--lnk--r + 1)

or

2k-2 + 2k-3 +’ + 2k-P-a+ 2"-lq + m,

2r--lq + m > 2k-t’-l,

IRl>2r-q-q>=O.

We test T at Sv,. Let S(g) and S(d) denote the partition of Sv, according as to
whether T is good or defective. Then

with

and

S(d) { U (L/x Gi)} U (Rx N.,),
]J

IS(d)l q + 2rq + m 2k-"- q

=2rq+m_2k-"-,

{2, }S(g) U U (Lj x Gi,) U ({M R} x N,,,),
w=2 j=J

with IS(g)l=l&,l-lS(d)l 2--. Since S(d) is M-distinct, there exists an M-sharp
algorithm for S(d) by Lemma 1. It remains to be shown that S(g) can be done in
k p 1 tests.
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Note that $(g) can also be represented as

Since IGi-{Gi} LJ {N,,,}I 2r, IM-R- UiLl must also be a multiple of 2r. Partition
M- R {UL} into 2 subsets of equal size, HI," "’, Hg.. Define

Tw { .jGjw} U H,,, forwW=(2,3,’",2r}.

Then the Tw’s are disjoint. By testing a sequence of proper combinations of Tw’s, it is
easily seen that in r tests we can partition S(g) into 2 subsets consisting of

Sw { U (L, Gw)} U (Hw X N,,,), w 2, 2r,

and

Furthermore, Sw is M-distinct and ISwl 2 k-p-r-1 for each w 1,..., 2r. Therefore
each Sw can be solved in k-p-r-1 more tests by Lemma 1. This shows that the
algorithm just described for So, is M-sharp. Therefore, the algorithm g’ plus the
extension on v’ as described is M-sharp. The proof of Theorem 1 is complete.

COROLLARY. t(m, n)= [log2 toni ]:or all m and n.
The corollary follows from Theorem 1 by way of the easily verifiable fact that

t(m, n) is monotone nondecreasing in n.

4. Conclusion. In [1], the conjecture on the group testing problem was generalized
to a conjecture on bipartite graphs; namely, for every bipartite graph with 2k edges,
there exists a subgraph induced by a subset of vertices with exactly 2k-1 edges. It was
shown that the truth of the bipartite graph conjecture implies the truth of the group
testing conjecture but not the other way around. In this paper we prove the group
testing conjecture while the bipartite graph conjecture remains open.
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THRESHOLD SEQUENCES*

P. L. HAMMER’, T. IBARAKIt AND B. SIMEONEf

Abstract. A graph is threshold if there is a hyperplane separating the characteristic vectors of the
independent sets from the characteristic vectors of the nonindependent sets. A sequence of n nonnegative
integers is a threshold sequence if it is the degree sequence of a threshold graph with n vertices. Several
characterizations of threshold sequences are given, and it is shown that the set of threshold sequences forms a
lattice. For an arbitrary degree sequence d (not necessarily threshold), the minimum distance between d and a
threshold sequence is called the threshold gap. Its properties are discussed, and the set of threshold sequences
at minimum distance from d is also characterized.

1. Introduction. A threshold graph is a graph with the property that there is a
hyperplane separating the characteristic vectors of the independent sets from the
characteristic vectors of the nonindependent sets of the graph. Threshold graphs, as
well as several generalizations and other related concepts, have received wide attention
over the last years [1], [3], [4], [6], [7], [8], [9], [10], [11], [15], [16], [17], [19]. They
were first introduced in [4], in connection with the equivalence between set packing and
knapsack problems, where they were characterized by the property that there are no
four vertices a, b, c, d such that (a, b) and (c, d) are edges, while (a, c) and (b, d) are not.
Alternatively, they were characterized by the property that the relation defined in the
vertex set by "x < y if and only if all vertices different from y and adjacent to x are also
adjacent to y" is a linear pre-order.

The starting point of the present research is the observation that, if d is the degree
sequence of a threshold graph (shortly, a threshold sequence), then there is only one
graph (up to isomorphism) with degree sequence d. It is natural then to ask for a
characterization of threshold sequences. Several such characterizations are given in 3
(the main tool of which is Lemma 9) using the basic properties of degree sequences
prepared in 2. One of them states that threshold sequences are precisely those which
satisfy the classical Erd6s-Gallai inequalities as equalities. Hence threshold sequences
are among the graphic sequences the "least" graphic ones in a well-defined sense.

In a previous paper, it has been observed that a graph is split if and only if its degree
sequence satisfies the last Erd6s-Gallai inequality as an equality 11 ]. Hence, our result
gives an algebraic explanation of the known fact i-4], [8], that a threshold graph is split.

Various characterizations of the threshold sequences, given in 3, naturally lead to
the introduction of a parameter, the threshold gap of a sequence, with the property that
a sequence is threshold if and only if its threshold gap is zero. In 5, we show that the
threshold gap of a sequence is actually the minimum distance (in a suitable norm)
between d and any threshold sequence of the same length. This result substantiates the
interpretation of the threshold gap as a measure of "non-thresholdness" of a sequence.
As discussed in 4, the set of all threshold sequences of length n is seen to have a lattice
structure with respect to the operations consisting in taking the minimum and, respec-
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tively, the maximum componentwise of two sequences. This property plays a role in the
characterization of the set of threshold sequences at minimum distance from a given
arbitrary sequence d. Among such closest threshold sequences, there are two special
ones which are obtained from d by replacing its "head" or its "feet" so as to transform d
into a threshold sequence. Properties of these sequences are discussed in some detail.

2. Some properties of integer sequences. In preparation to the study of threshold
sequences, some preliminary results on integer sequences are needed.

Let d (d,. , d,) be a sequence of integers such that n 1 -> d _-> => d, _-> O.
Such a sequence will be called proper. A proper sequence is graphic if there is some
graph with degree sequence d. Necessary and sufficient conditions for d to be graphic
are [5]:

(a) di is even;
i=1

(b) For k 1,..., n-l,

(1) , di<=k(k-1)+ min {k, d}.
i=1 i=k+l

The inequality (1) will be called the kth Erd6s-Gallai inequality (EGI). Let us define

(2) m m(d) max {k’ dk >- k 1}.
PROPOSITION 1. One has dk >-- rn 1 for k <- rn and dk <- rn 1 for k > m. Therefore

(3) Y min {k, d} d ]:or k >- m.
i=k+l i=k+l

THEOREM 2 (Li [14]). If the mth EGI holds, then the kth EGI is automatically
satisfied ]:or rn 1 <= k <- n.

From now on, we shall deal only with the reduced system formed by the first rn
Erd/Ss-Gallai inequalities, the remaining ones being redundant.

Another characterization of a graphic sequence is given by the next proposition.
The proof is straightforward and can be found in [12].

PRoPosrrioN 3. A proper sequence d with even sum is graphic if and only if
h

(4) , max {h l, dj} <- h (h -1) + dj [or alI h with m <= h <= n -1.
j=l j=h+l

If d is a proper sequence, let us define, for k 1,.. , n 1,

(5) d --I{i’ di -’ kII max (i" die k}.

It is well known (see e.g. [2, Chap. 6]) that d: can be interpreted as the number of points
in the kth row of the Ferret diagram of d. As an example, Fig. 1 shows the Ferrer
diagram of the sequence d (5, 5, 3, 2, 2, 1). Here d* (6, 5, 3, 2, 2).

We remark here that many properties of degree sequences have simple geometri-
cal interpretations in terms of Ferrer diagrams. For example, one has =1 .di=n-1 d (e.g., see [2]) for any proper sequence d. Actually both i--1 di and Y’-k-- dk
are equal to the total number of points in the Ferrer diagram of d.

We make the convention that, when h > k, Y.ik__h ai 0 and [h, k is the empty interval.
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5 5 3 2 2

FIG. 1. Example ofFerrer diagram.

It is easy to see (taking into account Proposition 1) that

(6)

and conversely,

(7)

Similarly, for 1 -< k =< m,

d=m+l{i’m+l<-i<-n, di>-k}[ forl<-k<=m-1,

dk m 1 for m < k _-< d* 1

dk=m--2 ford*_l<k <d*"-:2,

dk 1 for d2* < k -<_ d*,

dk 0 for d* < k -< n.

(8) d m l + l{i" m <= < n, d* >- k }[,
and conversely

(9)

d’ m for m l < k <-d",

d=m-1 for d" < k <- d"_l,

d 1 for dE < k -< dl,

d =0 for dl<k <_-n-1.

Relations (6), (7), (8) and (9) show that, once m is known, the vector (d*, d*,,_l)
depends only on the vector (d"/l,’" ,d,) and vice versa. Likewise, the vector
(dl," d") depends only on the vector (d,. *, , d,_ and vice versa. The situation is
schematized in the following diagram,

Let us put

&k=&k(d)
i=k+l

(k- )+
i=k+l

k

min {k, di}- Y di for 1 -< k -< m,
i=1

k

di- max{k-l,d} form_-<kNn.
i=1

(Notice that, for k m, there is no conflict between the two different definitions of 4’").
For 1 -<_ k -<_ m, 4’k is just the slack of (1); for m <= h -< n 1, h is the slack of (4).
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(10)

PROPOSITION 4. One has

Cn n-1 q- n,

where

(11)

dk* --dk 1

Ak Ak (d)= m 1-

(d’- dk

]’or l<-k<-_m-1,

fork=m,

for m + l <=k <-_n.

Proof. One has (1 Y-i=2 min {di, 1}- dl d dl 1 A1. Noticing that, for
any l <=k <=m-1,

: min{k, di} a min{k, di}+ Y: min{k, di}
i=k+l i=k+l i=d+l

=(d-k)k+ &,
i---d+l

one has, for k 2, ., rn 1,

Ck Ck-1 k (k 1) (k 1)(k 2) + (d* k)k (d-i k + 1)(k 1)
k k-1

+ di-. di- di+ .. di
i=d+l i=d-i i=1 i=1

d_
=(d-d_)k+d*_,+ E d,-d.

i=d+l

Since di k 1 for d + 1 d_, one has, for k 2, , m 1,

Ck Ck-1 (d’ d_ )k +d_ 1 (d’ d-i )(k 1) dk d dk 1.

On the other hand,

O.,-O,._ { m(m -1)+
i=m+l

=m-l-din.

di- di (m-l)2+
i=1 i=m+l

Moreover, noticing that, for any k such that m + 1 _-< k -< n 1, one has

k d_ k

Y max {k- 1, di} Y’. max {k- 1, di} + max {k 1, di}
i=1 i=1 i=d_l+l

Z d, + (k d-i )(k I),
i=l
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one must also have, for m -<_ k -<_ n,
d+ d

Ok/X-&k=(k+l)k-k(k-1)+ ,
dj- , dj-, dj+Y, d

/=k+2 j=k+l j=l ]=1

-(k + 1-dk/x)h +(k -d’)(k 1)

=--dk+l + E di+k(d+x-dk)+d
j=d+l+l

--dk+l + (d d:+x)k + k(d+l d) + dk*
d’ dk+ l. [’]

The following two propositions exhibit important properties of Ak defined in (11).
Proofs are omitted for simplicity. See [12] for details.

PROPOSITION 5. If d is any proper sequence, one has

(12) Ak 0,
k=l

and

(13) IAkl [Ak[.
k=l k=m+l

PROPOSITION 6. If d is any proper sequence such that Ai---d* -di-1 =0 for
1, , m 1, then d is graphic if and only if dm m 1.

3. Characterizations ot the threshold sequences. For a graph G (V, E), the
degree of vertex v in G is denoted by d(v) do(v). It is assumed throughout this section
that the vertices of G are numbered from 1 to n in such a way that if di is the degree of
vertex one has d -> d2 ->’ _-> dn.

If v is a vertex of G, the neighborhood of v is the set N(v) of all vertices adjacent
to v. Following [8], we introduce in V a linear preorder > by: u >>-vCN(u)-{v}>=
N(v)-{u}. It is easy to see that

LEMMA 7. If G is threshoM, u <v if and only if d(u)<=d(v).
Following the terminology in [8], we call a critical nonthreshold (CNT) configura-

tion of G any set of four vertices u, v, w, z such that (u, v)E, (w, z)E, (u, w)_E,
(v, z) E. Given such a CNT configuration, the operation of removing edges (u, v)
and (w, z) and adding the edges (u, w) and (v, z) is called an interchange.

LEMMA 8. Ifd is a threshold sequence, there is a unique (up to isomorphism) graph
with degree sequence d.

Proofi By a well-known theorem of Ryser 18, p. 68], any two graphs with the same
degree sequence can be obtained each from the other through a finite sequence of
interchanges. If G is a threshold graph with degree sequence d, no interchange can be
performed, because CNT configurations are forbidden in a threshold graph [4]. Hence
G is the only graph (up to isomorphism) with degree sequence d. F!

For every pair (h, k) of positive integers, letN denote the set of the first h integers
starting from 1 and excluding k; i.e.,

{1, 2,.’., h} if h <k,
(14) Nkh= {1,2, ,k-l,k+l,...,h+l} ifh>=k.
We define N to be the empty set.

The following characterization of adjacency in threshold graphs is very useful in
deriving some of the main results below.
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LEMMA 9. A graph G with degree sequence d is threshold if and only if

(15) N(k)=N fork=l,2,...,n.

Proof. Let G be threshold. Since IN(k)l=& for l<-k<-n, (15) is proved if
(], k)e E implies (i, k)e E for all i<] and iS k. Indeed, for i<], one has di -> dj;
hence -> ] by Lemma 7, so that (/’, k) e E implies (i, k) e E for k.

Conversely, < ] => di >= dj Nai -{i} NJ -{i} :::), > ], and hence > is a linear
pre-order, i.e., G is threshold.

LEMMA 10. A graph G with degree sequence d is threshold if and only if
(16) Ak=d’--dk--l=O fork=l, 2,...,m-1.

Proof. Let G be threshold and 1 -<_ k -<_ m 1. For > k, notice that di _>- k
{1, 2,..., k}_N’ (by (14)) k eN(i) (by Lemma 9) ieN(k) ieN (by
Lemma 9). Therefore

d max {i" di >= k} (by definition (5))

max {i" > k, di >= k}
=max {i" eNk}=dk + 1.

(since d, => m 1 -> k)

Conversely, assume that (16) holds and define a graph H (V, F), where V
{1, 2,..., n} and

(17) F={(i,]): l<-i<-j<-_m) U {(i, j)" m+l<-j<-n, l<-i<-dit.

We claim that dH(k)= dk for k 1, 2,.. , n. This is obvious when m + 1 <= k <= n.
Assume then that 1 -< k <- m. By construction, one has dH(k)
m 1 + 1{/’: m + 1 -<] -<n, k <- d}[. In particular, dn(m)= m 1 for k m. On the other
hand, since d is graphic and satisfies (16), one has d,, m- 1 (i.e., A, =0) by
Proposition 6. Hence dn(m) d,,. For 1 -< k -< m 1, one has dii(k) d 1 from (6).
Hence dn(k) dk for k 1, 2,.. , m 1 by (16).

Next we observe that by construction NH(k)=N for all k; hence H is threshold
by Lemma 9. Since H and G have the same degree sequence, they are isomorphic by
Lemma 8. Hence G is threshold. [3

THEOREM 11. A proper sequence is threshold if and only if one of the following
conditions is satisfied:

(i) Ai =0 for 1, 2,..., m.
(ii) bi =0for i- 1, 2,..., m.
(iii) Ai-0fori=m+l,m+2,...,n.
(iv) &i=0fori=m+l,m+2,...,n.
Proof. If d is threshold, A 0 for 1, 2,. , m 1 by Lemma 10. A, 0 also

holds by Proposition 6 since d is graphic. Conversely, if A 0 for 1, 2, , m, d is
graphic by Proposition 6, and threshold by Lemma 10. This proves (i). (ii) is obviously
equivalent to (i) by Proposition 4. The equivalence between (i) and (iii) follows from
Proposition 5. (iii) and (iv) are equivalent by Proposition 4. 13

Theorem 11 implies that threshold sequences are, among the graphic sequences,
"the least" graphic ones in a well-defined sense. The same result could have been
obtained by combining together Li [14, Theorems 18 and 19]. However, our approach
is entirely different from Li’s, which is based on the concept of uniquely realizable
degree sequences.
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4. The lattice of threshold sequences. For any two proper sequences d and d’, we
define two sequences d v d’ and d ^ d’, which are also proper, by

max {di, di}, 1, 2, n,
(18)

(dvd’) .,
(d ^d’) min{di, di}, 1, 2,. ., n.

The set of all threshold sequences of length n will be denoted by
LEMMA 12. If C, C’ ,, then c v c’, c ^ c’ ’.
Proof. Let the threshold graphs G (V, E) and G’= (V, E’) have degree

sequences c and c’ respectively. Then

N(k) N? and N,(k) N,’, k 1, 2,..., n

by Lemma 9. Let c" c v c’ and G" (V, E t_J E’). Then

N,,(k) No(k) I.J N,(k)

Nax{ck’c NCk, k=l,2,...,n.

Then G" is a threshold graph by Lemma 9 and has degree sequence c". Thus c" ft,.
The other half of the lemma, i.e., c ^ c’ 37,, can be similarly proved by considering

The next result is an immediate consequence of this lemma.
THEOREM 13. (37",, V, ^) is a finite lattice with maximum element (n-l,n-

1,. , n 1) and minimum element (0, 0,. , 0).

5. Threshold sequences at minimum distance from a graphic sequence. Define the
threshold gap of a proper sequence d by

1 [Ai[=I IA[ (see Proposition 5).(19) t(d)=- =l i=rn+

t(d) is a measure of "nonthresholdness" of d. Indeed, by Theorem 11 and
Proposition 5, a proper sequence d is threshold if and only if t(d)= O. The aim of the
present section is to make this statement more precise.

For any two proper sequences d and d’, let us put

1
Idi-dl.(20) lid d’ll i--1

We notice that IId-d’ll is a nonnegative integer if d and d’ are graphic sequences.
Indeed, if I ={i" d>-_dl} and I ={1, 2,... ,n}-I, one has

Since Y.’=l di is even, Eiidi and iidi have the same parity. The same is true for

Eil d[ and ,il d[ hence =xldi- dll is even.
The main result of this section (Theorem 18) shows that the threshold gap t(d) is

the minimum distance II" between d and any threshold sequence c.
To start with, following a procedure pioneered by Procrustes of Eleusis, we

associate to a proper sequence d two canonical sequences d and d obtained by replacing
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the "head" or the "feet" of d, respectively, in the following way"

dk dk +

(21)
dk
dk dk + Ak,

From the definition ot Ak, one has

k=dk*--I forl<-_k<-m-1,

(22)
d, =m-l,
d, d,,

dk d:-i for m + 1 _-< k _-< n.

Since n-1 >d*-I >dE*-l>...>d*,_l-l>-m-l>-d,+l>-_...>-_d,>-O, and n-
l_>-dl_->..._->d,,,_->d=>...->_d*_x->_0 from (6)-(9), d and d are also proper
sequences. One has

k 1, 2,. , m,

k =m+l, rn +2,. , n,

k=l,2,...,m,

k=m+l,m+2,. ,n.

m() m,
(23)

m(d)=M={m ifd, m-l,
rn+l ifd,,,>m-1.

The first relation is obvious. The second relation follows from the observation that

d,,=m-l::>d,=m-1 >d* =d+1

dm + dmd+l +2.

LEMMA 14. For a proper sequence d, and are both threshold sequences.
Proof. First of all, we notice that d depends only on (d+, ., d,) because of (6)

and (9). Also d =d for k 1, 2,..., m-1 by (21). Since Ak()= --k--1
d-d+l-l=0for k=l,2,...,m-1, and A()=m-l-d=0by (22), is
threshold by Theorem 11(i). Similarly for

LEMMA 15. For a proper sequence d, and satisfy

(24) lid 11 lid dll t(d).

Proof. By definitions (19) and (21),

1EIId-dll= =,

Similarly for d.
This lemma provides an alternative proof of the fact that t(d) is a nonnegative

integer if d is a graphic sequence.
We need two more lemmas before presenting the main result of this section. The

first one can be easily proved by using Lemma 9; hence the proof is omitted.
LEMMA 16. Let G (V, E) be a threshold graph. Let h, k be vertices of V, with

h < k. Then the following graphs G1, G2 and G3 are also threshold"

G=(KE-{(h,k)}) if h=max{i" (i,k)E} ork=max{i" (h,i)E},

G (V, E U {(h + 1, k)}) if h max {i" (i, k) E} and h + 1 < k,

G3 (E E U {(h, k + 1)}) if k max {i" (h, i) E} and k < n.
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We remark that h max {i: (i, k) E} holds if h dk < k, and k max {i: (h, i) E}
holds if k dh + 1 > h. In some cases, the vertices of the resulting graph may have to be
renumbered in order to obtain a proper sequence, since the deletion or addition of an
edge changes its degree sequence.

LEMMA 17 Let c, c’ ’n and m m(c)= m(c’) Then c =c’ if ci c’ for i= 1
2, , m, or m +1, m +2,. , n.

Proof. Assume that ci c for m + 1,..., n; the other case can be similarly
treated.

Since Ai(c) c*i-ci-l=OandAi(c’)=(c’)* C 1 0 for 1, 2, , m 1 by
’)* for 1 2 m 1 are determined byTheorem 11 (i) and noticing that c * and (c

c’,,+1,’ ,), one has cg=c for i=l,2,...,m-1. Moreover,
C v"c, c,. m 1 because A(c) A,. (c’) 0. Thus c

THEOREM 18. One has

(25) t(d) min lid- cll,
,n

Proof. Let if,, be optimal, i.e., Ild-ell=minc.lld-c[[. We first show that
m <- m _-< M, where m m (d), rfi m () andM is defined by (23). Assume that rh < m.

Setting h =cT,,/l-<rh-1, add a new edge (h +1, rfi + 1) to the threshold graph G
having degree sequence 6. The new graph G’ so obtained is also threshold by Lemma
16, and has degree sequence c’ with c =i+1 for i=h+l, rfi+l and ci=ci for

h + 1, rfi + 1. By the definition of h, one has 6h >6h/l. In addition assume that
6,a _->rh-1 >6,a/1. Then the addition of edge (h + 1, rfi + 1) does not require any
renumbering of vertices in G’ (see the remark after Lemma 16). Since c
rh<m-l<d,,<d,a+l, one has c ,a +1 d,a +1 [c ,+1 d,+1 I- 1, while certainly
[C +1 dh+x[ <-Ih+l- dh+ll + 1. Hence IIc’- dl[--< II- dl[. Repeating the same procedure
(if necessary) with ? replaced by c’, one eventually obtains c,/1 rfi 1. In this case,
c/1 ca,/1 r holds since h + 1 rfi and ca ,/1 rfi (recall that is threshold).
Thus the renumbering of vertices of G’ is not necessary.
ILa+-d,a+a[-1 holds as before, and one has by c
m- 1-< d, <= d,a. Therefore IIc’-dll < lie-dli and c is not optimal, a contradiction. A
similar argument applies when rfi m()> m; we can show that is not optimal.

Now assume that m -< rfi -< M. We shall show that I1 -all--> I1, -all if rfi m, and

I1 - all--> I1 - all if rfi M. We consider only the case rfi m; the other case can be dealt
with in a similar way. If t , then i di for some m + 1 <- _-< n by Lemma 17. Let k be
the maximum index (if any) such that m + 1 -<_ -< n and i >di. For h Ck (<k), remove
edge (h, k) from ( to obtain a threshold graph G’ (by Lemma 16) with degree sequence
c’, where c ?i 1 for h, k and c c for h, k. The renumbering of indices is
not necessary in this case, as is easily shown. Since c ?k- 1 >=ak dk, one has

IC’k dk[ Ik dk[-- 1 hence IIc’- dll <-lie- dll because in any case [c, dhl<----
[.h--dh[/ 1. m(c’)=m is also obvious. By repeated applications of the above pro-

< i forcedure, one eventually has a threshold sequence c such that m(c’)= m, c
i= m + 1,..., n, and IIc’-dll-<-I1-dll.

If one still has c’ a, there must be some i, m + 1 =< <- n, such that c < di; let k be
the maximum such i. The addition of edge (h + 1, k), where h c ,( -< m 1 < k 1),
results in a new threshold graph G" (by Lemma 16) with degree sequence c", where

c + 1 for h + 1, k and c c for h + 1, k. Since c c + 1 -<_ dk dk, one
has IIc"- dll-<-IIc’- dll as before.

In conclusion, by repeated application of the above procedures, one eventually
gets a final threshold sequence c such that IIc-dll<--II-dll and ci i di for
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m + 1, , n. Then c g by Lemma 17, showing that I17- dll IIc dll for all c
But then t(d) lid- dll- mincr. IIc dll by Lemma 15. [3

Given a proper sequence d, denote by ’n (d) the set of threshold sequences c of
length n satisfying [[c -dll t(d), i.e., having minimum distance from d. Furthermore, let

(26) d+=vd, d-=Ad.
Both d/ and d- are threshold sequences by Lemmas 14 and 12, and they satisfy

(27) lid +-- dll lid- dll- t(d),

i.e., d/, d- if,, (d), as easily proved by (21) and Proposition 5.

LrMM, 19. Letd be a proper sequence, and let d/ and d- be defined as above. Then

d- < dk d > dh ]:or every h such that d- < h < d/

d > dk d < dh for every h such that d- < h <-d.

Proof. We shall prove the lemma only for the case d <d and m + 1 =< k < n. The
proofs for the other cases are similar. Notice first that d <d implies d{ d
and d/k dk dk. If d{ < h < d+k, then d-i < h <= dk -< m 1. One has d: -> k by dk >- h
and (5), and dh < k- 1 by the property d-a <h. Therefore, dh<- 1 dh, that
is, d > dh.

THEOREM 20. Let d be a proper sequence oflength n, and let c ,. Then c ;Y, (d)
ifand only ifd- <= c <- d+. Namely, (, (d), v, ^ is the sublattice of (,, v ^ induced by
the maximum element d/ and the minimum element d-.

Proof. Assume first that c , and d--< c-< d/. We may assume that c d, for
otherwise the theorem is trivial. Let k be the maximum index such that d- < c. Such k
satisfies the inequalities m + 1 <- k <= n by Lemma 17. Assume for simplicity that dk d
(i.e., Ak < 0); the case of dk d- can be similarly treated. Then one has d > dh d
for h =Ck > d- by Lemma 19. Moreover it must be Ch > dh--d, since otherwise
Ck =d- for h =Ck (i.e., Ch/l<Ch) implies Ck <=d- by Lemma 19, a contradiction.
Consider now the sequence c defined by c ci 1 for h, k and c c for # h, k;
then c is a threshold sequence by Lemma 16, d- -< c -< d/ by Ch >d and Ck > d-, and
IIc d-II < lie d-II by Ch > d- and Ck > d-. Iterating this procedure, one obtains a finite
sequence c =-c, ca, c =-d- of threshold sequences such that IIc- dll= IIc a- dll=

lid-- dll, Hence c 6 .if, (d).
Assume now that c , and, say, ci >d for some index i. (The case when ci < d-

can be similarly treated). Let k be the minimum such index. If h is the maximum index
of a vertex which is linked to k in the threshold graph with degree sequence c, one must
have Ch >d since k is not linked to h in the threshold graph with degree sequence d/

(as easily proved by Lemma 9). Therefore the sequence c’ defined by c c-1 for
h, k and c c for # h, k is again threshold by Lemma 16, and IIc’- all < IIc all.

Hence c ,, (d).
The last half of the theorem then follows immediately from Theorem 13.

Acknowledgments. The support provided by the National Research Council of
Canada by a Canada Council Grant for Exchange of Scientists between Japan and
Canada and by the Italian National Research Council is gratefully acknowledged.

REFERENCES

[1] C. BENZAKEN AND P. L. HAMMER, Linear separation of dominating sets in graphs, Ann. Discrete
Math., 3 (1978), pp. 1-10.



THRESHOLD SEQUENCES 49

[2] C. BERGE, Graphes et hypergraphes, Dunod, Paris, 1972.
[3] R. BURKARD AND P. L. HAMMER: On the Hamiltonicity o] split graphs. University of Waterloo,

Department of Combinatorics and Optimization, Research Report CORR 77-40.
[4] W. CHV,TAL AND P. t. HAMMER, Aggregation olinequalities in integer programming, Ann. Discrete

Math., (1977), pp. 145-162.
[5] P. ERDOS AND T. GALLAI, Graphen mitPunkten vorgeschriebenen Grades, Mat. Lapok, 11 (1960), pp.

264-274.
16] S. FOLDES AND P. L. HAMMER, On a class o] matroid-producing graphs, Proceedings of the Fifth

Hungarian Combinatorial Colloquium, 1976.
[7], Split graphs having Dilworth number two, Canad. J. Math., 29 (1977), pp. 666-672.
[8] ., Split Graphs, Eighth Southeastern Conference on Combinatorics, Graph Theory and Comput-

ing, 1977.
[9] ., The Dilworth number o[ a graph, Ann. Discrete Math., 2 (1978), pp. 211-219.

[10] M. C. GOLUMBIC, ThreshoM Graphs and Synchronizing Parallel Processes, Courant Institute of
Mathematical Sciences, June, 1976.

[11 P. L. HAMMER AND B. SIMEONE, The Splittance ol a Graph. University of Waterloo, Department of
Combinatorics and Optimization, Research Report CORR 77-39.

[12] P. L. HAMMER, T. IBARAKI AND B. SIMEONE, Degree sequences ol threshold graphs, Ninth
Southeastern Conference on Combinatorics, Graph Theory and Computing, 1978.

[13] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[14] S-Y. R. LI, Graphic sequences with Unique Realization, J. Combinatorial Theory (B), 19, (1975), pp.

42-68.
[15] J. ORLIN, The minimal integral separator o[ a threshold graph, Ann. Discrete Math., (1977), pp.

415-419.
[16] C. PAYAN, Equistable and equidominating graphs, University of Grenoble, Institute of Applied

Mathematics and Informatics, Research Report, 1977.
[17] U. N. PELED, Matroidal graphs, Discrete Mathematics, 20 (1977), pp. 263-286.
[18] H. J. RYSER, Combinatorial Mathematics, Carus Monographs, American Mathematical Society,

Providence RI, 1963.
[19] A. P. WOJDA, Digraphs o[ Vicinal Preorder, Academy of Mining and Metallurgy, Research Report,

1977, Krak6w, Poland.



SIAM J. ALG. DISC. METH.
Vol. 2, No. 1, March 1981

1981 Society for Industrial and Applied Mathematics

0196-5212/81/0201-0007 $01.00/0

A FAST ALGORITHM FOR FINDING STRONG STARTERS*

J. H. DINITZt AND D. R. STINSON:

Abstract. A strong starter (of order n) in an additive Abelian group G of odd order n 2t + is a set
S {{xl, yl}, {x2, Y2}," , {xt, Yt}} which satisfies the following properties:

(i) {xl, x2,"’,x, yl, Y2,"’, Y,}= G\{0},
(ii) {+(yl xi)l{xi, yi} S} G\{0},

(iii) xi + yi # xj + yj if # ], and xi + y # 0, for any i.
We present a fast algorithm for finding strong starters in Abelian groups.

1. Introduction. Strong starters are used extensively in the construction of Room
squares and Howell designs. A Howell design H(n, 2t), with t-< n =< 2t- 1, is a square
array of side n, where cells are either empty or contain an unordered pair of elements
chosen from a set X of size 2t such that:

(1) each member of X occurs exactly once in each row and column of the array,
and

(2) each pair of elements of X occurs in at most one cell of the array.
A Room square of side n (n odd) is an H(n, n + 1). It follows that, in this case, each

pair of elements of X occurs in exactly one cell of the array. Much research has been
done concerning Room squares; see, for example [10] and [14]. Strong starters are
related to Room squares by the following theorem of Horton [7].

THEOREM 1.1. If there exists a strong starter of order n, then there exists a Room
square of side n.

Anderson [1], [2] has shown that for the case of Howell designs, the existence of a
strong starter of order n which satisfies certain other (technical) properties implies the
existence of many H(n, 2t), (n + 1)/2 =< -< n.

For the above reason, strong starters have been investigated by several people.
Some infinite classes of strong starters are known. See for example, Mullin and Nemeth
[9], Chong and Chan [3], and Gross and Leonard [6]. Indeed, strong starters are known
to exist for all orders relatively prime to 3, except for order 5. However, no general
method is known for producing strong starters of order 3p for p prime. All strong
starters of these orders have been found on computer by back-tracking methods (see [4]
and [13]). However, for orders exceeding 70, back-tracking becomes impractical due to
the excessive computing time required.

Using the algorithm presented in this paper, the authors have recently proven the
following theorem [5].

THEOREM 1.2. If n < 1000 is odd, n 1 and (n, 2t) # (5, 6), then there exists an
H(n, 2t).

The purpose of this paper is to describe and analyze the algorithm used to find these
strong starters.

We wish to point out that we cannot prove that the algorithm will produce a strong
starter of any particular order. However, in practice, the algorithm has always suc-
ceeded.

In 2, we describe the algorithm. In 3, we estimate the time required to be O(n 2)
where n is the order n of the strong starter. This estimate agrees with empirical timing
results. In 4, we give a brief geometrical description of strong starters.

* Received by the editors January 30, 1980, and in revised form August 6, 1980.
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2. The algorithm. We now present the algorithm used to find a strong starter of
order n 2t + 1 in the cyclic group 7n.

Define a partial strong starter to be a set $’= {{xx, yx}, {x2, y2}," ", {xr, yr}} satisfy-
ing the following conditions"

(i) the xi’s and y?s are distinct nonzero elements of Zn
(ii) yi xi # +(yj x.) if # ;
(iii) x + Yi X + yi if /’, and x + y 0 if 1 _-< -< r.

Define def (S’) t- r. We say that def (S’) is the deficiency of S’. The deficiency of $’ is
the number of "missing pairs". We say that a partial strong starter $’ is maximal if there
exists no {u, v} __. Z, such that S’ {{u, v}} is a partial strong starter.

In a back-tracking algorithm, when a maximal partial strong starter is reached, the
"last" pair {x, yr} is deleted from the strong starter. This increases the deficiency of
the partial strong starter. The basic feature of the algorithm we will present is that the
deficiency is never increased.

Let D {1, 2, , t}. We refer to members of D as differences. Then, without loss
of generality, we may assume that y x =di D, if 1 <- <- r. An element z ’ {0} is
said to be used if z {x, y} for some {x, y} S’, otherwise z is unused. Similarly, a
difference d D is said to be used or unused depending on whether or not d d for
some i, 1 -<_ =< r. Finally, e Z -{0} is said to be a used or unused sum depending on
whether or not e x + yi for some i, 1 -< _<- r.

We now define a state of the algorithm to be a partial strong starter $’, together
with two distinct unused .elements u and u2, and an unused difference d D. Given a
state of the algorithm, let T/= {u- d, u + d}, 1, 2, and let T T t.) T2. The follow-
ing operations can be performed on a state.

(a) Matching u with an unused element’
If there exists w T such that w is an unused element and ui + w is an unused sum

(for the appropriate 1 or 2), then let S" S’t_J {{ui, w}}. If def (S") 0, choose a new
Ul, U2, d.

(b) Switching a pair"
If weT is a used element, and u+w is an unused sum, then let S"=

S’\{{x, y}} U {{w, u}}, where w xi or y for some ], 1 <-] <-r. Set

and

d d, u U3-i

j yi if w=xi,
U2

xi if w yj.

(c) Back-tracking:
Revert to the previous state of the algorithm if (b) or (c) was the last operation

performed.
(d) Switching a difference:
Replace d by some other unused difference d’. Leave u x, u2 unchanged.
(e) Switching a pair:
Suppose ui- u3- dx D is a used difference, and suppose ul + u2 is an unused

sum. Then set S"=S’\{{x,,ya}}U{u,u2}; set U=Xd, u2=Yd, and leave d
unchanged.

We may now use operations (a)-(e) to describe our algorithm.
(1) Initialization: Set def t, S , choose any distinct ua, uz Z,,-{0}, d e D.
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(2) If operation (a) can be performed, do so and go to (8).
(3) If operation (b) can be performed, do so and go to (2).
(4) If operation (c) can be performed, do so and go to (3).
(5) If operation (d) can be performed, do so and go to (2).
(6) If operation (e) can be performed, do so and go to (2).
(7) Stop (algorithm fails).
(8) Set def def- 1, choose any distinct unused ul, u2 and d. If def 0 go to (2).
(9) Stop (algorithm succeeds).
A few comments regarding the algorithm are in order. First, no operation increases

the deficiency, and operation (a) decreases the deficiency by 1. Also, operations (d) and
(e) are rarely executed since it is unlikely that (a), (b) and (c) all fail (more details in 3).
Note that if def 1, then operation (d) cannot occur, since (d) requires an unused
difference other than d. Finally, note that there may be more than one way to perform
an operation (b) on a given state. As a heuristic in the implementation of the algorithm,
the following is done. If a state is reached, and more than one way to perform operation
(b) is possible, then one way is picked at random. If the state is again reached, this time
by back-tracking (operation (c)), then the first way to perform operation (b) is excluded
and one of the remaining ways is chosen at random. As an example of this, see lines
9-12 in Table 1 below.

We construct a strong starter of order 11 using this algorithm. Table 1 below traces
the execution of the algorithm. Note that no operations (d) or (e) were required.

TABLE

Partial strong starter State

diff 2 3 4 5 ul u2 d

Operation
to be

performed

5,4
5,4
5,4
5,4
5,4
5,4
5,4
5,4

9 5 3 a
1,9 2 3 5 a
1,9 7,2 3 4 4 a
1,9 3, 10 7,2 4 5 2 b

4,2 1,9 3,10 5 7 5 b
4,2 3,10 1,7 5 9 3 a
4,2 9,6 3,10 1,7 5 8 b

9, 6 3, 10 1, 7 8 2 2 b
10,8 9,6 1,7 2 3 4 b
10,8 9,6 7, 3 2 5 c
10,8 9,6 1,7 2 3 4 c

9,6 3,10 1,7 8 2 2 b
8,6 3,10 1,7 2 9 3 b
8,6 1,9 3,10 2 7 5 c
8,6 3,10 1,7 2 9 3 b
8,6 5,2 3,10 1,7 9 4 b

5,2 3,10 1,7 4 6 2 a
5, 2 3, 10 1, 7

3. Analysis of the algorithm. In this section, we estimate the efficiency of this
algorithm by some probabilistic considerations and present some empirical data.

In order to calculate this estimate, one major assumption is made. We assume that
the probability that an operation succeeds on a given state is independent of the
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previous state performed. Theoretically, this assumption is probably not even true.
However, analysis of the efficiency of this algorithm using the assumption of indepen-
dence strongly agrees with the empirical data (see Tables 2 and 3). It thus appears (as

TABLE 2

100 strong starters of each order n

95% Number
Average of Average Confidence Average that

n Na+ Nb+ Nc+ Nd+Ne n log n interval of Nd q- Ne failed Time

51 393 1.95 53 .39 17 6.59sec
101 757 1.62 96 .89 13 9.29
201 1611 1.51 173 2.05 11 18.21
301 2491 1.45 272 3.31 12 29.32
401 3486 1.45 317 4.64 10 41.35
501 4029 1.29 374 5.29 10 51.02
601 4932 1.28 423 7.16 12 65.25

TABLE 3

2 strong starters of each order n

Average of Average Tinel 106
n Na +Nb+ Nc + Nd + Ne n log n Time n

3001 31190 1.29 14.4 sec 1.60
5001 63645 1.50 32.0 1.28
8001 91852 1.28 77.5 1.21
10001 117020 1.27 117.1 1.17

intuition would indicate) that the states are nearly independent, particularly for n large.
Because of the independence assumption, the analysis which follows is merely an
estimate of the actual efficiency of the algorithm and is not a proof of the existence of
strong starters.

First we estimate the probability that operation (a) succeeds for a given state with
deficiency k. The number of unused elements, other than ul or u2, is 2k 2. If operation
(b) was just performed, then one element of T will be used. The other three elements of
T each have probability (2k-2)/n of being unused and distinct from ul and u2. The
probability that a given element of T is unused is less than the probability p that there is
some unused element in T. Thus, for some element e T, distinct from u and u2, the
probability that e is unused is (2k-2)/(n-2). So a lower bound on p is p
(2k 2)/(n -2).

There is also the possibility that ux-u2 +d. This happens with probability
2/(n 1). Finally, the probability that a given sum is nonzero and unused is ((n 1)/2 +

The algorithm was implemented in Fortran on The Ohio State University Amdahl 470 system.
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k)/n. Thus, the probability of (a) succeeding when the deficiency is k is at least

pk(a)>
\n_2! +n- 2n

>/2k-2+2)(n+2k-1)
k(n+2k-1)
(n- 1)n

Thus, the number Na of times operation (a) is attempted in the course of the algorithm is
approximately

(n-1)/2 1 (n-1)/2 1
E <(n-1)n E
k= pg(a) ,= k(n + 2k -1)

(.-)/2 1
<n

k=l k

n-I)
Thus, it appears that Na O(n log n).

Now, if we suppose that (c) does not fail in the course of the algorithm, we can have
that Na=Nb-Nc.+(n- 1)/2. Nb and No, denote the number of times operations (b)
and (c*) are attempted, where an operation (c*) is a maximal sequence of consecutive
operations (c).

We now compute the probability pk(b) of (b) succeeding if (a) or (b) was just
performed. If (a) was just performed, then there are four possibilities for pairs to be
switched, if (b), then three. The probability of at least one sum being unused is at least

=1- n-2k-1 >
n n

If w were an unused element, then (a) would be performed. Thus, w is used
(perhaps zero). If w is nonzero then (b) can be performed. In order to simplify the
arithmetic, we assume w is nonzero. This does not greatly affect our estimate. Thus we
estimate p(b)> . Since (c) occurs only after (b) fails, we have N. < Nb.

Finally, the number of operations (c) in one operation (c*) must be estimated.
Denote by p(b 1) the probability that there is exactly one permissible choice in a (b)
operation (where a (b) or (a) was just performed). Then

1-pk(b=l)=l-3(n-2k+l):(n+2k-1)2n 2n

n--_1\2(n + 1=>1-3(2n ) \-2n )
5

Thus we estimate that, on the average, less than - (c) operations make up each
(c*) operation.



A FAST ALGORITHM FOR FINDING STRONG STARTERS 55

By the above, we have Nb=Na+Nc.-(n-1)/2. Thus Nb<Na+Nb-
(n-l)/2, so Nb<(N-(n-1)/2). Therefore, Nb=O(n logn). Also, Nc<Nc.<
Nb, so N Oin log n).

Thus, we estimate that the number of operations, N+Nb+N, executed in the
algorithm is O(n log n). Also, the time required for an operation is at most O(n).
Choosing a new u and u2 is the only time it is necessary to search through an array.
With more sophisticated list processing techniques, this time could be reduced, perhaps
to O(log n). Each of the operations (a)-(e) require O(1) time. Thus, we estimate that
the time required for the algorithm is O(n 2 log n).

This estimate can be improved slightly. The O(n) operation is executed only
(n 1)/2 times in the course of the algorithm. Thus, an estimate of O(n 2) is obtained.

To test this estimate, the program was run until 100 strong starters were produced
for each of 7 different orders, (See Table 2). Also, a 95% confidence interval about the
mean/x of Na d- Nb q-N+Nd+Ne was computed. To test the algorithm on large orders,
we produced two strong starters each of orders 3001, 5001, 8001, and 10001 (Table 3).

Although no theoretical upper bound for the probability of failure has been
computed, in practice this number appears to be about . The algorithm usually fails
when deficiency equals 1 and no operation can be performed. This happens only in the
first state after the deficiency has become 1, since otherwise the program will be able to
back-track when no (b) can be performed. There is also the chance that the states might
form a loop and thus not produce a starter. In order to prevent an infinite loop, a timer
was written into the program. If the search for a starter took too long, the search would
be aborted and the program started over again with def= (n -1)/2. However, this
occurred only once in over 700 trials.

4. A geometric interpretation. Strong starters in 7/n have an interesting geometri-
cal interpretation. Label n equally spaced points on a circle by the elements of 7n
(cyclically). If {x, y} S, then join points x and y on the circle by a straight line. The
(n 1)/2 lines thus formed will have the following properties:

(1) no two lines have the same length;
(2) no two lines are parallel;
(3) no two lines have a common endpoint.

Conversely, any such geometric configuration generates a strong starter in 2.
A strong starter of order 129 is geometrically represented in Fig. 1 below.

i00

9O

0

.30

0

0
FIG. 1. A strong starter o[ order 129.
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5. Conclusion. Thus, we have described an algorithm for finding strong starters.
Using probabilistic arguments, we estimate that the algorithm should succeed in
polynomial time (actually O(n2)). In practice, this seems to be accurate.

Our algorithm is similar in some aspects to the algorithm of Posa [11] for finding
Hamiltonian circuits in graphs. That is, at no time in the algorithm does one head
"away" from the desired end results. In finding strong starters, the deficiency is never
increased; in finding a Hamiltonian circuit, the length of a path is never decreased. Also,
both algorithms involve a certain amount of randomness in making some choices.
Finally, there is the possibility that the algorithm may fail. However, in practical
applications both algorithms have a high rate of success.

Other probabilistic algorithms are described in [8] and [12].
It also appears that probabilistic algorithms based on this simple switching idea

may be practical in other combinatorial applications such as constructing Steiner triple
systems and finding transversals in Latin squares.

REFERENCES

[1] B. A. ANDERSON, Howell designs ]’rom Room squares, Proc. 2nd Caribbean Conf. on Comb. and
Comp., Barbados, 1977, pp. 55-62.

[2], Starters, digraphs, and Howell designs, Utilitas Math., 14 (1978), pp. 219-248.
[3] B. C. CHONG AND K. M. CHAN, On the existence o]’ normalized Room squares, Nanta Math., 7 (1974),

pp. 8-17.
[4] R. J. COLLENS AND R. C. MULLIN, Some properties of Room squares-a computer search, Proc. 1st

Louisiana Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge, 1970, pp.
87-111.

[5] J. H. DINITZ AND D. R. STINSON, A note on Howell designs of odd side, Utilitas Math., to appear.
[6] K. n. GROSS AND P. m. LEONARD, The existence o]’ strong starters in cyclic groups, Utilitas Math., 7

(1975), pp. 187-195.
[7] J. D. HORTON, Room designs and one-[actorizations, Aequationes Math., to appear.
[8] R. M. KARP, The probabilistic analysis o]’ some combinatorial search algorithms, in Algorithms and

Complexity, Academic Press, New York, 1976.
[9] R. C. MULLIN AND E. NEMETH, An existence theorem for Room squares, Canad. Math. Bull., 12

(1969), pp. 493-497.
[10] R. C. MULLIN AND W. D. WALLIS, The existence o]’Room squares, Aequationes Math., 13 (1975), pp.

1-7.
[11] L. POSA, Hamilton circuits in random graphs, Discrete Math., 14 (1976), pp. 359-364.
[12] M. O. RABIN, Probabilistic Algorithms, in Algorithms and Complexity, Academic Press, New York,

1976.
[13] R. G. STANTON AND R. C. MULLIN, Construction o]’Room squares, Ann. Math. Statist., 39 (1968), pp.

1540-1548.
[14] W. D. WALLIS, A. P. STREET AND J. S. WALLIS, Combinatorics: Room Squares, Sum-free Sets,

Hadamard Matrices, Lecture Notes in Mathematics 292, Springer-Verlag, Berlin, 1972.



SIAM J. ALG. DISC. METH.
Vol. 2, No. 1, March 1981

1981 Society for Industrial and Applied Mathematics
0196-5212/81/0201-0008 $01.00/0

DIAGONAL SCALING TO AN ORTHOGONAL MATRIX*

A. BERMANt, B. N. PARLETT AND R. J. PLEMMONS

Abstract. An algorithm is given which determines whether a matrix A is diagonally equivalent to an
orthogonal matrix and, if so, computes the corresponding scaling factors. The algorithm makes use of the
Hadamard quotient A-1 ( At. Such problems arise, for example, in the study of energy conserving norms for
the solution of hyperbolic systems of partial differential equations.

1. Introduction. The problem of finding an energy conserving norm for the
solution of the hyperbolic system of partial differential equations u/t W du/x, with
t > 0 and 0 < x < 1 and where W is diagonalizable, subject to boundary conditions, has
been reduced by Gunzburger and Plemmons [1979] to the problem of characterizing
those matrices $1 and $2, appearing in the boundary conditions, which enjoy the
following properties"

(i) $1 and $2 are invertible;
(ii) there exist positive diagonal matrices D and E such that DSE and DS]E are

orthogonal matrices.
This characterization problem is completely solved, in the paper cited above, only

for matrices of order n _-< 2. To deal with the cases when n > 2, we study the problem of
determining when it is possible to row and column scale a real square matrix A to
produce an orthogonal matrix. If D and E are positive diagonal matrices and

DAE Q, Q orthogonal,

then we say that A and Q are diagonally equivalent and A is d.e.o. (diagonally
equivalent to an orthogonal matrix).

This paper gives a necessary and sufficient condition for A to be d.e.o. Of more
importance, it offers an algorithm which is constructive in the sense that either it yields
D and E such that DAE is orthogonal, or it fails and no such pair D, E exists. The
presentation confines itself to real matrices but all the results extend in the standard way
to the scaling of a complex matrix into a unitary one.

Clearly, A is d.e.o if and only if A-1 and A 7- are diagonally equivalent. Thus, the
more general diagonal equivalence theorems given by Sinkhorn and Knopp 1969] and
by Engel and Schneider [1973], [1975], could essentially be applied to our case.
However, some modifications of their algorithms would probably be necessary to make
them competitive on the specific problem addressed here. Further work on the general
diagonal equivalence problem has been reported by Engel and Schneider [1980], where
results in Saunders and Schneider [1978] are improved and extended.

2. The Hadamard quotient. The Hadamardproduct (or Schur product) F (S) G of
two matrices, F and G, of the same size, is defined by (F ( G)ij fijgi and occurs in
various parts of matrix theory. Let H(A) denote any () x n matrix whose rows are the
Hadamard products of pairs of distinct rows of A. It is not difficult to see that A is d.e.o.
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if and only if the systemH(A)x 0 has a positive solution x. An important consequence
is that A is not d.e.o, if it has two distinct rows (or columns, since A a,

is d.e.o, if and only
if A is d.e.o.) whose Hadamard product is nonzero and nonnegative or nonpositive.
However, computationally, the Hadamard product is not as useful in our scaling
problems as is the less well-known element-by-element quotient (Hadamard quotient)
of two matrices. Formally, we define H F( G by hij fij/gi and we allow elements
of H to be either infinite (1/0) or undefined (0/0). We use the symbol u for the column
vector whose elements are all 1. The square matrix of l’s has rank one and may be
written as uu r

The Hadamard quotient permits a strange but fruitful formulation of the definition
of an orthogonal matrix, namely that A is orthogonal if and only if the well-defined
elements of Q-1 () Q7- are all 1. In order to exploit this approach, we introduce two bits
of terminology. For any invertible matrix B, we write

(2.1) (B)=B-@B.
Next, in order to cope smoothly with undefined elements in (B) we define a partial
equality (not a true equivalence relation) on matrices by

A *-- B if ai bi, whenever ai and bi are well defined or infinite.

With these notions in hand, our formulation of orthogonality becomes

(2.2) Q is orthogonal if[ (Q) o__ uu T, that is, a matrix of all l’s.

Our algorithm was suggested by the simple effect of scaling on the very nonlinear
function . If D =diag (dl,..., dn) and E =diag (ex,..., en) are invertible scaling
matrices, then it is easy to verify that

(2.3) (DAE) E-2(A)D-2.

This relation allows us to characterize matrices which are d.e.o. (diagonally equivalent
to an orthogonal matrix).

THEOREM 1. An invertible matrix A is d.e.o, ifand only if d(A) a positive, rank
one matrix.

DAE is orthogonalCr(DAE) *-- uu T, by (2.2),

:)E-2(A)D-2 *- uu T, by (2.3),

:d(A) *- (E2u)(D2u)r

Thus,

I0/0 if ai (A-), O,
((A))/

e?d2", (>0). otherwise.

The proof reveals how D and E must be chosen when (A) is a positive rank one
matrix. Of course, D and E themselves are not unique because the product xy T does
not determine x and y uniquely.

Remark. Two d.e.o, matrices A and B, for example S and S] in the energy
conserving norm example that motivated our discussion, can be scaled simultaneously if
and only if (A) *-- (B).
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3. A simple algorithm. For the sake of clarity, we will specify here a scaling
algorithm for a special class of matrices, namely n n matrices which have at least one
column, say the kth, which has no zero elements.

Specification. The algorithm sets DEO to the value true and returns the diagonal
elements of D and E if A is d.e.o. Otherwise, DEO is given the value false and D
and E are left undefined.

Algorithm 1.
1. DEO@ false.
2. Compute A-1. If inversion fails, go to 8.
3. Compute C O(A). If C has any nonpositive or infinite elements, go to 8.

Record undefined elements (0/0) as O’s.
4. dj Ckj, j 1, , n. (The kth column of A is assued to have no zero elements.)
5. ei ciq/dq, for any positive element ciq, 1, , n.
6. Check the rank one property: If (cii @ 0 and cii eidi), i, f 1,..., n, go to 8.
7. d -/, e, - /, ] 1,..., n. DEO true.
8. Exit.
Example.

A= -1 1 A-’ 1

0 -4g 8
45

1
1 1 *-- (, , ).C =(A)= 1 1

Here, we can take

Of course,

1
D

__
I, E diag (2, 1, 1).

2x/2

D=L E diag
x/’ 2x/’ 2

also suffice. Note that the undefined (1, 3) element of (A) does not impair the
formation of D and E.

4. Canonical permutations. In the general case, it is not obvious how to pick the
right values for di in step 4 for D diag (d, , dn), when C has many zero elements.
In order to be able to deal with this case, we consider the effect of permutations. Let Px
and P2 denote permutation matrices.

LEMMA 1. A is d.e.o, if and only ifPAP2 is d.e.o.
Proof. Since each Pi is orthogonal, we see that

DAE is orthogonal:P(DAE)P2 is orthogonal,

:(PIDP)(PAP2)(PEP2) is orthogonal,

I(PIBP2), is orthogonal,

where/ PDP and/ PfEP2 are also invertible diagonal matrices.
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It follows that there is no loss in applying the full power of permutations to simplify
A. In particular, when A has many zero elements, its inversion can be done more
quickly if permutations are used adroitly. An important tool in the following discussion
is a canonical form under two-sided permutations. Recall that a square matrix B is
indecomposable if there exists no permutation matrix P such that

(41) pBpT=[A11 0 ] Aiisquare,
A21 A22

and fully indecomposable if no permutation matrices P1 and P2 exist such that P1BP2
has the form (4.1).

Several references to the following theorem are given, for example, in Duff [1977]
and Howell [1976].

THEOREM 2. Given a square nonsingular matrix A, there existpermutation matrices
P1 and P2 such that

(4.2) PIAP2

A11

A21 A22 0

[Arl At2 Art
where each Aii is square nonsingular andfully indecomposable and its diagonal elements
are nonzero.

Algorithms for permuting A into the form (4.2) can be found, among other places,
in Howell [1976] and in Duff and Reid [1978]. An efficient computer program for
permuting A into the form (4.2) is included in the HARWELL Sparse Matrix
Subroutine Package MA28 (see Duff and Reid [1979]).

If the matrix in (4.2) is orthogonal, then it is easy to see that Aij 0, >/’, and each
A, is orthogonal. Since diagonal scaling does not affect the zero pattern of a matrix, it
follows that if A is d.e.o, then the matrix in (4.2) is block diagonal.

5. The general case. The general case is thus reduced to considering (fully)
indecomposable A’s with nonzero diagonals. Such A’s have a special property which is
useful in the present context. We say that A has a covering sequence of overlapping
columns (c.s.o.c.), AJl, .., Ai’-, jl <’ <j,, if"

a) For each i, 1 _-< _-< n, there exists q such that aiiq # O. This "covers" the set
{1,... ,n}.

b) Each column has a nonzero position in common with some earlier column; i.e.,
given q > 1 there is a p < q and an index such that aiip aiq # 0. This is the overlap.

In the example below, where X denotes a nonzero element, columns 2, 3 and 5
form such a sequence but 1, 2, 3, 4, 5, 6 do not.

X
0
0

X
0

_0

0 0 X X X
X 0 0 0 X
XXX 0 0
0 X X 0 0
0 X X X 0
0 0 0 X X

To show that the diagonal blocks in (4.2) enjoy the c.s.o.c, property, we prove the
following:
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LEMMA 2. If all the diagonal elements of an indecomposable matrix A are nonzero,
then A has a covering sequence of overlapping columns.

Proof. Let a denote a maximal set of indices "covered" by a sequence of
overlapping columns. The adjective maximal qualifies la 1, the number of distinct indices
in a.

If ]al < n, consider ai, i a, j a. If ai 0, the column "overlaps" column
because a, 0. Since the diagonal elements are nonzero, a contains the indices of all
columns in the covering sequence. Thus j could be put into a, thereby increasing [a[ and
contradicting o’s maximality. Consequently, aq 0 for all e a, a. This contradicts
the assumption that A is indeeomposable and it follows that [of= n. Thus, any maximal
overlapping sequence of columns covers {1,..., n}.

An equivalent formulation of Lemma 2 is that a fully indecomposable matrix has a
c.s.o.c. This follows from the fact that the c.s.o.c property is invariant under permu-
tation of rows and from the well-known Brualdi, Parter and Schneider [1966] result that
A is fully indecomposable if and only if PA is indecomposable and all its diagonal
elements are nonzero for some permutation matrix P. In the case when all the diagonal
elements of A are nonzero, full indecomposability is equivalent to indecomposability.
Notice that we did not use the invertibility of the diagonal blocks under discussion.

In Algorithm 1, a covering sequence consisted of a single column. The existence of
a covering sequence of overlapping columns of A permits the construction of an
appropriate scaling vector d from (A), despite the presence of undefined elements in
every row.

Construction of d. Without loss of generality, let the indices of a covering sequence
of columns of A be 1, , m, (m < n if n > 1). As in Algorithm 1, if C (A) contains
any nonpositive or infinite elements, then the construction fails and A is not d.e.o.
Otherwise, for 1,..., m repeat:

a) If 1 set p 1, otherwise pick q < and j, such that cqj > 0, cij > 0, and set

O c,/c.
b) Set dk =CkO for each k such that Ck >0. If this operation changes any

previously assigned (positive) value of a dk, then A is not d.e.o.
Our construction insures that cii and cqi yield the same value for di. The overlapping

property insures that a ] exists in step (a) for some q < i. The covering property insures
that all elements of d are specified when the construction terminates.

6. The algorithm.
Specification. Given an n n matrix A, Algorithm 2 either sets DEO to true and

computes the diagonal elements of D and E so that DAE is orthogonal or, if no such
pair D, E exists, it sets DEO to false and leaves D and E undefined.

Algorithm 2.
1. DEO false.
2. If A has a covering sequence of overlapping columns, then r 1, set A ix A,

go to 4.
3. Put A into a canonical form (4.2) as shown in Theorem 2. If any off-diagonal

block is nonnull go to 12.
4. Repeat steps 5-10 for 1,. , r.
5. Compute A-1,.. If inversion fails, go to 12.
6. Compute C" (A,,). If C" has any nonpositive or infinite elements go to

12. Record undefined elements of C" as 0.
7. Find a covering sequence of overlapping columns of A,, and use the con-

struction in 5 to define d". If the construction fails, go to 12.
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8 Define e" via e ? - c it//dt/ for any positive c"it/.
9. Check that C" 0-- e" d"7"’, i.e., for i, j ranging over the indices of C" execute: if

c # 0 and c ef__d’ then go to 12.
10. d 4d, e 4e for all/" belonging to C".
11. Rearrange e and dr by undoing the permutations used to achieve the

canonical form (see Lemma 1). Then set D=diag(dl,.. ",dn), E=
diag (el, , en) and DEO true.

12. Exit.
We conclude our discussion with an example and some remarks.
Example. Let

1 0 0 1 0 0 1
0 1 1 0 x/ 0 0

0 -1 1 0 4 0 0

1 0 0 -1 0 1 0
0 o-4 o 4 0 0

-1 0 0 0 0 1 1
0 0 0 1 0 1 -1

Then since each column of A contains zeros, Algorithm 1 cannot be applied.
Moreover, A has no covering sequence of overlapping columns. From applying step 3
of Algorithm 2, it follows that a canonical form (4.2) for A is

pApr

1 0 1 -1 0 0 0
1 -1 0 1 0 0 0
1 1 -1 0 0 0 0
0 1 1 1 0 0 0
o o o o
0 0 0 0 -1 1 4
o o o o o-4- 4-

where P is the permutation matrix representing the index permutation

5 6 2 7 1

Software for permuting general matrices into the form (4.2) is readily available (see
Duff and Reid [1979]). Observing that no off-diagonal block is nonnull, let

1 0 1 -1
1 -1 0 1
1 1 -1
0 1 1



DIAGONAL SCALING TO ANORTHOGONAL MATRIX 63

Then

1 1 1 0

o
1 0

and

-1 1 1 0
1 0 1 1 1C1 (Axl) =3 0 1

Here, as before, we have recorded undefined terms 0/0 in C as zeros. Observe that 1, 2
are the indices of a covering sequence of overlapping columns of A 1. Thus, we proceed
to the construction in 5 to define d 1. For 1 we set p 1 and have d c ll 1/2,
d2 C12 1/2 and d3 C13 1/2. For 2, we pick q 1 and ] 2 SO/9 C12/C22 1. Then,

o dagain dE c22- 1/2, ds- c23 ], and d4 c24 Thus, diag 1/2, 1/2, 1/2, 1/2). Returning to
step 8 of Algorithm 2, we see that e= diag (1, 1, 1, 1). Then

C 1T=ed

and AI is d.e.o. From step 10,

EI=L

Next, observe that

-1 1
0 -6

is the same matrix A as in the example of 3. Thus, Algorithm 1 applies here and, as
before, A22 is d.e.o, with

D2=L E2 diag (2, 1, 1).

Next, we undo the permutations yielding

D=pT[D 0 ]P=diag(l__./_ff./..__../.l1 1 1 1 /.)
E

0 E2
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Finally, the orthogonal matrix Q which is diagonally equivalent to A by D and E is
given by

1 1 1-o o

1 1 /o o o o

1 1 3
0 0 0 0

1 1 1
Q DAE x/--- 0 0

x/-
0 0

6 1
0 0 0 0 0

24- 2
1 1 1

43
o o o o

1 1 1o o o o

Remarks.
1. The algorithm noeds an extra n n array, besides A, to hold A- and then C. It

also requires n-vectors for D, E and the permutations P and Pz. It is not strictly
necessary to compute C O(A) but it is convenient.

2. In practice, the relation c;; e;d; would be replaced by ]ci; eidil > e Ic0[ for some
suitable small e depending on the precision of the arithmetic unit. Likewise, elements
of A- should be taken as zero if

3. If A has a covering sequence of overlapping columns, e.g., if A has a column
with no zeros, then A must be fully indecomposable in order to be diagonally equivalent
to an orthogonal matrix. We have not provided an algorithm for finding such a sequence
when it exists. However, Professor Hans Schneider has suggested that he has in mind
such a construction, which could also be used as an alternate proof to Lemma 2. His
method, however, may produce redundant columns in the sequence. Finally, M. T.
Heath has suggested an algorithm based upon the bipartite graph of a matrix A which
will usually determine a minimal covering sequence of overlapping columns in an
efficient manner, whenever A is indecomposable with no zero diagonal entries. Further
work is needed on this topic.

Acknowledgment. The authors wish to thank Professor Hans Schneider for his
comments on the general diagonal equivalence problem.
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NONNEGATIVE A-MONOTONE MATRICES*

S. K. JAINt AND L. E. SNYDER

Abstract. In this paper, the structure of nonnegative m x n matrices A satisfying AXA A, for some
nonnegative n m matrix X, is obtained. Several equivalent characterizations of such matrices A have been
given earlier by Plemmons [Proc. Amer. Math. Soc., 39 (1973), pp. 26-32] and Berman-Plemmons [Linear
and Multlinear Algebra, 2 (1974), pp. 161-172]. The structure of matrices given in this paper unifies all the
previous known results on A-monotone matrices where A. The importance of A-monotonicity to problems
in mathematical economics, in probability and statistics, and in numerical linear algebra, is documented in a
recent book by Berman and Plemmons [Nonnegative Matrices in the Mathematical Sciences, Academic Press,
New York, 1979].

1. Introduction. Let A be an m x n real matrix. Consider the equations: (1)
AXA A, (2)XAX= X, (3)(AX)r= AX, (4)(XA) =XA, and (5)AX=XA, where
X is an n m real matrix and T denotes the transpose. Let A be a nonempty subset of
{1, 2, 3, 4, 5}. X is called a A-inverse of A if X satisfies equation (i) for each A. A
A-inverse of a matrix A is generally denoted by Ax). A {1, 2, 3, 4}-inverse of A is the
unique Moore-Penrose inverse of A and is denoted by A*. A {1, 2, 5}-inverse ofA exists
if and only if rn n and rank A rank A2, i.e., index A 1, and is denoted by A#.

A matrix A (aij) is nonnegative if aij -> 0 for all i, ], and we denote it by A -> 0. If
aii > 0 for all i, j, we write A > 0. A nonnegative matrix is called A-monotone if its
A-inverse is nonnegative. If a matrix A is a direct sum of matrices Si, then Si’s will be
called summands of A. Sr will denote the symmetric group on r symbols, say
{1, 2,. ., r}. Diag A shall denote the main diagonal of the matrix A.

Nonnegative matrices have played a significant role in numerical analysis,
economics, and Markov chains. The interested reader is referred to a wealth of selected
applications of nonnegative matrices to numerical analysis, probability, economics, and
operations research in a recent book by Berman and Plemmons [2]. In many of the
applications, one is interested in finding nonnegative solutions of the system Ax b,
where A -> 0 and b -> 0. If A<x) => 0 exists with 1 e A and if the system is consistent, then
x A<X)b provides a nonnegative solution for the system. Of course, as is well known,
the existence of the nonnegative {1}-inverse is sufticient but not necessary for obtaining
a nonnegative solution to the consistent system. Also, in the case where the system is
inconsistent if B is a {1, 3}-inverse, then x Bb yields a least squares solution; i.e., the
minimum of [lAx- b[12 is attained for x Bb.

Theorem 1 gives the structure of matrices A -> 0 having a nonnegative {1}-inverse.
The representation of matrices A obtained in Theorem 1 provides a new proof for
theorems of Plemmons [17], Berman-Plemmons [5], and gives immediately as special
cases the theorems of Berman [3], Plemmons-Cline [18], Haynsworth-Wall [10],
[11], Jain-Goel-Kwak [12], [13], [14], Lewin [16] and perhaps some others (see
Corollaries 3, 4). Our main result makes use of the following:

THEOREM A [7, Theorem 2]. IrE is a nonnegative idempotent matrix ofrank r, then
there exists a permutation matrix P such that

pEp" JO JD 0 0-
0 0 0

CJDo O0 ’* Received by the editors March 31, 1980, and in revised form July 18, 1980.

" Department of Mathematics, Ohio University, Athens, Ohio 45701.

66



NONNEGATIVE X-MONOTONE MATRICES 67

where J is a direct sum ofmatrices xiy
,
Xh Yl > 0 and y iTxi 1 and C, D are nonnegative

matrices of suitable sizes.
THEOREM B [15, Lemma 2]. Let X, Y be respectively m x n, n x m nonnegative

matrices such that

where Xi, Y are positive square matrices of order ai, Ogi respectively.
IfX (X,), Y Yii) are partitionings ofX, Y respectively such that Xii, Yi are of

orders ai x ai, ai ai respectively, then them exists cr Sr such that X.(i O, Y(i)i O,
X. 0 Yi, [or all k r(]).

2. Preliminary results.
LEMMA 1. Let L, M be nonnegative matrices of orders m n, n m, respectively,

such that

I K01 K1D1 0 0 K2 K202 0 0

LM=
0 0 0 0 0

CXoKXCIKxDxo’ML=o0 2C2K2D20’O0 ;
where diagonal blocks are square matrices, Ci, Di, 1, 2 are matrices of suitable sizes,
diag Ki > 0, and rank L rank M rank LM rank ML. Let L (Li), M (Mi), 1 <=
i, <- 4, be partitionings of L, Msuch that the block multiplication ofL with M in either
order can be performed. Then

11 XLIxZ 0
M=

X’MIZ 0
0 0 0 0

for some matrices Z, X, Z’, X’ (not necessarily nonnegative of suitable sizes, and

()

(2)

(3)

(3)’

(4)

(4)’

(5)

(5)’

(6)

(6)’

rank Llx rank L rank M rankM and L11MI K,

Proof. We have

LIIMlx + Lx2M2x + Lx3M3x + Lx4M4x Kx,

Mix + Lxx + Mx2L2x + Mx3L3x + Mx4L4x K2,

LiM.3 0, l=<j<-4,

MIiLi3 0, 1 -< j -< 4,

LiM.4 0, 1=</=<4,

ML4 O, 1 <- j <- 4,

LziMik =0, 1 -<_j, k -<_4,

MEiLik O, 1 <- ], k <- 4,

LaiM]3 O, 1 <- j <= 4,

M3iLi3 O, 1 <- ] <-_ 4,

MilL11 K2.
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(7) L3iMi4 O, 1 <- f <-_ 4,

(7)’ M3iLi4 O, 1 <--_ / <-- 4,

(8) L4iMik O, 1 <= , k <= 4,
(8)’ MaiLik O, 1 <-j, k <= 4.
Premultiply (1) by M21 and use (5)’ to obtain 0 M21K1. Since diag K1 >0, we get
M21 0. Postmultiply (1) by L13 and use (3)’, (6)’, (8)’ to get L13--" 0. Similarly, we get
M4x 0 L14.

Similar computations yield

L2 0 M13 L41 M14.

Thus, LIM K1, MIL K2.
It follows easily that

rank L rank LI rank K1.
Therefore, for all 2, 3, 4 there exists a matrix X of suitable size such that

(9) (Lil Li2 Li3 Li4)--Xi(Lll L12 0 0).

Thus, Li3 0 Li4, 2, 3, 4.
Also, rank L rank Lll implies that there exists a matrix Z of suitable size such

that

But then, L22 0 L42. Hence,

LI L12 0 0
0 0

LI L32 0
0 0

From (10) above it follows that L12 L11Z, and letting X3 X in (9) yields L31 XLll
and L32 XL12 XLIZ. Similarly,

[/11 M12 0 0
0 0 0,M=

M031 M32 0
0 0

where M12 MZ’, M31 X’M11, M32 X’M11Z’ for some matrices Z’ and X’. This
completes the proof.

Lemma 2, which is essentially Theorem B, gives the nature of the submatrices LI,
Mll Of the matrices L, M respectively appearing in Lemma 1.

LEMMA 2. Let X, Y be m x n, n x m matrices each of rank r such that
T

Xy=[albl. 0rT] [Cld Or ]0 "’arb YX=
0 "crd
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where ai, bi, c, di > O, diagonal blocks are square matrices and a, aj (and cg, cj), # ], are
not necessarily of the same sizes. Then"

(1) There existpermutation matrices P, Q oforders m, n respectively, such thatPXQT

is a direct sum of matrices of types (I), (II) (not necessarily both)"
(I) /3xy T, /3 > 0, X, y, are positive unit vectors.

(II) T0 OlzxlYz 0 0
T0 0 23x2Y3 0

0 0 0 d-l.dXd-y
[dlXdY 0 0 0

with all/3’s > 0; x, Yi are positive unit vectors, not necessarily of the same size.
(2) X has a nonnegative {1, 2}-inverse.
Similar results hoM ]:or Y.
Furthermore, P (2 if rn n.
Proof. The proof, although straightforward, is rather technical and is omitted.
Note. If S is a summand of type (I) then one can verify that

B-lyx T

is a {1, 2}-inverse of $, whereas if S is a summand of type (II) then

0 0 0
-1yx 0 0 0

--1 T0 23 y3x2 0 0

--1 T0 0 a-.dYdXe- 0

is a {1, 2}-inverse of S.
Henceforth, by matrices of types (I) or (II) we shall mean the matrices of types (I) or

(II) described in Lemma 2.

3. Main results.
THEOREM 1. Let A be a nonnegative tn n matrix. Then A has a nonnegative

{1}-inverseXifand only iffor some permutation matrices P, (2 oforders m, n, respectively,

pAOT

J JD 0 0
0 0 0 0

CJ CJD 0
0 0 0

where J is a direct sum ofmatrices of types (I) and (II) (not necessarily both), and C, D are
nonnegative matrices of suitable sizes.

Proof. We have AXA=A. This gives rankA=rankAX=rankXA=
rank XAX r, say. Further, since AX and XA are nonnegative idempotents we have,
by Flor [7],

(11)
P AXP’ [ Ko KD 0 0

0 0 O,
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and

(12)

2 K2D2 0 0

Q1XAQ 0 0

LC;K2 C2K2D2 0’00 0

where P1, Q1 are permutation matrices of orders m, n respectively, C1, D1, C2, D2 are
nonnegative matrices of suitable sizes, and each Ki, 1, 2, is a square matrix of rank r
which is a direct sum of matrices of the form xiy/r and xi, yi are positive unit vectors with
Ty xi 1. Set L PIAQ, M Q(XAX)P. Then LM PAXPr and ML
QXAQr. Also, since rank A rank AX rank XA rank XAX, we have

rank L rank LM rank ML rank M.

Thus, by Lemma 1, L, M are of the forms

[ 1 L11Z 0 0 M11Z 0 0
o ! oo

XI XLZ 0 X’MIZ’ 0 0

0 0 0 0

where

(13) LllMll K1, MilL1 g2.

Then, by Lemma 2, there exist permutation matrices P2, Q2 Of suitable orders such that

P2LQEris a direct sum of matrices of the types (I), (II) stated in the theorem. Also, by
Lemma 2, La possesses a nonnegative {1}-inverse L). Thus, if we set L()LZ D’,
XLllLll C’, then D’, C’ >_- 0 and L11Z LllD’, XLll C’L11, XLlIZ C’LllD’.

Finally, let us set

(14)

P2 0 0 0 Q2 0 0 0

0 I 0 0 I
QI’

0 0 I 0 0

where the I’s are identity matrices of suitable orders such that P, Q are of orders m, n
respectively, and the partitionings of P, Q given above are such that the block
multiplication of PAQr=PPLQ1QT can be performed. Then

PAQT Jo JD 0 0

oo!CJD 0
0 0

where D= Q2 C=C’P are nonnegative matrices of suitable sizes and J=
P2LQ is a direct sum of matrices of types (I) and (II) (not necessarily both) as
obtained above, completing the "only if" part. To prove the "if part" we observe (see
note following Lemma 2) that if S denotes a summand of J, then it has a nonnegative
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{1}-inverse, S(1). Consequently, J has a nonnegative {1}-inverse j(x). Also, since

QT
Ja) J( )D 0 0

0 0 0

CJo(a)

Cj(1)D 0 0
P

0 0 0

is a nonnegative {1}-inverse of A, the converse follows.
COROLLARY 1. Let A {1, 5}. Then a nonnegative square matrix A is A-monotone if

and only if there exists a permutation matrix P such that

pApT Jo JD 0 0

iCJD 0
0 0

where C, D are nonnegative matrices ofsuitable size, diagonal blocks are square matrices
and J is a direct sum of matrices of the following types (not necessarily both):

(I),/3xy ,/3 > 0, x, y are positive unit vectors of the same size and yx 1.

(II),
0 Bzxy 0 0

o. o.. o.
0 0 fld-l,aXd-lY

BdlxaY 0 0 0

with/3ij > 0; xi, y are positive unit vectors, xg, yi are of the same size, x, yi, # ] are not
necessarily of the same size and y xi 1.

Proof. Let X be a nonnegative {1, 5}-inverse of A. Then AXA- A, AX--XA.
Clearly A, X are square matrices of the same order. Thus, in the equations (11) and (12)
in the proof of the theorem, we have P1 O1, and L, M (as well as Lll, Mll) are of the
same order. Then by the last statement in Lemma 2, and equation (13) in the theorem,
we get Pz Oz. Hence, by (14) in the theorem, P O. Thus,

pApT

J JD 0 0
0 0 0 0
CJ CJD 0
0 0 0

where C, D are nonnegative matrices of suitable sizes and J is a square matrix. That J is
a direct sum of matrices of the types stated in the corollary is obvious, completing the
"only if" part of the corollary. The "if part" follows as in the proof of the theorem.

COROLLARY 2. The class of nonnegative {1}-monotone matrices coincides with the
class of nonnegative {1, 2}-monotone matrices.

Proof. Let denote the class of nonnegative {1}-monotone matrices and C2
denote the class of nonnegative {1, 2}-monotone matrices.
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Let A (/if1. Then, by Theorem 1, there exist permutation matrices P, Q of suitable
orders such that

PAQT Jo JD 0 0

0 0 0
CJD 0 0
0 0 0

where C, D >--0 and J is a direct sum of matrices of types (I) and (II). Now, if S is a
summand of J, then as noted before, $ has a nonnegative {1, 2}-inverse S(1’2). Hence,
J(1,2) => 0.

Since

I j(,2) j(1,2) 0 0

A(,2) =pT 0 0
1’2) CJ(1’2) 0

00 0

it follows that A(’2)-> 0; i.e., A 2. Hence, (1 (2.
COROLLARY 3. Let A be a nonnegative matrix and let A=p(A)>-O, where

p(A) ,ki= aiA "’, ai O, m >--_0. Then there exists a permutation matrix P such that

J JD 0 0

pApr 0 0 0 0
CJ CJD 0
0 0 0

where C, D are nonnegative matrices ofappropriate sizes and J is a direct sum of matrices
of the following types (not necessarily both)"

(I) ** flxy T, where x and y are positive unit vectors with y TX 1 and is a positive
root of

k(a) Y. aitm’+= 1.
i=1

(II)** 0 /312xy" 0 0
0 0 23x2y 0

0 0 0 /3-1,x-1y
[3d Xdy 0 0 0

where xi y are positive unit vectors of the same order with y Sxg 1; x and x/, /, are not
necessarily of the same order. 2, ,1 are arbitrary positive numbers with d > 1 and
dlmg + 1 ]’or some m such that the product fl2f123’"’ dl is a common root of the
following system of at most d equations in t"

(b)

where

, Oit(mi+l)/d 1,
dAo

Olit(mi+l-k)/d 0,
dAk

ke{1,2,..., d-l},

Ak {d dlmi + l k, d 1}, k=0, 1,...,d-I,
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with the understanding that if some Ak then the corresponding equation is absent.
Conversely, suppose we have, for some permutation matrix P,

PAPT Jo JD 0 0
0 0 0

CJD 0 0

0 0 0

where C, D are arbitrary nonnegative matrices ofappropriate sizes andJ is a direct sum of
matrices of the following types (not necessarily both):

(I’) /3xy r,/3 > 0, x, y are positive vectors with yx 1.
r0 312x1Y2 0 0 0

0 0 23Xzy 0 0

0 0 0 0
aaxay 0 0 0 0

(II’)

where/3ii > 0, xi and yi are positive vectors with yxi 1. Then A(l’z) >= 0 and is equal to

some polynomial in A with scalar coefficients.
Proof. By Corollary 1, there exists a permutation matrix P such that

pApr JO JD 0 0 0-
0 0 0 0

CoY CJD 0 0

0 0

where J is a direct sum of matrices of types (I), and (II), (not necessarily both).
Since p(A)= i=1 aiA "’ is a {1}-inverse of A,

(15) alA "1+2 +" + akA ink+2 A.

Also, it is straightforward to verify that if f(A) is any polynomial in A with scalar
coefficients, then

Pf(A)PT

Thus, (1) implies

(16)

f) f(Y)D 0 0
o o!f J) Cf(J)D 0
0 0

ol.iJm+2 +. + akJink+2 J.

Clearly, all summands S of J will also satisfy (2); i.e.,

(17) a smt+2 -b-. " Olksm+2 S.

Then it is a direct verification that if $ is a summand of type (I). then/3 must satisfy the
equation (a), and if S is a summand of type (II), then/312/323"" [3d1 must satisfy the
system of equations (b). Hence, J is a direct sum of matrices of the form (I)** and (II)**
as desired (for details see [13, Theorem 2]).

Remark 1. The above corollary gives in particular, the earlier known results of
Harary-Minc [9], Berman [3], Lewin [16], Jain-Goel-Kwak [12], [13], [14],
Haynsworth-Wall 10], 11].
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The following theorem giving equivalent characterizations of {1}-monotone
matrices was first proved by Berman-Plemmons and also earlier by Plemmons for
square matrices. We show that those characterizations may be obtained as a direct
consequence of the structure theorem.

THEOREM 2. [5, Theorem 4]. For an m n nonnegative matrix A of rank r the
following are equivalent:

(a) A is {1}-monotone.
(b) There exists a {1}-inverse of the form D1ArD2, where DI, D2 are nonnegative

diagonal matrices.
(c) A has a monomial submatrix of rank r.
(d) A has a nonnegative rank factorization FG where F, G have monomial

submatrices of rank r.

Proof. (a) => (b). By Theorem 1,

PAQ7- Jo JD 0 0
0 0 0

CJD 0 0

0 0 0

for some permutation matrices P, Q, and J is a direct sum of matrices of types (I) and (II)
(not necessarily both).

If S is a summand of J, then it can be verified that

S(1) =[3--2S if S is of type (I),

diag (fl, fl-2, fl2,d)ST if S is of type (II).

Thus, J() ZJ, where Z is a diagonal matrix. Further, direct verification yields that

A(1) QT

J() 0 0 0

0 0
0 0

-ZJT 0 0 0

=QT 0 0 0 O_ p
0 0 0
0 0 0

Z 0 0 0

=Qr0 0 0
0 0

QQT

=DATD2,
where

jT
DTjTcT

0
0

ZOO 0

0 0
0 0

0 I 0 0
0 0 0PTPo 0 0
0 0 0

Q

0
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and

-/ 0 0 0

DE=P
0 0 0 0 pT

0 0 0
0 0 0

are nonnegative diagonal matrices. This proves (a)=:>(b). (b):=>(a) is obvious.
(a):(c). (a)=),(c) follows at once from the representation of {1}-monotone

matrices. (c)=:>(a) is easy and is left to the reader. (Note (c) implies that there are
permutation matrices, P, Q such that PAQT- [ zX], where rank A- rank M, and
M-l_> 0.)

(a) =), (d). We appeal to Theorem 1 here again. First we note that if J- FG is a
nonnegative rank factorization of J, then it "lifts" to a nonnegative rank factorization

A pT "0
(G GD 00)O

of A. Furthermore, it is clear that if S is a summand of J of type (I) or of type (II), then S
has a nonnegative rank factorization S FG, such that F and G contain monomials of
rank r. This proves (a) =), (d) (for details see [14, Theorems 3, 4]).

(d) :ff (a). This is well known and is left to the reader.
Remark 2. Using the representation of matrices obtained in Theorem A, the other

results of Berman-Plemmons in [5] for A-monotone matrices where 1 h and the
theorems of Plemmons-Cline 17] for the nonnegativity of the Moore-Penrose inverse
can be similarly obtained.

Summary. This paper unifies all previously known results on nonnegative A-
monotone matrices where 1cA. The main theorem gives the structure of nonnegative
matrices having a nonnegative {1}-inverse as a direct sum of certain "well-defined
blocks" (of types (I) and (II)). One of the problems which has led to some of the interest
in A-monotone matrices is the problem of obtaining nonnegative solutions of a linear
system Ax b. As is well known, if X is a {1}-inverse (or {1, 3}-inverse) of A, then
x Xb is a solution of Ax b if the system is consistent (or a best approximate
solution), and so obviously Xb is nonnegative wheneverX and b are both nonnegative.
Of course, there is still much that remains to be done in order to characterize systems
having nonnegative solutions. A recent paper by S. Friedland and H. Schneider [-8]
addresses this question.
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COMPUTING THE MINIMUM FILL-IN IS NP-COMPLETE

MIHALIS YANNAKAKISt

Abstract. We show that the following problem is NP-complete. Given a graph, find the minimum number
of edges (fill-in) whose addition makes the graph chordal. This problem arises in the solution of sparse
symmetric positive definite systems of linear equations by Gaussian elimination.

1. Introduction and terminology. A graph is a pair G (N, E), where N is a finite
set of nodes and E, a set of unordered pairs (u, v) of distinct nodes, is a set of edges. Two
nodes u and v are adjacent if (u, v) s E. The neighborhood F(v) of a node v is the set of
nodes that are adjacent to v. The degree d(v) of v is the number of nodes adjacent to v.
A graph is a clique if every two nodes are adjacent. A set of nodes is independent if no
two of them are adjacent.

If S
_
N is a subset of nodes, the subgraph of G induced by S, denoted as (S), is the

graph (S, Es), where Es {(u, v) Elu, v S}. The graph G-S, formed by deleting a
subset S

___
N of nodes from G, is (N- S). A graph G (N, E) is bipartite if N can be

partitioned into two sets P, Q of independent nodes; we will write the bipartite graph as
(P, Q, E). The bipartite graph (P, Q, E) is a chain graph if the neighborhoods of the
nodes in P form a chain; i.e., there is a bijection 7r" {1, 2," , IPI}<-->P (an ordering of P)
such that F(Tr(1))F(Tr(2))__. ___F(r(le[)). It is easy to see [Y] that then the
neighborhoods of the nodes in Q form also a chain, and thus the definition is
unambiguous.

A graph is chordal (or triangulated) if every cycle of length => 4 has a chord, i.e., an
edge connecting two nonconsecutive nodes of the cycle. Chordal graphs are important
in connection with the solution of sparse symmetric positive definite systems of linear
equations by Gaussian elimination JR]. From the symmetric n n matrix M (mi;) of
coefficients of such a system we can construct a graph G (N, E) with n nodes, where
node vi corresponds to the ith row and column of M and (/.)i, 0;) E iff m 0. The
elimination of node v from G is performed by (1) adding edges so that F(v) becomes a
clique, and (2) deleting v from the augmented graph. The added edges correspond to
the new nonzero elements that are created when we eliminate the ith variable, assuming
no lucky cancellations. (See JR] for a detailed exposition of this graph-theoretic
modeling.) If 7r is an ordering of N, the fill-in F(Tr) produced by 7r is the set of new edges
that are added when we eliminate 7r(1) from G, then eliminate r(2) from the resulting
graph, 7r(3) from the new graph, etc. The ordering 7r is a perfect elimination ordering if
F(r) 3. Chordal graphs come into the picture because of the following two proper-
ties [R]. (1) A graph has a perfect elimination ordering if and only if it is chordal. Thus,
"chordal" is a hereditary property (i.e., deleting nodes from a chordal graph does not
violate the property), and every chordal graph has a node v such that (F(v)) is a clique; v
is called a simplicial node. (2) If r is an elimination ordering of a graph G (N, E), then
the augmented graph G (N, ELI F(zr)) is chordal: 7r is a perfect elimination ordering
of G=.

In this paper we examine the problem of finding an elimination ordering which
produces a minimum fill-in, or equivalently, finding the minimum set of edges whose
addition renders the graph chordal. We shall show that this problem is NP-complete.

* Received by the editors June 26, 1980.

" Bell Laboratories, Murray Hill, New Jersey 07974.
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(For an exposition of NP-completeness see [GJ].) The NP-completeness of the mini-
mum fill-in problem was conjectured in [RTL] and [RT], but a proof had not been
found, and it is one of the open problems in [GJ]. The version of the problem on
directed graphs was shown to be NP-complete in [RT].

2. The reduction. We will make use of chain graphs. Two edges (u, v), (x, y) are
said to be independent in a graph G if the nodes u, v, x, y are distinct and the subgraph of
G induced by them consists of exactly these two edges. The following lemma from [Y] is
easy to prove.

LEMMA 1. A bipartite graph is a chain graph ifand only if it does not contain a pair o]’
independent edges.

Let G (P, O, E) be a bipartite graph. From G we construct another graph
C(G)=(N,E’) by making P and Q cliques; i.e., E’=EI3{(u,v)lu, vP}
t_J {(u, v)lu, v e 0}.

LEMMA 2. Let G be a bipartite graph. C(G) is chordal if and only if G is a chain
graph.

Proof (only if). Suppose that G is not a chain graph. Then it has two independent
edges (u, v) and (x, y) by Lemma 1. Suppose without loss of generality that u, x e P and
v, y e O. Then these two edges together with (u, x) and (v, y) form a chordless cycle of
length 4 in C(G).

(if). Suppose that G is a chain graph, and let rr be an ordering of P such that
F(rr(1))

___
F(rr(2))

___
F(Tr(p)), where p IPI. Since the property of being a chain

graph is hereditary, it suffices to show that C(G) has a simplicial node. The neighbor-
hood of rr(p) in C(G) is F’(rr(p))=F(r(p))[P-Tr(p)]. In C(G) the subgraphs
(P- rr (p)) and (F(zr (p))) are cliques, the latter because F(rr (p))

_
Q and (Q) is a clique.

Also, since F(rr(p)) F(v) for every v e P, all nodes of P are adjacent to all nodes of
F(rr(p)). Therefore (F’(zr(p))) is a clique, and zr(p) is a simplicial node of C(G). U

LEMMA 3. It is NP-complete to find the minimum number ofedges whose addition to
a bipartite graph G (P, Q, E) gives a chain graph.

Proof. The reduction is from the Optimal Linear Arrangement Problem. A linear
arrangement of a graph G (N, E) is an ordering rr of N. For an edge e (u, v) of G, let
t(e, r)=lrr-(u)-r-(v)l. The cost c(rr) of the linear arrangement r is c(rr)=
eE (e, Ti’). The optimal linear arrangement problem is to decide, given a graph G and
an integer k, whether there exists a linear arrangement rr of G with cost c(rr) -<- k. This
problem was shown to be NP-complete in [GJS].

Let (G (N, E); k) be an instance of the optimal linear arrangement problem. We
construct a bipartite graph G’= (P, Q, E’) as follows. P has one node for every node of
G (i.e., P N); Q has two nodes el, e2 for every edge e of G, and a set R (v) of n d(v)
nodes for every node v of N, where n INI and d(v) is the degree of v in G. If e (u, v)
is an edge of G, then the nodes el, e2 that correspond to e are adjacent to u and v. The
nodes in R (v) are adjacent to v. In Fig. 1 we show an example of this construction.

u u

(a) (b)
A graph G. The graph G’.

FIG.
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Let l(G) be the minimum cost of a linear arrangement of G, and h(G’) the
minimum number of edges whose addition to G’ gives a chain graph. We claim that

n2(n- 1)(1) h(G’)=l(G)+ -2m,
2

where n, rn are respectively the numbers of nodes and edges of G. Thus, l(G)<-k iff
h(G’)<-_k +(n2(n-1)/2)-2rn.

First observe that an ordering zr ofN specifies uniquely a minimal set H(Tr) of edges
whose addition makes G’ a chain graph with the neighborhoods of the nodes in P(=N)
ordered according to r. For every node x in (2, let tr(x)= max {il(x, zr(i)) E’}. Then
H(zr) {(x, zr (/’))Ix (2, ] < tr(x)}- E’. Conversely, suppose that F is a set of edges such
that G’(F) (P, (2, F_,’U F) is a chain graph and let zr be an ordering of the nodes in P
according to their neighborhoods in G’(F). It is easy to see that F _H(zr), and
therefore if F is a minimal augmentation then F H(Tr). Let h(zr) IH(zr)l. In order to
show (1), it suffices thus to show that for every ordering r of N, h(zr)=c(zr)+
(n2(n- 1)/2)-2m, where c(zr) is the cost of the linear arrangement zr of G.

Let zr be an ordering of N. For every v N and x R (v), H(zr) contains 7r-l(v)- 1
edges incident to x. Let e (u, v) be an edge of G, and suppose without loss of generality
that zr-l(u)< zr- (v). The number of edges of H(r) incident to each of the two nodes

-1 77.-1e, e2 that correspond to e is zr (v)-2 (u)+[zr-(v)-r-l(u)]-2
-1

zr (u)+,(e, zr)-2; thus, the number of edges of H(zr) incident to e and ez is
-1

"a" (v) + "rr- (u) + 6(e, zr) -4. Consequently,

h(r)= Y [rr-(v)-l]+ Y [r-(v)+Tr-l(u)+3(e, r)-4]
veNxeR(v) e=(u, v)E

7/.-1E (n-d(v))(r-(v)-l)+ Z d(v) (v)+ E $(e, zr)-4m
vN vN eE

E n[zr-(v)-l]+ E d(v)+c(’rr)-4m
yeN vN

n2(n- 1)
c(zr) +-2m,

2

since .,,lvd(v)= 2m, and

E [r-(v)-]=0+l+2+ +(n-)=
vN

THEOREM 1. The minimum fill-in problem is NP-complete.
Proof. Follows from Lemmas 2 and 3. 1

n(n-1)
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A BOUNDARY PROBLEM FOR GROUP TESTING*

M. C. HU," F. K. HWANG AND JU KWEI WANG

Abstract. A previous result IF. K. Hwang, Tamkang J. Math., 2 (1971), pp. 39-44] showed that a
minimax group testing algorithm to find d defectives in n items is to test each item individually for d _-> 0.Sn. In
this paper we improve this result by proving that individual testing is minimax for d >-0.4n. We also
conjecture that the same is true for d _>- 1/2n. On the other hand, we prove that individual testing is not minimax
for d < 1/2n.

1. Introduction. Suppose that a population is known to consist of n items including
d defectives. A test is available to verify whether a given item is good or defective.
Furthermore, suppose that a group test is available which tests a subset of items
simultaneously, with two possible outcomes" a pure outcome indicates that all items in
the subset are good, and a contaminated outcome indicates that at least one item in the
subset is defective. An interesting question is to determine for which values of n and d
the use of group tests reduces the number of tests needed to identify the d defectives. To
be more specific, let Mr(n, d) denote the maximum number of tests required by the
algorithm T to identify the defectives in a population with given parameters d and n,
where the maximum is taken over all possible combinations of the d defectives among
the n items. Let I denote the algorithm which tests each item individually. Then clearly
Mx(n, d) n 1 for n > d > 0, since the nature of the last item can always be deduced
without testing but no deduction is possible with fewer than n 1 items being tested in
the worst case (the last two items consist of one good and one defective). Define

M(n, d) min MT(n, d).
T

The question is, then, for what values of n and d is it the case that

M(n,d)=n-1.

It was proved in [1] that

M(n,d)=n-1 for2d+l>_-n.

In this paper we improve the above result by showing that

M(n, d) n -1 for5d+l->2n.

We also conjecture that

M(n, d) n -1 for3d_->n.

We show that this is the sharpest result possible by proving that

M(n,d)<n-1 for3d<n.

2. Some preliminary remarks. A binary tree is a rooted tree where each node
except the root has one inlink (the root has none), and each node has either zero or two
outlinks. Nodes with zero outlinks are called terminal nodes and nodes with two
outlinks are called internal nodes. The path for a node v is the alternate sequence of

* Received by the editors July 1, 1980, and in final form August 15, 1980.
f Academia Sinica, Taipei, Taiwan.
Bell Laboratories, Murray Hill, New Jersey 07974.
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nodes and links which connect the root to v, excluding v itself. The length of a path is the
number of nodes on it. Node u is the father of node v, and v a son of u, if u has an outlink
to v. Two nodes having the same father are called brothers.

A group testin algorithm can be represented by a binary tree where each internal
node is associated with a test and its two outlinks are associated with the two possible
outcomes. The test history at node v is the set of tests and outcomes associated with the
nodes and links on the path for v.

Let D denote the set of the d defectives in the population. Any subset of the
population is called a sample point of D if D can turn out to be s. For our problem, s is a
sample point if and only if the cardinality of s is d. Associated with each node v is the set
of sample points which are consistent with the test history of v. We refer to this set as the
sample space at v and denote it by S(v). Note that if v is a terminal point, then the
cardinality of S(v) is necessarily unity. We let s(v) denote the sample point associated
with the terminal node v.

When an algorithm T is in its binary tree representation, Mr(n, d) is simply the
maximum path length of the tree. Let Mr(S) denote the maximum number of tests for
the algorithm T to identify D from the sample space $, and define

M(S) min Mr(S).

The following two lemmas are straightforward and need no proofs.
LEMMA 1. Suppose Sl

_
S2. Then M(SI)--<M(S2).

LEMMA 2. M(S)>--_ [logElS[q, where Isl is the cardinality of S and Ix t, denotes the
smallest integer not less than x.

COROLLARY. M(n, d) > [log2(,)].

3. The main results. Let M(kln, d) denote the minimax number of tests to identify
the d defectives from n items when a particular set of k items is known to be
contaminated.

LEMMA 3. M(k[n, d) >-_ 1 +M(n 1, d 1) ]:or k >-_ 2 and n > d > O.
Proof. Without loss of generality, let x, x2,"’, Xk denote the k items in the

contaminated set. Then for k -> 2,

M(k + lln, d)>-_M(kln, d) by Lemma 1.

Let T be any algorithm for the (2In, d) problem, and let m denote the maximum
length of a path from the root of T to a terminal vertex; i.e., m Mr(2[n, d).

CLAIM. Every path of length m in T includes at least one test that contains an item

from the given contaminated set {x, X2}.
Proof of claim. Suppose, to the contrary, that for some terminal vertex v the path

p(v) has length m and includes no test containing Xx or x2. Since no test on p(v) can
distinguish between x and x2, and since {xl, x2} is known to be contaminated, we
conclude that x and x2 are both defective in the sample point s(v). Let u be the brother
node of v, which must also be a terminal node since v has maximum path length. The
test history of u differs from that for v only in the outcome of the last test, so x and x2
must also both be defective in s(u). Therefore, since s(u) s(v), there exist indices and
/" such that xi is defective and xi is good in s (u), while xi is good and xi is defective in s (v)
(s(u) and s(v) may also differ on other items.) Letf denote the father node of u and v, so
that S(f) {s(u), s(v)}. Then no test on the path p(f) can have the form G [A{xi} where
G, possibly empty, contains only items classified as good in s(u); such a test must have a
good outcome for the sample point s(u) and a contaminated outcome for the sample
point s(v), and hence would have separated s(v) from s(u). Define s to be the sample
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point identical to s(u) except that X2 is good and both xi and xj are defective. The sample
point s can be distinguished from s(u) only by a test involving x2, which by assumption
does not exist on p(f), or by a test of the form G t.J {xj} as described above, which we
have also seen cannot occur on p(f). Thus the sample point s must also belong to $(f),
and we cannot have both u and v being terminal nodes, a contradiction that completes
the proof of the claim.

Without loss of generality, we may in fact assume that every path of length rn in T
includes at least one test that contains x 1. This follows by a simple relabeling; if the first
test containing xl or x2 on such a path does not contain x 1, we can interchange the names
x and x2 in that test and all tests in the subtree below it without affecting the testing
procedure, because this is merely renaming two items that have not yet been dis-
tinguished from one another.

We now apply this modified version of T to the (n 1, d- 1) problem, adding a
known defective, labeled xl, to the population and skipping all group tests involving
since we already know the outcome of such a test. Because every path of maximum
length m in T includes at least one such test, this procedure never uses more than m 1
tests, and we have

Mr(2In, d)-> 1 +MT(n 1, d- 1),

from which Lemma 3 follows immediately.
We now give a new proof of a result reported in [1].
TI-IEOREM 1. M(n, d) n 1 for 2d + 1 >= n > d.
Proof. We prove Theorem 1 by induction on n + d. Theorem 1 is trivially true for

n + d 1. To prove the general case, let T denote a minimax algorithm for the (n, d)
problem. Suppose T first tests a set of k items. If k > 1, then

MT(n, d)= 1 + max {M(n -k, d), M(k[n, d)}

>= 1 + M(kln, d)

>-_2 +M(n 1, d- 1) by Lemma 3

=2+n-2=n by induction,

except when n 2d + 1; in that case

MT(n, d) >- 2 +M(2d, d 1)

->2+M(2d-1, d-l) byLemma 1

=2+n-3=n-1 by induction.
If k 1, then

MT(n, d) 1 + max {M(n 1, d), M(n 1 d 1)}

1+ (n 2) n 1 by induction,

since at least one of the two sets of parameters (n 1, d) and (n 1, d- 1) satisfies the
conditions of Theorem 1. The proof is complete.

Next we prove a monotonicity property of M(n, d).
THEOREM 2. M(n, d)>-_ 1 +M(n 1, d- 1)-> M(n, d- 1) for n > d >0.
Proof. The first inequality follows immediately from Lemma 3 if we note M(n, d)

M(n [n, d). The second inequality is trivially true for d 1. We prove the general case by
using the induction assumption

M(n-l,d-1)>=M(n-l,d-2).
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Let T be an algorithm which first tests a single item and then uses a minimax algorithm
for the remaining problem. Then

M(n, d 1) <-_M(n, d 1)

1 + max {M(n 1, d 1), M(n 1, d 2)}

1 +M(n 1, d 1) by induction.

The proof is complete.
COROLLARY. Suppose n d > 1. Then M(n, d) n 1 impliesM(n 1, d) n 2.

Proof. Suppose to the contrary that M(n 1, d) < n 2. Let T denote an algorithm
for the (n, d) problem which first tests a single item and then uses a minimax algorithm
for the remaining problem. Then

M(n, d)<--_MT(n, d)= 1 + max {M(n 1, d), M(n 1, d- 1)}

1 +M(n 1, d) by Theorem 2

<n-I,

a contradiction to the assumptions of the corollary.
THEOREM 3. M(n, d) M(n, d- 1) implies M(n, d) n 1.
Proof. Suppose n -d 1. Then Theorem 3 follows from Theorem 1. We prove the

general case by induction on n -d. Note that M(n, d)= M(n, d- 1) implies

M(n, d) 1 +M(n 1, d- 1) by Theorem 2.

Let T be a minimax algorithm for the (n, d) problem. Suppose T first tests a set of k
items. If k > 1, then

MT(n, d)>- 1 + M(k[n, d)

>-_2+M(n-l,d-1) by Lemma 3,

a contradiction to what we just observed. Therefore k 1 and

M(n, d)= 14-max {M(n 1, d), M(n 1, d- 1)}

=l+M(n-l,d),

by Theorem 2 and the fact d < n 1. It follows that

Therefore

M(n 1, d 1) M(n 1, d), hence

M(n 1, d 1) n 2 by induction.

M(n, d)= 1 +M(n 1, d- 1)= n 1.

LEMMA 4. SupposeM(n, d) < n 1. Then M(n, d) >- 21 +M(n l, d l) for n > d >-
/>0.

Proof. We may assume n d > 1, for otherwise M(n, d) n 1 by Theorem 1. We
first prove Lemma 4 for 1.
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Let T be a minimax algorithm for the (n, d) problem which first tests a set of k
items. If k > 1, then Lemma 4 is an immediate consequence of Lemma 3, as we showed
in the proof of Theorem 3. Therefore we assume k 1. Suppose to the contrary that

Mr(n, d)< 2 +M(n t, d- 1).

Then

1 +M(n 1, d 1) >- Mr(n, d)

1 + max {M(n 1, d), M(n 1, d 1)}

1 +M(n 1, d) by Theorem 2.

Therefore

M(n 1, d 1) M(n 1, d) n 2 by Theorem 3.

Consequently,

M(n, d) 1 +M(n 1, d) n 1,

a contradiction to the assumptions of Lemma 4. Thus Lemma 4 holds for the case 1.
The general case is then proved by a straightforward induction argument (on l).

COROLLARY. M(n, d)>-min n 1, 21 + log2
d

Define

f(k)=(4k 1)/(4(?_1)1+ 1) for k 1,2,....

LEMMA 5. f(k) > f(k -1) for k >-2.
Proof.

(4kk+ 1)(4(k- 2)+ 1)f(k) k-2

(4k+l)(3k-2) (4k-1)(3k-3) (4k-2)(3k-4)
(3k + 1)(4k 3) 3k(4k 5) (3k 1)(4k -6)

since each of the three factors is greater than one.

>1,

COROLLARY. > for k >= O.

Proof. The corollary can be easily verified for k -< 3. Furthermore f(4) (147)/(133)
2380 23"286 > Therefore f(k) > 23 for k >- 4 by Lemma 5. Using induction on k, we obtain the
corollary.

THEOREM 4. M(15d2+l], d)= [’5d2+ 1] 1.
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Proof. We obtain

log2

14I ;lgz

1 ld 1]

by using first the corollary of Lemma 4 with [d/2], and then the corollary of
Lemma 5.

COROLLARY. _->n>d>0.

Proof. It follows from Theorem 4 and the corollary of Theorem 2.

4. A con|ecture. We make the following conjecture.
CONJECTURE. M(n, d) n 1 for 3d >= n > d > O.
If the conjecture is true, then it will be the sharpest result of this type, since we have
THEOREM 5. M(n, d) < n 1 for n > 3d >= 3.
Proof. Theorem 5 can be easily verified for d 1. We prove the general case by

induction on d.
Let T be an algorithm for the (n, d) problem which can be described by the

following steps.
Step 1. Set 1. Set / k 0.
Step 2. If > n, stop. If n, test item x and stop.
Step 3. If <n, test two items x and x+. If the outcome is pure, set i- + 2,

/ / + 1. If the outcome is defective, set k k + 1 and test x. If xi is good (then x+ is
defective), set + 2; if x is defective, set + 1.

Step 4. If /_-> k, use a minimax algorithm for the remaining problem. If < k, go
back to Step 2.

Note that whenever Step 4 is executed, then at most / + 2k tests have been taken
with at least 2/good items and k defectives identified. If k, then

MT(n, d)<--3k +M(n -3k, d-k)

<3k+n-3k-1 =n-1 by induction.
If /> k, then

MT(n, d) <- j + 2k +M(n 2] k, d k)

<=]+2k+(n-2/-k-1)

<n-1.
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If Step 4 is never executed, then all defectives are identified in at most ] + 2d tests with
j < k d. Therefore

Mr(n, d) <- ] + 2d < 3d <-_ n 1.

The proof is complete.

Acknowledgment. The authors wish to thank M. R. Garey for a careful reading
and some useful suggestions.
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AN O(n 2) ALGORITHM FOR COLORING PROPER CIRCULAR ARC
GRAPHS*

JAMES B. ORLIN’, MAURIZIO A. BONUCCELLI: AND DANIEL P. BOVET

Abstract. A graph is a circular arc graph if each vertex of the graph is associated with an arc on a circle in
such a way that two vertices of the graph are adjacent if and only if the corresponding arcs overlap. A circular
arc graph is proper if none of the representing arcs is contained within another. An O(n 2) algorithm is given
for determining whether a proper circular arc graph with n nodes may be colored with k colors.

1. Introduction. A circular arc family is a set F {A 1, , A,} of arcs on a circle.
A circular arc family is proper if no arc is contained within another. A graph is a (proper)
circular arc graph if there is a 1:1 correspondence between the vertices of the graph and
the arcs of a (proper) circular arc family such that two vertices of the graph are adjacent if
and only if the corresponding arcs overlap. For example, the graph in Fig. la is a proper
circular arc graph, and Fig. lb gives a proper circular arc model of this graph. The
diagram in Fig. lc is also a circular arc model; however, it is not proper because arc A2 is
contained in arc A t.

FIG. 1. a) A proper circular arc graph, b) A proper circular arc representation for the graph in a). c) A
(nonproper) circular arc representation .for the graph in a).

Circular arc graphs have been studied extensively. Tucker 12 has recently given a
polynomial algorithm for recognizing these graphs. Gavril [6], [7] has given polynomial
algorithms for finding a maximum independent set, a maximum clique and a minimum
covering by cliques for circular arc graphs. The problem of coloring circular arc graphs
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has been investigated by Tucker [11], and this problem was recently proved to be
NP-complete by Garey, Johnson, Miller and Papadimitriou [5]. In this latter paper the
problem of coloring proper circular arc graphs was mentioned as being a significant
open problem. In [3] the problem of selecting the minimum number of node disjoint
paths in a circular arc graph has been solved with an O(n log n) algorithm.

Applications. Coloring circular arc graphs has applications in both cyclic scheduling
and in optimal register allocation in computer programs. Both of these applications are
discussed in [11]. In cyclic scheduling we consider a number of tasks that have to be
carried out periodically, and each arc represents a span of time during which the task is
executed. For example, consider a limousine service at an airport, that repeats its
schedule every hour. Each arc represents the portion of the hour devoted to a specific
(hourly repeated) round trip. The circular arc graph may be k-colored if and only if the
corresponding limousine schedule can be serviced by k limousines such that each route
is serviced periodically by the same limousine (see Fig. 2).

FIG. 2. Arcs representing the timetables ]:or three hourly repeated round trips leaving on the hour, half-past
the hour, and three-quarters past the hour.

For the computer application, consider a loop in a computer program and regard
the flow of control in the loop as a circle. Each variable within the loop has a certain
lifetime which may be modeled as an arc of the circle. Since it is necessary to store a
variable only during its lifetime, a single register may store several variables as long as
the lifetimes of any two of these variables do not intersect. There is a k-coloring of the
corresponding circular arc graphs if and only if it is possible to store all the variables in k
registers so that each variable is in only one register during its lifetime.

In the first application there is a restriction that each route must be traveled
periodically by the same limousine. In the second application there is a restriction that
each variable is stored repeatedly in the same register. If these restrictions are relaxed,
the problem may be modeled as a coloring problem on "periodic interval graphs,"
which in turn is a special case of the periodic Dilworth’s theorem, as formulated and
solved in [8]. Furthermore, the problem is efficiently solvable even when one interval
may contain another. Tucker [9] characterized proper circular arc graphs. A subclass
which arises commonly in applications is that subclass induced by a family of arcs each
with a common length.
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2. Determining k-colorings for proper circular arc graphs.
Circular arc representations. Let G be a proper circular arc graph. Tucker [9] gives

an efficient algorithm for creating a circular arc representation for these graphs, which
runs in O(n 2) time using as a subroutine the Booth and Lueker algorithm [4] for
recognizing the consecutive ones property in matrices. In the following we will assume
that a given proper circular arc graph G has an associated proper circular arc
representation F ={A, ,A,,} such that A =[a, b] and a, b [0, 1). The inter-
pretation is that A is the arc on the unit circle that stretches clockwise from point a to
point b and contains both of these points. We also denote the graph as G(F).

We also assume that the arcs are ordered so that a < a2 <" < a,, and we assume
that there are at least two arcs which do not overlap (otherwise, the coloring is trivial).
In the following the vertex set of G is V {1,..., n}.

Overlap cliques. An overlap clique of G is a maximal set of vertices of G whose
corresponding arcs all intersect at a common point of the circle. It is easy to see that each
overlap clique is induced by one of the points in the set {ax,. ., a,, b,. , b,}. Thus
there are at most 2n such cliques.

Set S is called circularly consecutive if either $ ={i, i+ 1,...,} or else S
{i, i+l,. ., n, 1,. .,} for some i,{1,. ., n}.

LrMMA 1. If G G(F) is a proper circular arc graph, then each overlap clique is
circularly consecutive.

Proof. If the point inducing the overlap clique is p 0, then S {i: a > b or a 0},
and this set is circularly consecutive. Let x(mod 1) denote the fractional part of x. For
p 0, the overlap clique induced by p is s ={i: (a-p)(mod 1)=(b-p)(mod 1) or
a(mod 1)=p}, which is circularly consecutive. [-1

For a given circularly consecutive set $, the last element of S is the unique element
S such that + 1 $ (the last element of S is n if n S and 1 S). Henceforth, we will

write an overlap clique as S (i, ]) where ] is the last element of S and is the last
element of {i,..., n}- S. For example, if n 5, then {3, 4, 5} (2, 5), and {4, 5, 1}
(3, 1). This choice of our representation will be made more clear in the context of the
algorithm.

LEMMA 2. Let G G(F) be a circular arc graph with n vertices, and let k be a divisor
of n. Then G is k-colorable if and only if G has no overlap clique o]’ k + 1 vertices.

Proof. The "only if" part is trivial, since no graph with a clique of k + 1 vertices is
k-colorable. For the "if" direction, consider the coloring of G with colors 0, 1, , k 1
such that vertex is assigned color i(mod k). If </" and nodes and f are assigned the
same color, then either a[a, b] or else bi[a, b]. In the former case vertices
i, + 1, , are in the same overlap clique; in the latter case vertices ,.. , n, 1, .,
are in the same overlap clique. In both cases the overlap clique has at least k + 1
vertices. U

In the following, [. and [. denote the least integer function and the greatest
integer function.

LEMMA 3. Let G be a proper circular arc graph that is k-colorable. Then G may be
k-colored in such a way that each color class has either [n/k or [n/k colors.

Proof. We first show the result for k 2. If n is even and k 2, the result is a
consequence of the coloring given in Lemma 2. Suppose there is a 2-coloring of G, and
assume n is odd. One of the color classes has at least (n + 2)/2 vertices; otherwise, there
is nothing to prove. This color class contains vertices and + 1 for some i. Consider now
the subset

C={i, i-2, i-4,...}t.J{/+l, i+3, i+5,...}.
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Neither C nor V- C has two adjacent vertices; else it would imply a clique in G of size
3. Thus there is a 2-coloring with color classes C and V- C with (n + 1)/2 and (n 1)/2
vertices, thus proving the lemma for the case that k 2.

Consider now a k-coloring for k > 2, and let C and D be color classes with the
greatest and least number of vertices. By the above, we may partition the set C LID into
two color classes whose cardinality differs by at most one. Iteratively applying this
recoloring procedure we obtain a coloring in which each color class has Ink or Ink
vertices, proving the lemma.

THEOREM 1. Let G G(F) be a proper circular arc graph with n vertices. Let k be an
integer less than n, and let r n (mod k) with 0 <-_ r <- k 1. Graph G may be k-colored if
and only if there exists a subset V’ of r [n/k] vertices such that (1) the subgraph of G
induced by V’ has no overlap clique of size r + 1, and (2) the subgraph of G induced by
{1,..., n}- V’ has no overlap clique of size k-r + 1.

Proof. If k is a divisor of n, the theorem follows from Lemma 2. Suppose there is a
k-coloring of G, and suppose that r n (mod k) 0. By Lemma 3, there is a k-coloring
such that each color class has In or [n/kJ vertices. There are r color classes of size
Ink] since the number of vertices of G is n. Let V’ be the union of these color classes.
The subgraph induced by V’ is r-colorable and thus has no overlap clique of size r + 1.
The subgraph induced by {1, ., n}- V’ is (k r)-colorable and hence has no overlap
clique of size k r + 1.

Conversely, suppose there is a subset V’ of vertices satisfying the conditions of this
theorem. The subgraph of G induced by V’ has r. [n/k vertices and may be r-colored
by Lemma 2. The subgraph of G induced by {1,.. , n}- V’ has (k r). [n/kJ vertices
and may be (k- r)-colored by Lemma 2. Hence G may be k-colored.

There is no a priori reason why the above partition problem should appear easier to
solve than the coloring problem; however, the partition problem is really a special case
of the shortest-path problem, a consequence of the following integer programming
formulation of the partition problem. A similar partition problem for proper circular
arc graphs was solved in a similar way by Bartholdi, Odin and RatliiI in [1].

In the following we wish to determine a subset V’ of vertices of G satisfying the
conditions of Theorem 1. We let xi I{1," , i} f’l V’I, which is the number of vertices
with index at most in the set V’. Thus V’ ff and only if xi xi-1 1, where x0 0. As
before, we let r n (mod k). We now wish to determine a feasible solution to the system
of constraints (1)"

(la)

(lb)

(lc)

0 Xi Xi-1 1 for 1, , n,

X0=0,

xn r In
For each overlap clique S (i,/’) with < ],

(ld) x xi <= r,

(le) ISl-(x-x,)<-k-r.

Finally, for each overlap clique S (i, ]) with > ],

(lf) xi Xi dr Xn r
(1g) iSI (X] Xi dr Xn k r
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and

(lh) xi is integer valued for 1, , n.

THEOREM 2. Circular arc graph G may be k-colored ifand only if there is a feasible
solution to system (1). Such a solution may be determined in O(n2) steps.

Proof. We note first that there is a 1:1 correspondence between subsets V’ of
vertices of O and integer vectors x (xi) satisfying (la) and (lb). The correspondence is
given by the relation xi IV’ fq{1,..., i}1. With this correspondence, each overlap
clique $ (i,/’) with i<j is such that IS f’l V’I xj-x. If $ (i, ) with i>, then
IS fq V’l x-x + x..

We interpret the constraints of (1) as follows: (lc) requires that V’ has r. [n/k]
vertices; (ld) and (If) require that each overlap clique in the subgraph induced by V’
has at most r vertices; (le) and (lg) require that each overlap clique in the subgraph
induced by {1,. ., n}- V’ has at most k r vertices. Thus (1) is equivalent to requiring
that G satisfy the conditions of Theorem 1.

Since xn is fixed in value in the constraint (lc), we may eliminate x, from the
constraints (If) and (lg). Each of the resulting constraints may be written as x.- xi -<_ dii
for an appropriate value di (where or ] may be 0). Consider now a directed graph G’
with vertex set {0,. , n 1}, and for each constraint "xi-xi<=d of (1), there is an
associated edge (i,]) of G’ with distance di. Then a feasible solution for (1) is

where x’x0,’’’, Xn-l, x,,, is the minimum distance in G’ from node 0 to node/’ for
j=0,..., n-l, and x, r. In Let m denote the number of edges of G’. Then
these distances may be computed in O(n m) steps by the Bellman-Ford method [2],
which in turn is O(n 2) steps because each edge is associated with an inequality of (1),
and there are at most 2n overlap cliques.

Once a feasible solution for (1) is determined, the coloring may be carried out in
O(n) steps via Lemma 2. [3

COROLLARY 5. A minimum coloring for a circular arc graph may be determined in
O(n2 log n) steps.

Proof. It suffices to use binary search to determine the minimum value of k for
which the given graph is k-colorable. This takes O(log n) iterations, each with" O(n 2)
steps. !-!

The network G’ of the proof of Theorem 1 is highly structured. An open uestion is
whether the shortest-path distances may be computed faster than O(n using a
specialized algorithm.

Acknowledgment. We gratefully acknowledge the helpful comments of Alan
Tucker.
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GENERALIZED SCHUR REPRESENTATION OF
MATRIX-VALUED FUNCTIONS*

P. DELSARTE,’I" Y. GENIN’I’:t: AND Y. KAMP’I"

Abstract. The generalized Schur representation of a function matrix (e’) satisfying Ilnll is
investigated in connection with certain results concerning the extensions of block-Hankel operators acting on
Hilbert spaces. Various properties of such representations are elucidated, including a parametrization of
fl(e i) in terms of a double sequence of Schur parameter matrices. Special attention is paid to the way in which
the representation and parametrization of the shifted function eikft(e) are related to those of fl(eO). In
particular, the asymptotic behavior of the shifted representation for k --, =t=oo is studied in detail. The whole
theory is developed so as to be of direct use in the analysis of half-plane block-Toeplitz systems.

1. Introduction. In a masterful paper, Adamjan, Arov and Krein 1] have brought
to a high degree of achievement the theory of infinite Hankel matrices, and especially its
relationship with various extension and approximation problems, including generali-
zations of the Schur [18], Takagi [19] and Nevanlinna-Pick [14], [16] problems.

Surprisingly enough, it turns out that parts of the same material play a central role
in quite a different area of significant engineering interest. In two-dimensional digital
filtering as well as stochastic estimation, techniques based upon recursive half-plane
filtering and half-plane spectral factorization have recently received considerable
attention (see, e.g., [4], [10], [13], [15]). To a great extent, these techniques fit into the
framework of the theory of the so-called half-plane Toeplitz systems [4], [7!, [8], [13].
As a matter of fact, although it has grown up quite independently, this theory has
intimate connections with the problem of the extension of Hankel operators [1].

Some generalizations of their previous results to matrix-valued functions have
been worked out by Adamjan, Arov and Krein [2]. In particular, a complete solution
has been given to the problem of the extension of block-Hankel operators, leading to a
well-defined representation in terms of two matrix-valued Schur functions.

It is natural to anticipate that, in a theory of half-plane block-Toeplitz systems, this
representation will play the same illuminating role as in the scalar case. The precise aim
of the present paper is to investigate in detail those properties of the above mentioned
generalized Schur representation which are of direct applicability to the subject of
half-plane block-Toeplitz systems [9]. This is the reason why special attention is paid to
the so-called shift operation acting on the representation and to the related con-
vergence properties, which occur as key issues in the analysis of half-plane Toeplitz
sys.tems [8].

In 2, basic facts regarding matrix-valued Schur functions are first recalled [6].
Such a function (z) can be parametrized by a well-defined sequence of matrices
resulting from a matrix version of the classical Schur decomposition algorithm. It is then
shown how a shifted copy e-O(eO) of the function (e) can be represented by
means o two Schur functions the parameter matrices of which are directly obtainable
from those of . The second part of 2 is devoted to briefly describing the following
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result, due to Adamjan, Arov and Krein [2], which implies that the Schur represen-
tation exists for a much wider class of functions. Let there be given a block-Hankel
matrix F [f-s-,: s => 0, t => 0] with norm Ilrll < 1 when acting on the Hilbert space 12.
Then the general matrix-valued function f(e i) with Fourier coefficients f-t for => 0
and subject to IIfll=esssupllf(e’)ll_< 1 is represented by means of two Schur
functions (z) and (z), where (z) is determined from F while (z) is arbitrary; more
precisely, the functions are in one-to-one correspondence with the extensions f of F.

The main theme of the present paper is introduced in 3. It is concerned with the
properties of the generalized Schur representation of a given function matrix I(ei), of
dimension p x p, with Ilall -< 1, for which the associated block-Hankel operator F
satisfies Ilrll < 1. A close relationship is first established between the desired represen-
tation of f, characterized by the Schur pair (, ), and a certain canonical factorization
of the 2p x 2p Hermitian matrix A with blocksA A22 =/, A12 21 --’. As a result,
a simple proof of the existence and uniqueness of the representation is obtained. The
canonical factorization of A appears to be a key point in the argument showing how the
Schur pair (-k, Wk) of the k-shift flk(e) eikl’(e i) is easily computable from (, W).
In particular, for k >= 1, it is shown that the sequence of Schur parameters of Wk is
obtained from deleting the first k parameters .E’E-"’". E-k of xI, while the
sequence of -k results from adding Ei-k, ", E-i, Eo in front of the sequence of .
An interpretation of this result is given in the framework of the theory of Szeg6
orthogonal polynomial matrices, which turns out to be useful in discussing convergence
problems. The last topic treated in 3 is the natural duality exchanging the roles of
and in the representation of a function f satisfying liD.lifo < 1. The dual function D,’,
with Schur pair (, ), is explicitly identified, together with the corresponding canoni-
cal factorization.

Section 4 is devoted to certain convergence properties of the representation of the
k-shifts of f when k goes to plus or minus infinity. Two types of convergence are
examined. First, convergence in the mean is established, under the weak assumption
Ilall < 1. Next, convergence in the sense of certain Wiener type algebras is mentioned,
in connection with summability properties of the sequences of Schur parameters.

2. Preliminaries. This section reviews certain basic results concerning the
parametrization of matrix-valued Schur functions [6], on the one hand, and the
extension of infinite block-Hankel matrices [2], on the other hand. These results form
the general background of our study.

2.1. Schur recurrence relations. Let(z) be a p x p matrix all entries of which are
analytic functions in the open unit disk Izl < 1. Then (z) is said to belong to the class S
(referring to Schur [18]) if the spectral norm II (z)ll does not exceed unity in <
With the notation A-<_ B meaning that B-A is nonnegative definite, the required
condition II (z)ll--< 1 is equivalent to (z)(z --< I as well as to t(z)(z _<- I.

The sequence of Schurparameter matrices (F, F2," ") of a given function (z)
S are determined by Fs (0) together with the recurrence relation

(1) p+,(z) z-’(I-F_,)-’/2[P(z)-F][I-PP(z)]-x(I-,F)’n,
for s 1, 2, , with X/2 standing for the Hermitian square root of X. By definition,
F is contractive;i.e., I[FII -< 1. In case of equality, IIF,[I 1, the function matrix ,(z) is
degenerate in the sense that it shrinks to a dimension p’< p. (Details can be found in
[6].) If F is strictly contractive, i.e., IIF, < 1, then (1) yields a function matrix 2(z)e $,
and thus IIF211 -< 1. Iterating this process we obtain a sequence of strictly contractive
matrices F, which may be either finite (degenerate case) or infinite (nondegenerate



96 P. DELSARTE, Y. GENIN AND Y. KAMP

case), together with a sequence of class $ function matrices s(z). Conversely, at least
in the nondegenerate case, l(Z) can be uniquely reconstructed from the sequence of
parameter matrices Fs. (There exists a similar but more complicated parametrization in
the degenerate case [6].)

For future use let us define the symmetric permutation matrix W and the diagonal
matrices J and T(z), all of order 2p, as follows:

0 I
T(z)(2) w=

t
,r=

0 0

with 0 and ! the p p zero matrix and unit matrix, respectively. Next, given a strictly
contractive p p matrix E, define the 2p 2p Hermitian matrix

(X_E)_/ E(X-E)-/](3) H(E)= .(I_EI)_I/2 (I_IE)_I/.j.

This is the J-unitary version of the Halmos extension of E. In fact, H(E) satisfies
JH J and thus is a J-unitary matrix. Other useful properties of (3) are

(4) H(-E) n(E)-, n() WH(E) W.

In the sequel we shall often use the concept of homographic transformation (see
especially Potapov 17]). Given a 2p x 2p matrixM with p x p blocks M/(i, 1, 2), the
homographic image of a p x p matrix X under the action of M is defined to be
M[X] (MxX +M)(MX+M)-. It is then easily verified that the inverse version
of (1) can be written as

(5) zCs(z) T(z)H(Fs)[zdps+,(z)],

with T(z)and H(Fs) as in (2) and (3).
Let Ts(z)=I-[=l T(z)H(Ft). Iterating (5) yields z(I)l(z)= Ts(z)[zdPs+(z)]. By

definition, Ts(e i) is J-unitary and has the form

iO) js(ei)l(6) Ts(e i) T(e is) Cs(eiO Ds(eiO)j,

where As, Bs, Cs and Ds are polynomial matrices of formal degree s- 1. Define
s(z) Bs(z)As(z)-. From the fact that Ts(z) is J-contractive inside the unit circle

(i.e., s(z)JTs(z) <=J for Izl <-- 1) it follows that the rational function matrices A-x, D-and s belong to the class S. In addition, J-unitarity of Ts(e i) yields Us(Z)=
Ds(z)-Cs(z). As a result, the formula z Ts[zs/] with z ei can be written as

(7) ei(-s)odP ts(s + eidPs+)(I + ei’tIts@s+l)-D-
where the argument e i is omitted. It is important to note that, except for normalization,
As and Ds are uniquely determined from s. Indeed, J-unitarity of Ts (e iO) yields both
spectral factorization formulas,

(8) (I ss)- As.,s, (I ss)- lsDs,
on the unit circle. Let us point out, without going into details, that the matrices As, Bs, C
and Ds have a direct interpretation in the framework of the theory of the Szeg8
orthogonal polynomial matrices [5], [6] (cf., 3.2 below). This leads to the formula
zk(z) T(z)H(k)[zk_(z)] for k s, s- 1,..., 1, showing that the sequence of
Schur parameters associated with s(z) is (if’s, ff’s-,""", , 0, 0,...).
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2.2. Extension o| block-Hankel operators. It turns out that a representation of
type (7), (8) can be exhibited for a class of function matrices considerably larger than
that consisting of the shifted versions e-i"(I) of functions (I) $, as considered in 2.1.
Before entering the subject, let us explain how it fits into the theory of block-Hankel
operators developed by Adamjan, Arov and Krein [2]. Let

(9) F

be the infinite block-Hankel matrix built on a given sequence of p p complex matrices
(fl0, fl-1, ’). Assume that F acts as a bounded operator on the Hilbert space/2, with
norm IIFII < 1. Then the set of p p function matrices fl(ei), subject to

(o) Ilall ess sup Ila(e’)ll <_-

and having l)i as Fourier coefficient of index ] (for ] 0, -1, -2,. .), is in one-to-one
correspondence with the set of p p function matrices (z) S via the formula

(11) fl (+ e’dP)(I + e’CP)-ID-,
where A(z), D(z) and (z) are determined from F as explained below (see [2]).

It is convenient to view F as an operator mapping the space L into the space L],
where L- (resp. L]) consists of the p p function matrices with square integrable
entries having vanishing Fourier coefficients of negative (resp. positive) indices. Thus,
according to (9), the formula FX= Y, with XL+

2 and YeL], means Yi-o --i--’IXi
Y_i for j 0, -1, -2,. .. Let F* denote the adjoint of F, mapping L] into L-. Under
the assumption IIFll < 1, the system of equations

C r* 0, / FD 0,
(2)

-FC=A(0)-, D-F*
has a solution A, B, C, D L- (with A (0) A0 and D(0) Do nonsingular).. Moreover,
this solution is unique except for substitutions of the form A --> UA, B VB, C - CU,
D DV, where U and V are constant unitary matrices. (Note that (12) can be solved by
an exponentially convergent iterative method; cf. [7].) Define the 2p 2p function
matrix

(13) L(e i) [(e’) j(ei) ]
C(e’) D(e’)J"

The main properties of the solution of (12) are expressed by the fact that L is J-unitary
and that both A- and D- belong to L. As a consequence, the function matrices
A(z)-, D(z)- and (z)=B(z)A(z)- belong to the class S, with the property
(z) D(z)-C(z). In addition, A (z) and D(z) are the left and right spectral factors of
(I-)- and of (I-)-, respectively, in the sense that they satisfy

(14) (I-)-1 Aft., (I-)-=/D

on the unit circle z e . One of the main results of [2] says that, when substituted into
(11), the triple (A, D, ) yields the parametric representation of all functions l) with

IIf ll --< 1 having the prescribed Fourier coefficients f0, fL,. appearing in F. Note
that (11) can be written in terms of a homographic transformation as L[edP]. Note
also the equivalent formula WLW[e-p], with W as in (2).
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3. Generalized Schur representation. We are now in a position to specify the
subject of the present paper. Let there be given a p p function matrix f(e) satisfying
(10). One is looking for an expression of the form (11), where (z) and (z) are class S
function matrices while A(z) and D(z) are outer function matrices of Hardy class
related to (z) by the spectral factorization conditions (14). In this case, (11) is called a
generalized Schur representation of f and the corresponding pair (, ) is called a Schur
pair of f. Note that (z) uniquely specifies A(z) and D(z) within right and left unitary
factors, respectively. The intrinsic properties of $ warranting the existence of
suitable functions A and D amount to integrability of tr [(I-)-] and log det (I-
) on the unit circle. Such properties are generally not required for the companion

function (z).
Defining the block-Hankel matrix F from f as in (9), one clearly has Ilrll--<

hence IIF[[--< 1, by (10). The results of [2] reviewed in 2.2 establish the existence of a
generalized Schur representation of f in case of strict inequality, IIF[[ < 1. In addition, it
follows quite immediately from these results that the representation is unique (see the
end of 3.1). As shown by (7) and (8), a simple illustration of the theory is provided by
shifted class S function matrices f= e-"o; this particular case corresponds to
block-Hankel matrices (9) with a finite number of nonzero rows and columns. For
future use, observe that the action of the operator F and of its adjoint F* is described by

FX (IX)- for X L-,
(15)

F*Y=(Y)/ forYL],

where (F)+/- denotes the projection into L of a given p p function matrix F belonging
to L2.

3.1. A related factorization problem. From the generalized Schur representation
(11) of fl, construct the matrix L(e i) as in (13), with B(z)= (z)A(z) and C(z)=
D(z)(z). It appears from (14) that L(e io) is J-unitary. Next, construct four p p
function matrices

P(z) A(z)-’[I + zdP(z)(z)]-’, O(z) P(z)gP(z),
(16)

S(z)=[I+zW(z)d(z)]-D(z)-, R(z)=(z)S(z).

In view of the fact that (I + zW)-1 and (I + zO)-1 belong to the class C (referring to
Carath6odory; see, e.g., [6]) it follows that P, Q, R and S are Hardy functions. Note that
A(0)P(0) S(0)D(0)= L From (16) construct the 2p 2p matrix

(17) K(e)= [ p(ei) -eQ(ei)]--e-il (e iO) ,(e iO)
Let us now derive a useful relationship between K and L, which plays an important role
in our study. Define

[ i _ e 0,1(18) A(e i) _(eiO

Writing (11) in terms of homographic transformations, as mentioned at the end of 2.2,
one immediately obtains from (16) the remarkable identity

(19) A K(JL[I) KL 1.

In particular, K AL implies that P, Q, R and $ necessarily belong to the Hardy class

HE (isomorphic to L).



SCHUR REPRESENTATION OF FUNCTION MATRICES 99

It turns out that the properties mentioned above entirely characterize the general-
ized Schur representation. In fact, it is shown in Theorem 1 below that, provided IIFII < 1,
a factorization (19) of A(ei), with suitable matrices K(e) and L(e), exists and is
unique within normalization. Moreover this factorization, which will be referred to in
the sequel as the canonicalfactorization of A, directly produces the unique generalized
Schur representation of fl. Besides its own interest, the result of Theorem I is important
to this paper because it leads to simple proofs of the shift and duality properties (see

3.2 and 3.3). Let us stress that the existence and uniqueness of the generalized Schur
representation belong to Adamjan, Arov and Krein [2]. However, the proof given here
does not resort to the very general theory developed in [2].

THEOREM 1. Let fl be a function matrix satisfying [[fll[oo <-- 1 and IIF[[ < 1. Then there
exists a factorization I KL-1, where the p x p function matrices A, B, C, D, P, Q, R, S
occurring in (13) and (17) belong to the class H2 and satisfy A(0)P(0) S(0)D (0) L In
this situation, the matrix L is J-unitary. Moreover, the solution (K, L) is unique exceptfor
substitutions of the form K K U + V), L L(U +. V), where U and V are constant

unitary matrices. In addition, setting BA-1 D-1C and p-1Q RS-1 yields
the generalized Schur representation of l), which is unique within the normalization lust
indicated.

Proof. The first step consists in establishin.g t.he existence and uniqueness of (19).
Consider both equations A I’IC P and C flA -e-/, which are part of AL K,
subject to the constraints PL-, QL and P(0)=A(0)-1. In view of (15), they
immediately yield the left equations in (12). Eliminating C produces (I-FF*)A
A(0)-1. The general solution is given by A(e) M’(e), where Y L is uniquely
determined from (I FF*) Y I while M is any p x p matrix satisfying/rM Y(0)-1.
Next, the remaining part of AL K leads to the right equations (12), for which the
existence of a "unique" solution is proved similarly.

Then, let us check that the matrix L is J-unitary. From AL K one deduces, by
straightforward computation,

(20) JL=[AP+eRC e(RD-AQ)]
BP-SC -(SD + eBQ)J"

By construction, the right member of (20) belongs to the class L-, whereas the left
member is Hermitian. Hence the matrix (20) must be a constant and, in view of
A(0)P(0)= S(0)D(0)= L this constant must be J, which proves the claim.

Let us now derive fur.th.er p.roperties, of K and L. In view of LJL J, the equation
P IC yields AP+PA PP I + C(I (II))C. As a result, the Hermitian part of
the Hi-function F(z)= A(z)P(z) is positive definite on the unit circle, so that F(z)
belongs to the class C. Together with F(0) =/, this property yields F(z)-1 C, implying
that F(z)-l, A(z)-I and P(z)-I are outer Hardy functions. A similar argument, based
on S =/-Bfl, leads to the conclusion that D(z)-1 and S(z)-1 are outer Hardy
functions.

In agreement with the identity CA DB resulting from LJ. J, define (z)=
B(z)A(z)-l=D(z)-lC(z). The.preceding argum.ent shows that (z) is a Hardy
function. On the other hand, LJL J gives I- D-1/-1 and I- .-1A-1
on the unit circle. Hence q(z ), D-1(z) and A-1(z) belong to the class S. Next, from (19)
one obtains KJI =AJA, which implies Q$=PR and allows one to put (z)=
P(z)-1Q(z) R (z)S(z)-1. In view of the preceding argument, (z) is a Hardy function,
which necessarily belongs to the class S as a consequence of the identities I-
P-1(I-1)-1 and I-=-l(I-fl)S-1 resulting from KJI AJA.



100 P. DELSARTE, Y. GENIN AND Y. KAMP

Finally, (19) implies (16) together with f A(+ eid)S, which immediately gives
the desired representation (11) with the required spectral factorization formulas (14).
Since one has seen that, conversely, any generalized Schur representation produces an
adequate factorization (19), this completes the proof of the theorem.

3.2. Properties of the shift operation. Given a p x p function matrix fl(e
satisfying (10), define flk to be the k-shift of [l, i.e., the function

(21) ’k (e iO) eik"(ei),
for any k. Z. Let 1-’k denote the block-Hankel operator associated with lk. Since
Ilr ll <-IIr -,ll, the condition Ilrll < which is assumed throughout, implies IIr ll < x for all
k > -q, where q is either infinity or a positive integer. In this section it is shown that, in
case k => 1, the generalized Schur representation of Ilk can be deduced from that of f by
simple algebraic manipulations involving the k first Schur parameters of W(z). A similar
result is given for the case -q < k-<-1, involving the parameters of (z) instead of
those of W(z). (The machinery appears clearly in the simple situation of 2.1.)

Let (Eo, E_, E-2," ") and (/,/2,/3," ’) denote the sequences of Schur
parameter matrices associated with the functions W(z) and (z), respectively, where
(, W) is the Schur pair occurring in the representation (11). Note that the first sequence
is infinite and satisfies o IIE-,l[2<. (This follows from (14); see [5] and [6].) As
pointed out below, the length of the second sequence is at least q- 1. Next, for any
k _-> 1, define the class $ function matrices Wk(Z) and -k(Z) by recursive application of
the homographic transformations (cf. 2.1)

(22) ZWk(Z) H(-E-k)T(z)-[ZWk-(z)],
(23) ZdO_k(Z)= T(z)H(,_t)[zdP_k(Z)],
with the initialization 0 ,0 . Thus both families (k) and (C-k) satisfy the
recurrence relation (1). A clear interpretation of (22) and (23) is obtained from
considering the sequences of Schur parameters associated with qtk and C-k, namely

(z): (E_, E__, E__, .),
(24)

O-k(Z)" (/l-k,/2-k, 3-k,’ ")"

On the other hand, starting from the canonical factorization (19), let us construct
the 2p x2p function matrices L(e) and K_(eO), for k => 1, by means of the
parameters Eo, E_,..., E_ of (z), as follows:

k-1

(25) L TLT I-I [T-*H(--)]T-,
sO

k-1

(26) K-k TKT I-I [T-H(--)]T-,
s---O

0
with T T(eg). Here and in the sequel 1-I=o X means XoX,... X, while I-l=mX
means X,X,_ Xo. From (25) and (26) let us now define p x p function matrices
A(e"), ., D(e) and P_(e"), ., $_(e), by writing

(27) L= C D -e

THEOREM 2. For any k >= 1, the canonical [actorization (19) o[ the matrix Ak
TkAT-k associated with Ok is determined]rom (25) and (26) to be Ak K_kL-, so that
the corresponding Schur pair is the pair (dO_k, k) as given by (22) and (23).
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Proof. It suffices to consider the case k 1 and then proceed by induction. From
(25) and E0 (0) it follows that A 1, B1, C1 and D1 belong to the class HE, while (26)
directly implies P_, Q-l, R_, S_ H2. In addition, A 1(0)P-1(0) S_I(0)D(0) I
appears as a consequence of A(0)P(0)- $(0)D(0)= I. Next, (19), (25) and (26) yield
A1 TAT-= TKL-aT-= K_IL-(. By Theorem 1, this proves the first assertion.
(Note that the J-unitarity of L is immediate from (25).)

To establish the second part let us put the functions ’ BxA-a and ’ P-Q-I.
It follows from Theorem 1 that (’, ’) is the Schur pair of fl. On the other hand, it is
easily checked, by use of (25) and (26), that z’ and z’ coincide with the right
members of (22) and (23), respectively. This concludes the proof. 1!

An alternative version of (25) will be useful in the sequel. Defining the permutation
matrix W as in (2) one can verify, by elementary computation, that (25) is equivalent to

k-1

(28) WLkW= T-k(WLW)T- 1-I [TH(-E_)]T.
s=0

COROLLARY 3. Assume the block-Hankel operator F-k corresponding to -k
satisfies IIF-II < 1, or a given positive integer k. Then the length of the $chur sequence of

(z) is at leastequal to k, and the canonicalfactorization ofthe matrix A_k T-kATk is
given by A_k KkL-k, with

k

(29) L-k T-kLT I] [H(I)T]T-,
s=l

k

(30) Kk T-kKT 1-I [H()T]T-.
As a consequence, the functions Pk and -k in the corresponding Schur pair are
characterized in terms oftheir sequences ofSchurparameters as in (24), with k replaced by
--k.

Proof. It suffices to apply Theorem 2 with II_k substituted for l and then to
interpret the result backwards. The details are omitted.

Let Mk(e i) and Nk(e i) denote the Blaschke-Potapov products occurring in (25)
and (28), respectively; i.e.,

0 k-1

(31) Mk 1-I [H(-/-s)T], Nk rI TH E_ ]
s=k-1 s=0

Thus Mk eikOW]kW. For application to convergence problems it will prove useful to
express Mk and Nk in terms of Szeg6 orthogonal polynomial matrices [5]. Let F+(z) and
F-(z) be the class C function matrices associated with (z) and -(z), respectively;
i.e.,

(32) F+/-(z) [I :v zXlt(z)][I +/- z %I,t(z)]-1.

DefineX (z) and Y (z) to be, respectively, the left and right orthogonal polynomial
matrices of degree k associated with (32). Applying the results of [6] one obtains

(33) Nk - y_ y. f(_

with k(Z)=Zkk(1/), denoting the reciprocal of a polynomial matrix Ok(Z) of
degree k. An expression quite similar to (33) holds for M eikOWiQkW. AS a result,
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using (25) and (28), one deduces

2 (+e-’/)’ +( e-’/)X,+

2e(+a)C, (D +eC)- (D eC)’,
(34)

2/ I2 (/ + e-t) + I2 (/ e-O),
2e(+a)OB - (a +eB) "- (a-eiB).

Note that the expressions under brackets in the right members of (34) are the inverses of
the spectral factors of the Hermitian part of F+(e). Indeed, it is easily seen that one has

Herm F (D + eiC)-l(l + e-i)-x

(35)
( + e_,O)_x(A + e,OB)_X"

3.3. Dual representation. It turns out that interchanging the roles of (z) and
(z in (11) exhibits an important duality in the theory. However, this makes sense only

for a restricted set of functions fl(e i), because does not generally enjoy all properties
required from . (In particular, (14) may fail to exist when is replaced by .) In fact,
an appropriate assumption in the present context is Ilftll o < 1, i.e., strict inequality in
(10), which obviously implies IIr’ll < 1. In this case, there exist spectral factorizations

(36) (I fll’l)-1 G, (I ,-)-1 n/-,

where G(z), H(z), G(z)- and H(z)- are p xp function matrices belonging to the
Hardy class H. Note that G and H are uniquely determined within a left and a right
unitary factor, respectively.

Let us then define eight matrix functions A’(z), B’(z), C’(z), D’(z), P’(z), O’(z),
R’(z) and S’(z), all of class Hz, as follows"

A’=SH, B’=RH, C’=GQ, D’=GP,
(37)

p’=H-aD, Q,=H-xC, R’=BG-1, $,=AG-1,

where A, B, C, D, P, Q, R, $ yield the canonical factorization (19) of A, while G and H
are determined from (36). Next, we construct the 2p 2p matrices L’ and K’ as in (13)
and (17), with A’,.. , $’ substituted for A, , $. Direct computation from (37) gives

(38) L’ F(TJW)K WJT-X), K’ ff’-I TJW)L(WJT-),

with F=/-r + G, where W, J and T T(e) are as in (2). From KJ AJA
JW(:F)-W," one readily deduces L’J.’ =J. On the other hand, the canonical
factorization (19), written in the form A (JLJ)I, leads to

(39) ff’- TWAWT-)ff’ K,(jf__,,j),

by straightforward computation from (38). Let A’ denote the left member of (39). By
definition, A’ appears as the matrix (18) where ll is replaced by the function f’ given by

(40) IT(e ’)

Note indeed that l’l’ e-ir-lflH in view of (36). A further consequence of (36) and
(40) is IIf’(e)ll Ilf(e)[I. In the sequel, ll’ is referred to as the dual of fl.

Using the identities above and applying Theorem 1 we now immediately obtain the
following result about duality.
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THEOREM 4. The canonicalfactorization A’ K’(L’)-1 relative to the dualfunction
fl’ is deduced from that of A by (38); the Schur pair (dp’ ’) of fl’ is given by dp’= ,

It is interesting to note that the spectral factors G’ and H’ associated with fl’, as in
(36), are given, up to normalization, by G’(z)= H(z) and H’(z)= G(z). Let us now
derive some matrix inequalities that will play an important role in the next section:

(41) I(O)A(O)(O)G(O), ID(O)(O)H(O)(O).

The argument goes as follows. From the fact that A(z)- belongs to the class S one
deduces A(0)A (0) I and A(0)(0) I. Similar results hold for A’, D and D’. Next,
P(0)A(0) I yields D’(0)A(0) G(0), by (37); hence (0)A(0) (0)G(0)in view of
’(0)D’(0) I. The result D(0)(0)H(0)(0) is proved similarly.

Let us finally examine the interplay between duality and shifting. Note that, in
terms of the Schur parameters, duality is expressed by E -k (see Theorem 4). In
agreement with this, it appears that shifting to the left can be interpreted as shifting fl’
to the right. More precisely, in view of the fact that the spectral factorizations (36) are

e -ikOnot affected by shifting, the k-shift eik is the dual of O-k for any k Z.
Thus, according to Theorem 4, the J-unitary matrix L occurring in the canonical
factorization relative to is determined by

(42) A, SkH, B’k RkH, C’k GOk, D’k GPk.

4. Asymptotic behavior. The present section is devoted to the question of the
behavior of the generalized Schur representation of the shifted function k(eiO) when k
tends to + or to -c. This question actually plays an important role in the analysis of
half-plane block-Toeplitz systems [9]. (See [8] for the scalar case.)

4.1. Convergence in the mean. Let us first state a lemma which turns out to be the
main tool for treating L2-convergence. For any k Z define the p p function matrices
Xk(ei) and Yk(e i) of class L2 as follows"

(43) Xk(e i) ei(-k)o (e i
_

)(0),
(44) Yk (e i) ei(-k)Otk (O)R_k (eiO).

LEMMA 5. Assume II IL 1, For all integers k and n with k >= n one has both matrix
inequalities

(45)
2rr

(2k --2,,)(Xk -X.) dO <=D,,(O)l,,(O)--Dk(O)lk(O),

(46) 12zr (Yk-- Y,,)("k-- ’,,) dO<=,,(O)A,,(O)-k(O)Ak(O).

Proof. B.y.definition,. Xk (I.Dk--e-’kOjk)p.k(O).. Hence,. applying the obvious
inequality (MII +N)(IM +N) <-MM+NN+MIIN+NI’IM, one can write

(47)

where Fk, (’Fn,k) is given by

(48)
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In view of D, (0)S_,(0)= L integration of (48) yields

(49) 2--- F, (e) dO D(0)/ (0) for k _-> n.

The desired result (45) directly tollows from (47) and (49). The proof of (46) is similar
and left to the reader.

THEOREM 6. Assume I1 11 < 1, The matrices Ak(ei), Bk(ei), Ck(e), Dk(e)
occurring in the generalized $chur representation of flk(e) have the following L2-
’convergence properties"

l.i.m..k(O)Ak 1, l.i.m. ,’k(O)Ak (O)G,
k--,oo

1.i.m. Bk 0, 1.i.m. e’kDk(O)Bk H(O)t(’I,
k-,az k--}-o

l.i.m. Ck 0, 1.i.m. eikCkAk (0) flOG(O),
k--}co k--,-o

l.i.m. Dk/t‘ (0) =/, 1.i.m. Dt‘/t‘ (0)= H/-(0).
k--}co k--oo

Proof. In view of (41) and (45), the doubly infinite sequence of matrices
Dk(O)Dk(O) is bounded and monotone; hence it converges for k +. As a result it
appears from (45), owing to the Cauchy criterion, that the sequence of Xk(e)
converges in the L2-sense, for k +o, to a well-defined function matrix X+(ei). Now,
since O-k belongs to L-, it is clear from (43) that X_ has to be the zero function. Thus,
given any positive real number e, one can write

(50) 2-- fif_t,(ei)X_t‘(e ’) dO <-_ el,

provided k >=ko(e). Let us put c= 1/(1-1lxll). Then (36) yields
Hence, using (41), (42) and (43), one deduces from (50)

CkCk dO OktGOk dO
2r

(51)

<= ce [/_t‘ (0)D_t‘ (0)]-1 -<_ ceI,

which yields 1.i.m. C, 0 for k o. Next, apply A’’-’C’=/, resulting from the
J-unitarity of L’. As a consequence of (51) and (41) one readily deduces

(52)
1 f .[I-(O)A][I-A’t,(O)] dO <=celY-I(O)H(O),

2zr

hence 1.i.m. ,(0)A, =/, for k co. A similar argument, based on (46) instead of (45),
leads to B, 0 and D,/,(0) L Thus the dual versions of the desired results are
established in the case k +o. The primal versions follow of course from the same
argument.

Let us now consider the case k -o. Define the block-diagonal matrix Mk
lk (O) +. Ak (O). In view of Ak(O)=D’_k(O)-IG(O) and Dk(O)=H(O)A"_k(O)-1, the
results of the first part imply L’-kMk - F(O), in the L2-sense, with F + G as above.
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Then, expressing L’ in terms of K as in (38), one obtains WK-kWMk --> F-1F(0), hence

(53) l.i.m. A(T-kLkTk) WMk WF-IF(O),
k-,-oo

by use of ZkLk K-k with Ak Tk AT-k. Finally, multiplying (53) to the left by AJ and
using AJA JW(IF)-W together with (36) gives

(54) 1.i.m. (T-kLkTk) WMk (JAJ) Wff’F(O).
k-oo

In compact form, this is precisely the desired result. Hence the theorem is proved. 1
As a direct consequence of Theorem 6, it appears that the bounds (41) are achieved

in the limits

(55)

lim .’k (O)Ak (0) I,

lim Dk (O)lk (0) I,

lim k(O)Ak (0) t(0)G(0),
k--,-oo

lim Dk(O)lk(O) H(0)/-)(0).
k-*-

COROLLARY 7. Let the spectral factorizations (36) and the representation of ’k be
normalized in such a way that G(O), H(O), Ak(O) and Dk(O) are Hermitian positive
definite. Then one has the LE-COnvergence properties Ak -> I, Bk -’> O, Ck -> O, Ok -> I for
k -> +oo and Ak -> G, eikOBk --> I2I, eikOCk -’> ’l, Dk "-> H for k --> -.

Proof. This immediately follows from Theorem 6, since (55) yields Ak(O)--> I,
Dk (O) - I for

COROLLARY 8. Under the same conditions as in Corollary 7, the Schur pairs
(CI)_k, k) of the shifted functions Ok satisfy

1.i.m. a/’k 0, 1.i.m. eikatk --’-e-i[’’,
k.-,+oo k.-,-oo

1.i.m. (I)k
k--,+oo k--,-oo

Proof. SinceA belongs to the class S, the property Bk -> 0 in Theorem 6 implies
k "-> 0 for k --, . The second result concerning XI/’k follows from the identity

(56) e -ifl’- e ikoqk (I?Il- eikOBk)G- + eikk(Ak G)G-.
Indeed, in view of G-Ho and XI/’k ( S, it appears from Corollary 7 that the right
member of (56) tends to zero for k -> -. The desired results concerning (I)k are proved
in a similar manner, i-I

4.2. Convergence in Banaeh algebras. The developments below are mainly based
on formulas (34). We shall use matrix versions of remarkable theorems due to Baxter
[3] about convergence of Szeg6’s orthogonal polynomials; the appropriate generaliza-
tion to the matrix case has been recently made by Geronimo [11]. Let a be an even
real-valued function defined over the integers, satisfying a(m)>=l,o(m+n) <-

a(m)a(n) for all rn, n Z, and lim a(m)/’’ 1 for rn o. Given an integrable function
matrix X(e i) ., Xm eim, define

4-00

(57) Ixl- Y. (m)llxll,

The set J consisting of the functions X with finite value of (57) clearly is a Banach
algebra for the norm Ixlo, (The particular choice a(m)= 1 for all m leads to the
classical Wiener algebra.)
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Henceforth let us assume that the function f belongs to , for a given admissible
a. Using a general theorem concerning compact operators in Banach spaces with two
norms [1], one deduces that the function matrices A, B, C, D, as defined from (12),
belong to the subalgebra + of . As a consequence, in view of the Wiener-L6vy
theorem, one has F+(e i) + (see (32)). Then Baxter’s theorem [3], [11] together with
the results of [6] imply that the sequences of polynomial matrices.,’ and I? converge,
in the sense of the norm (57), to the inverse of the right and left spectral factors of
Herm F+, respectively. Thus, according to (35), one has

(58)

when k -, for a suitable normalization of A and D. It is interesting to observe that
(58) can be derived from the condition Y.,o c (s)llE-ll < o, which actually is equivalent
to A, B, C, D + (see [31, [11]).

In case 11 11 < x the assumption f implies G, H, G-x, H-1 + (cf. [12]).
Hence the properties mentioned above hold true for the dual function matrix I’. The
main results concerning the generalized Schur representation in the framework of the
Banach algebra ,, are collected in the following theorem.

THEOREM 9. Let IIf ll < 1. Then the conditions f 3 and ,=-o
are equivalent. Either ofthem implies Ak, Bk, Ck, Dk + for all k, with the convergence
propertiesAk L ekBk 0, ekOCk O, Dk Iwhen k +.andAk G, ekBk -- t7I,eikOCk , Dk H when k -, in the sense of the norm

Proof. This essentially follows from applying Baxter’s techniques [3], [11] to the
results of [6]. In particular, the first set of convergence properties (for k +o) directly
follows from (34), (58) and LJ J. By duality, A:, B, C, D, enjoy similar proper-
ties. Interpreting these in terms of the functions A-k, B-k, C-k, D-k as in the second
part of the proof of Theorem 6, one obtains the desired properties for k -c. The
details are not repeated here.

Let us make a final remark which is important from the application viewpoint [8]. If
f(e i) is an infinitely differentiable periodic function of 0, then fl belongs to the algebra, for all a with polynomial growth. In this case the properties quoted in Theorem 9
are very strong. For example, the statements Ak and Ak G mean that Ak(e i) is
infinitely differentiable and that its nth derivative converges uniformly to the nth
derivative of G(e i) for any given n >-0.

Acknowledgments. The authors are most grateful to C. Foias for calling their
attention to the relationship between their work and certain results by Adamjan, Arov
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WHITNEY CONNECTIVITY OF MATROIDS*

THOMAS INUKAVr AND LOUIS WEINBERGt

Abstract. A new definition of matroid connectivity is introduced and its properties are investigated in this
paper. Vertex connectivity of graphs is expressed in an algebraic form and generalized to matroids. This
generalized connectivity is called the Whitney connectivity of matroids. It is shown that the Whitney
connectivity of the polygon matroid of a graph is the same as the vertex connectivity of the graph provided the
graph is connected. Various properties of Whitney matroid connectivity and comparison with Tutte
connectivity are also examined.

1. Introduction. A matroid may be defined as a generalization of a graph obtained
by abstracting certain topological properties of polygons and cut-sets of the graph, and
accordingly many graph theorems have been generalized to matroids. However, in the
process of abstraction, some important concepts in graph theory are lost in matroids; for
example, there is no matroid concept corresponding to a vertex of a graph. Thus,
although the vertex connectivity of graphs, a concept due to Whitney [8], is accepted by
most researchers as the standard definition of graph connectivity, Tutte introduces
another definition of graph connectivity [4] in such a manner as to allow its generaliza-
tion to matroids [6]. He then justifies his matroid concept by showing that the
connectivity of a connected graph is equal to the connectivity of its polygon matroid,
and, furthermore, that the connectivity of a matroid and its dual is the same. Its
usefulness was clearly demonstrated by Tutte’s applying it to 3-connected matroids,
where it led to the useful concept of the whirl matroid, which along with the wheel
concept for 3-connected graphs yielded a satisfying theory for 3-connected matroids
[6]. It is this theory that was used by the present authors in formulating the first efficient
algorithm for determining whether a general matroid is realizable as a graph [3]. Tutte
also used his matroid connectivity concept to establish Menger’s theorem for matroids
[5].

In this paper a new definition of matroid connectivity is proposed, and its basic
properties are derived. Since the definition reduces, in the special case of graphs, to the
vertex connectivity of a graph, we call this connectivity the Whitney connectivity of a
matroid. As we shall see, we use the same connectivity function as Tutte and differ only
in the second condition; that is, Tutte requires min (Isl, Igl)->-n whereas we require
min (r(M x S), r(M x S)) _-> n.

The contents of this paper are organized in the following fashion. After the
introduction of some basic graph and matroid terminology, an algebraic form of
Whitney graph connectivity is derived from the original definition. Whitney connec-
tivity of matroids is then a straightforward generalization of the algebraic form, and this
generalization is justified by proving that tho generalized matroid connectivity of the
polygon matroid of a connected graph coincides with the vertex connectivity of the
graph. Various properties of Whitney matroid connectivity are investigated, and
comparisons with the connectivity definition of Tutte are also presented. For example,
we show that, contrary to what is true for Tutte connectivity, the Whitney connectivity
of a matroid is not equal, in general, to that of its dual.
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2. Definitions. Let G (V, E) be a graph, and let S _E(G); G may contain
multiple edges. The graph reduction and contraction operations are defined as usual and
are denoted by G. S and G S, respectively.

A connected graph with each vertex having valence two is called a polygon graph,
and S

_
E(G) is a polygon of G if G. S is a polygon graph. A graph B is called a cut-set

graph if V(B) {vl, v2}, E(B) # , and the ends of each member of E(B) are D1 and/)2.
A subset T of E(G) is a cut-set of G if G x T is a cut-set graph.

A .graph G is said to be n-connected if the deletion of any n 1 or fewer vertices
and their incident edges results in a connected graph, and the connectivity of G is n if G
is n-connected but not (n + 1)-connected. If there does not exist such an integer, then G
has an arbitrarily high connectivity (denoted by oo). Thus a complete graph Kp has oo

connectivity. This definition of graph connectivity was first introduced by Whitney [8],
and is generally termed the vertex connectivity of a graph.

The rank of G, r(G), is the number of elements in a spanning forest of G. If c(G)
denotes the number of components of G, then/x(G) IEI-r(G)= I.EI-IVI+c(G) is
called the nullity of G. Let S be a nonnull proper subset of E(G). Then r/(G; S, S)
denotes the number of common vertices of G. S and G. S, where S E- S.

Let M (E, C) be a matroid which satisfies the circuit axioms. The members of E
and C are referred to as cells and circuits of M, respectively. The rank and nullity of M
are denoted by r(M) and/x (M), and no confusion should arise because of the use of the
same symbols r and/x for matroid and graph invariants. M*= (E, C*) denotes the
dual matroid of M, and the members of C* are called cocircuits of M.

Let G (V, E) be a graph, and let Cp and CB be the classes of polygons and cut-sets
of G, respectively. Then P(G) (E, Cp) and B(G) (E, CB) satisfy the matroid axioms
and are termed the polygon and bond matroids of M. (Note that P*(G)= B(G).) A
matroid M is called graphic or cographic if there is a graph G such that M B(G) or
P(G), respectively.

Let S_E and CS={CICC and C_S}. Then MxS=(S,CS) is the
contraction of M to S. If C. S denotes the class of nonnull minimal intersections of the
members of C with S, then M. S (S, C. S) is the reduction of M to S. In the above
definitions of matroid contraction and reduction we are following Tutte, and do so
throughout the paper. It should, however, be pointed out that these definitions are not
the only ones used in the literature. There is also a definition that reverses the terms so
that a matroid is said to be graphic if and only if it is a polygon matroid, and the
reduction of a polygon matroid gives the polygon matroid of the reduced graph.

The reader may refer to Welsh [7] for other matroid terminology used in this paper.

3. Graph connectivity. In this section we formulate an equivalent definition of the
vertex connectivity of graphs in a form that is more convenient for a generalization to
matroids.

Let G (V, E) be connected. Then h (G) denotes the least integer n which satisfies
the following conditions"

?(G;S,S)=n and min(r(G.S),r(G.S))>-n,

where S is a nonnull proper subset of E. If such an integer does not exist, we then write
A(G)=. It shall be proved in the following that A(G) is equal to the vertex
connectivity of G.

THEOREM 1. Let G be a graph containing at least n + 1 vertices. Then the vertex
connectivity of G is h (G).
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This theorem is obtained as consequence of Lemmas 1 and 2 described below.
Let G (V, E) be a graph of connectivity n, where n is a positive finite integer.

According to the definition of graph connectivity, we can find a set of n vertices Vo of G
whose deletion from G results in a disconnected graph. The n vertices of such a set are
called/oin vertices of G. The/oin graph Go (Vo, Eo) is the induced graph on join vertex
set Vo, where Eo consists of the edges of G having both of their ends in Vo. A join graph
is unique for a particular choice of V0, but there are in general several different sets of
join vertices. Let Gi (Vi, E), 1 -< _<- k, be the components of the disconnected graph
obtained by deleting the vertices V0 from G; these components are referred to as the
/oin components. Each member of the edge set (E Eo- U = E) is incident to a vertex
of Go and a vertex of exactly one G, since V, V’2, V, are mutually disjoint. The
set (E-Eo) may be partitioned into k subsets El, E2,’’’, Ek so that each Ei is the
union ofE and the edges incident to the vertices of G. Then G G. E, 1 -< <- k, are
connected and called the n-palms of G associated with the join vertex set Vo.
LMA 1. ff the vertex connectivity o[a graph G V, E) is n >= 1), then X (G) <- n.
Proof. If n is infinity, the lemma is trivial. Suppose n is finite. We show that there

exists a nonnull proper subset S of E such that r/(G; S, S)=n and min (r(G. S),
r(G S)) >= n. Let Vo be a join vertex set of G. Since the connectivity of G is finite, there
are at least two join components associated with Vo, where Vol n. Let G and G’2 be
distinct join components of G. Since each of these join components contains at least one
vertex, the corresponding n-palms G (V, E) and G2 (V2, E2) both contain at
least n +1 vertices of G. Choose S=E and S =E-El _E2. Clearly, r(G. S)=
r(G E) >= n and r(G S) >= r(G E2) >= n. In addition, the members of Vo are the only
common vertices of G. E and G (E E). Thus r/(G; S, ) Vol n, and the lemma
follows. [

The other half of Theorem 1 is stated as follows.
LEMMA 2. I[ the vertex connectivity ofa graph G V, E) is n >- 1), then h (G) >-_ n.
Proof. If h (G) , it is obvious that the lemma is true. To prove the lemma for a

finite h we assume h (G) k < n. By definition, there exists a nonnull proper subset S of
E such that ,I(G;S,S)=k and min (r(G. S),r(G. S))>-k. First we shall show that
G. S and G. S are both connected.

Suppose G. S is not connected. Since r(G. S)>-k, G. S contains at least k + 1
vertices, and at least one of the vertices, say v, is not a vertex of G. S, because the
number of common vertices of G S and G. S is k. Let G (V1, El) G E be the
component of G. $ which contains v. Since G (S-E) has no vertices in common with
G and has at least one common vertex with G. $, we have ,I(G;E,E)= h <
r/ (G S, S) k, where EI=E-Ei. Furthermore, r(G. Ex)=IVI-I>-h and
r(G. E) >- r(G S) >- k > h. Hence, A (G) h < k, which is contrary to the hypothesis.
Therefore, G $ is connected. Similarly, G $ is also connected.

Both G S and G $ contain at least k + 1 vertices. Since the number of common
vertices of G. $ and G. $ is k, the deletion of the common vertices results in a
disconnected graph. However, this is impossible since G is n-connected. Therefore,
A(G) k >- n. ]

Theorem 1 is obtained from Lemmas 1 and 2. Originally, the vertex connectivity of
a graph was defined as a vertex-removal operation and possessed a strong graph-
theoretic flavor. However, Theorem 1 enables one to express this connectivity concept
in a more abstract form which can be extended to matroids. In the subsequent sections
vertex connectivity will be referred to as the Whimey connectivity of graphs, since
matroids as a generalization o graphs do not have a vertex concept.
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4. Whitney connectivity of matroids. Let M (E, C) be a matroid, and let S and S
be nonnull complementary subsets of E. Define the following function:

:(M; S, S) r(M) + r(M x $) + r(M x S) + 1.

The Whitney connectivity (or simply W-connectivity) of the matroid M, denoted by
A (M), is the least integer n for which there exists an $ c E such that

:(M; S, S) n and min (r(M x S), r(M x S)) _-> n.

If there is no such integer, we then denote A (M)= oo. (Note that the connectivity
definition of Tutte replaces the second term by min([S[, Igl)->-n.)

The function : may be written equivalently in several ways:

:(M; S, S) r(M x S)- r(M. S) + 1

-ISI + r(M x S) + r(M* S) + 1

#(M)-/x(M xS)- #(M S) + 1

=/.t(M S)-g(Mx S) + 1

[S]-/ (M S) -/ (M* S) + 1.

In the following discussion, use of the same symbol A for graphs and matroids should
not cause any confusion. The next theorem is a consequence of a series of lemmas which
follow.

THEOREM 2. If G is a connected graph, then A (G)= A (P(G)).
LEMMA 3. If G V, E) is a connected graph and S is a subset of E, then

(P(G); S,S)= n(G; S,S)-c(G S)-c(G S)+2.

Proof. By definition,
:(P(G); S, ,{) r(P(G)) + r(P(G) x S) + r(P(G) {) + 1

r(P(G) + r(P(G S)) + r(P(G S)) + 1.

Let Vs and Vg be the vertex sets of G S and G. S, respectively. Since r(P(G)) r(G),
we have

(P(G); s, s) r(G) + r(G. S) + r(G. S) +

--IVI-c(G)/IVsI-c(G S)/lvl-c(G )/ 1

-Ivl/lVsl/lvl-c(G. S)-c(O. )/2.
Since IvI- IVsl/lvl-(G; s, ), we can reduce the above equation to

(P(G); S, g)= n(G; S, g)-c(G S)-c(G g)+ 2. E]

LEMMA 4. If G (V, E) is a connected graph, then h (P(G))-< h (G).
Proof. Since the lemma is trivial for h (G) o, we assume h (G) n, where n is a

finite positive integer. For some nonnull proper subset S of E, r/(G; S, S)= n and
min (r(G S), r(G S))>= n. By Lemma 3,

:(P(G); S, S) n c(G. S)- c(G. S) + 2 <-_ n,

and min (r(P(G) S), r(P(G) S)) => n. Therefore, A (P(G)) -<_ n A (G). [:]
LEMMA 5. If G (V, E) is a connected graph, then A (P(G))_-> A (G).
Proof. If A (P(G))= oo, the lemma is obvious.
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Suppose A (P(G))= n is finite and A(G)> n. Then, by Lemma 3, there exists a
nonnull proper subset S of E such that

r/(G; S, S) <- n + c(G S) + c(G S)- 2

and r(G. S), r(G. S >-n. We choose S so that the above conditions are satisfied and
r/(G; S, S) is minimum, consistent with those conditions.

If c(G S) + c(G S) 2, then A (G) <_- n, which is contrary to the hypothesis.
Therefore, G S or G S has at least two components. In the following the notation
r/(S1, $2) denotes the numbers of common vertices of the two subgraphs G. $1 and
G. $2, where Sx and $2 are subsets of E. Using this notation we can write r/(G; S, S)
n(s,s).

Case 1. One of the components, say G. So, of G. S or G. S satisfies the
following condition" r(G So)>= rl(So, So).

Without loss of generality we may suppose that G So is a component of G S. If
rt(So, So) <-- n, then, clearly, A (G) <_- rl(So, So) <-- n since r(G So) >- r(G S) >- n. This
contradicts the hypothesis. If r/(So, So) > n, then let G So be a component of G (S-
So). Let S’ S S and S’= E S’= S (.J S. Then

n(s’, g’)= n(s, g)-n(S’o, g’o)< n(s, g),

c(O S’) c(O S)- 1,

c(G g’)>-c(G g)-n(S’o, g’o)+ 1.

Therefore

n(S’, g’) <-_ n + c(G S) + c(O
-<_n +[c(O s’)+ 1]+[c(O. g’)+n(S’o,g’o)-l]-2-n(S’o,g’o)

n +c(G. S’)+c(O. S’)-2,

r(G S’) >-- r(G S) >-_ n,

r(O. S’)=r(G. So)+r(G. (S-(S’o t_JSo)))>=r(G So)

_>- r/(So, So)- 1 _-> n.

However, this contradicts the fact that r/(S, $) is a minimum.
Case 2. For each component G So of G S and G. S, r(G So)< r/(So, So) and

r(G S)>--n + 1 or r(G S)>-_n +1.
Let G. So (Vo, So) be any component of G. S or G. S. Then

IVol r(G. So)+ 1 -< r/(So, S-o) Vol.
Therefore r/(So, S-o) IVol, and hence r/(S, g)= Ivl. Suppose r(G. $)>=n + 1, without
loss of generality. We shall show that S can be chosen so that G. $ contains no
polygons. Let $’ be a spanning forest of G S. Since the vertex set of G S is V and
G. $ contains no isolated vertices, the vertex set of G. $’ is V; that is, r/(S’, S’)=
r/(S, $). We also have

r(G $’) Is’l- r(G S) >-_ n + 1,

r(G. S’)>-_r(G S)>-_n.

Thus we can assume that G $ contains no polygons. Let e be an edge of G $ which
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has valence one at its one end in G $. Let $’ $-{e} and $’= $ t.J {e}. Then

n (S’, S’) <-_ n (S, S)- 1,

r(G S’) r(G S)- 1 >- n,

r(O. S’) _>- r(O S) >_- n.
Hence

rl(S’, S’)<n +c(G S)+c(G S)-3

<-_n +c(G S’)+[c(G S’)+ 1]-3

n +c(G. S’)+c(G. S’)-2.

This is contrary to the requirement that r/(S, S) be a minimum.
Case 3. For each component G So of G S and G S, r(G So)< r/(So, So) and

r(G. S) r(G. S) n.
By assumption

c(G. S)=c(G. g) Vl-n-->2.
Suppose the vertex set of a component G Sl of G $ properly contains the vertex set
of a component of G S. Let G T/, 1 <- <- k, be the components of G. S whose vertex
sets are properly contained in G Sl. Let S LJ .= T, S2 S Sa and S’2 S. Let
S’= S 12 S and S’ S2 [-J S’2. Then

r(G S’)>- rl(S’, S’),

r(G q’) n(&,g’)+n(s_,g’-) c(G.g’).

Since every component of G S’ contains the vertices of G Sz, we have

r(G S’) >-_ rt(S, S’) rl(S’, S’),

rl(S’, S’) <= r(G S) <- r(G S) n.

Accordingly, h (G) <_- n, contrary to the hypothesis.
If G (V, S) and Gz (V, Sz) are components of G. S and G S, respectively,

and V V, then G is not connected, which is a contradiction.
Lastly, we consider the following case" No component of G. S contains the

vertices of a component of G S, and no component of G S contains the vertices of a
component of G. S.

Let G. S and G. S be components of G. S and G. S which have common
vertices. Let S S-$1 and S’ S S. If we set S’ S [.J S and S’ Sz t_J Sz, then

r(G S’) >- rI(S’, S’),

r(G S’)= rI(S’, S’)+rI(S2, Sg.)-c(G S’).

Every component of G. S’ contains vertices of G. Sz, and every common vertex of
G S and G S is contained in a component of G S’, since otherwise the condition
of the first part of Case 3 is satisfied. Therefore rI(Sz, S’)>=c(G S)>-c(G S’),
and r(G ’)_->r/(S’,’). Since r(G S) n rI(S’, q’) + rI(S, g’t) + rI(Sz, S)-
c(G S)- 1, we have ?(S’, S’)<-n -rl(Sz, Sz)+c(G. S.)<=n. Accordingly, h (G) =< n,
contrary to the hypothesis.

Since all the cases have been examined, we conclude that h (G)<_-h (P(G)) for a
connected graph G.

Lemmas 4 and 5 establish Theorem 2.
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5. Properties of Whitney connectivity. In the following, comparisons of Whitney
connectivity and the connectivity definition of Tutte are presented, and a number of
properties of Whitney connectivity are examined.

The concept of matroid connectivity was originally introduced by Tutte [6] as a
generalization of another definition of graph connectivity. Let M (E, C) be a matroid.
The matroid connectivity AT-(M) of M as defined by Tutte (hereafter called the
T-connectivity of M) is the least integer n for which there exists a subset S c E such that
:(M; S, ) n and min (]S[, [[) >_- n. If there is no such integer, we then write AT(M)
oo. The main difference between the two definitions of connectivity are the following
constraints:

Whitney: min (r(M x S), r(M x S)) -> n,

Tutte: min ([S[, [g[)_-> n.

Since r(M x S) -< [S[ and r(M x ) -_< [[, we have Aa(M) _<- A (M) for any matroid M.
Let M= (E, C) be a matroid. Then M is n-connected if 2<_-n-<_A(M) and is

connected if A (M) _-> 2. If A (M) 1, M is said to be separable. A nonnull proper subset S
of E is an n-separator if A (M) n, (M; S, S) n and min (r(M x S), r(M x S)) >_- n. A
1-separator is also called a separator.
This terminology may also be defined in Tutte’s sense. In the above definitions,

substitute AT-(M) for A(M) and min (]SI, I1) for min (r(MS), r(M)); then the
corresponding concepts are respectively called T-n-connected, T-connected, T-separ-
able, T-n-separator and T-separator.

The following theorem provides a condition for the two definitions of separators to
be equivalent.

THEOREM 3. Let M (E, C) be a matroid containing no loops and S be a nonnull
proper subset of E. Then S is a separator of M if and only if it is a T-separator of M.

Although AT-(M)<_-A (M) is true in general, the Tutte connectivity of M is much
smaller than the Whitney connectivity in many interesting cases. Consider the polygon
matroid of the complete bipartite graph Kn.,, where n _>- 4. The Tutte connectivity of this
matroid is Ar(P(K,,,,,)) 4, while h (P(K,,,,))= n. For a complete graph K,,, n _->4, we
have hr(P(K,)) 3 and h (P(K,)) oo. A necessary and sufficient condition for A (M)
At(M) is given in the next theorem.

THEOREM 4. Let M (E, C) be a matroid of T-connectivity n, where n is finite; then
h (M) At(M) ifand only if M has a T-n-separator S such that neither S nor S contains a
base of M.

Proof. Suppose h (M)= At(M)= n. Let $ be an n-separator of M. Then

(M; S, S)= n,

min (r(M S), r(M S)) _-> n.

Since r(M x S) IS[ and r(M x g) [g[, S is a T-n-separator of M. By assumption,

or,

r(M) + r(M S) + r(M x S) + 1 _-< r(M S), r(M x S),

r(M S), r(M S) -<_ r(M)- 1.

Therefore neither S nor S contains a base of M.
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Now suppose S is a T-n-separator of M such that neither $ nor S contains a base of
M. Then

and
r(M x S), r(M x S) _-< r(M) 1,

:(M; $, $) n r(M) + r(M S) + r(M x S) + 1

<_- r(M x S), r(M x S).

Thus A (M) <- n, and hence A (M) AT(M) n since AT(M) -< A (M).
A number of additional properties of Whitney connectivity are stated in the

subsequent theorems. In [2] the class of matroids with nonfinite T-connectivity, i.e.,
AT(M) , is identified as being a subclass of binomial or k-uniform matroids. The next
theorem characterizes such matroids for Whitney connectivity.

THEOREM 5. The following statements are equivalent"
(a) A (M)
(b) For each nonnull proper subset $ of E, $ or $ contains a base of M.
(c) r(M. S)= 0 or r(M. S)= 0 for each nonnull proper subset S of E.
(d) For each cocircuit C* of M, E- C* contains no cocircuits of M.
Proof. (a)c,(b). By assumption, for each nonnull proper subset S of E,

sO(M; S, S) r(M) + r(M x S) + r(M x S) + 1

_-> r(M S) + 1 or r(M S) + 1.

The following condition is equivalent to the one above"

r(MS)_->r(M) or

Since r(M x S), r(M x S) _-< r(M), we have

(1) r(M x ) r(M) or

Accordingly, S or S contains a base of M.

of E

r(M x S) _-> r(M).

r(M x S) r(M).

If (b) is true, that is, if condition (1) holds, then for each nonnull proper subset

se(M; S, S) r(M x S) + 1 or r(M S) + 1,

and (a) follows.
(b):>(c). If r(M T) r(M), where T = E, then r(M. T) r(M) r(M T) 0.

Therefore condition (1) is equivalent to condition (2):

(2) r(M.S)=0 or r(M.S)=0.

(c): (d). Since/z (M* x T) r(M. T), for T E we have the following equix;alent
condition to (2)"

/z(M*xS)=0 or tz(M*xg)=0.

If C* is a cocircuit of M, then /.,(M* C*)= 1, and hence /x(M* *)= 0. Thus
t* E- C* contains no circuits of M*, or equivalently, no cocircuits of M.

Suppose (d) is satisfied. If a nonnull proper subset S or E contains a cocircuit of M,
then /x(M*x)=0 by assumption. If $ does not contain cocircuits of M, then
/x (M*x $)= 0. Thus, for each nonnull proper subset S of E, we have

/z(M*)=0 or /z (M* x S) 0.

Accordingly, (c) follows, l-]
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From Theorem 5 we can identify all the graphs with infinite connectivity.
COROLLARY 1. Let G be a connected graph containing neither loops nor parallel

edges. Then A(G)= oo if and only if G is a complete graph.
Proof. If G is a complete graph, clearly A(G)=oo. Suppose A(G)=oo, By

Theorem 2, A (P(G)) A (G) oo. The dual matroid of P(G) consists of all the cut-sets
of G. Let v and v’ be any distinct vertices of G, and S and $’ be the star cut-sets at v and
v’, respectively. These star cut-sets are uniquely determined for the given vertices since
G is not separable. According to Theorem 5(d), E-S contains no star cut-sets of G;
hence, S fq $’# . Consequently, v and v’ are adjacent. Since G contains no parallel
edges, S fq S’ consists of a single element. Therefore any two distinct vertices of G are
connected by one edge and consequently G is a complete graph, for G contains no
loops.

Since graph connectivity is a special case of matroid connectivity, the next theorem
is obvious.

THEOREM 6. For a given finite positive integer n, there exists a matroid M such that
A (M)= n.

The following theorem follows from Theorem 3.
THEOREM 7. Let M (E, C) be a matroid containing neither loops nor isthmuses.

Then M is connected if and only if M* is connected.
In T-connectivity the connectivity of a matroid is the same as that of the dual

matroid; i.e., AT(M)=AT(M*). However, this is not true for W-connectivity. The
W-connectivity of the polygon matroid of graph G, shown in Fig. 1, is two; however, the
W-connectivity of the bond matroid of G, which is the polygon matroid of G* shown in
Fig. 2, is arbitrarily high. Two sufficient conditions for A (M)_-> A (M*) may be stated in
terms of circuits and cocircuits.

FIG. 1. Graph G.

FIG 2. Graph G*.

In graph theory it is a well-known fact that for a graph G with connectivity n, the
number of edges of every cut-set of G is at least n, and in particular the valence of every
vertex of G is at least n. The following lemma is a matroid generalization of this
property.

LEMMA 6. Let M (E, C) be a matroid and M* (E, C*) be its dual. ffA (M) n is
finite, then r(M) _-> n + 1, and r(M C*) >- n for each C* C*.
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Proof. By hypothesis, there exists a nonnull proper subset $ of E such that

s(M; S, S) r(M) + r(M x S) + r(M x S) + 1 n,

min (r(M x S), r(M x S)) _-> n.
Then

r(M) r(M x S) + r(M S) + 1 n

>-_n+n+l-n=n+l.

The second part of the lemma is obtained by using the first part. Suppose there
exists a cocircuit C* of M such that r(MxC*)<-n-1. Since r(Mx*)=
r(M) r(M. C*) r(M) -/x (M* x C*) r(M) 1, we have

sO(M; C*, t*) r(M C*) -< n 1.

From the first part of this lemma

r(M x *) r(M) -/x (M* x C*) _>- n + 1 1 n.

Therefore A (M) <= n 1, contrary to the hypothesis. Accordingly, r(M x C*) _>- n for
each C* C*. ]

THEOREM 8. Let M (E, C) be a matroid of W-connectivity n, where n is finite, and
M* (E, C*) be its dual. The following are then true"

(a) If minc.c. IC*I -> n + 1, then A (M*) <_- n.
(b) ff mincc ICI-<- n 1 and I (M) >- n, then A (M*) <_- n 1.
Proof. (a) Since A (M) n, there exists a nonnull proper subset S of E such that

(M;S,S)=n,

min (r(M S), r(M x S)) _-> n.

If $ contains a circuit of M*, then

r(M* x S) >_- min IC*I- 1 => n.
C*C*

Suppose S does not contain circuits of M*. Then

r(M* x S) ISI--> r(M x S) _-> n.

In both cases we have r(M* x S) _-> n. Similarly, r(M* ) _-> n for every nonnull subset S
of E. Accordingly, A (M*) <_- n.

(b) Let C be a circuit of M satisfying ICI-<-n 1. Then

s(M; C, ) ICI-/x (M C) -/x (M* C) + 1

-Icl- t, (M* C).

By Lemma 6 {C*] >-n for every member of C*, and C does not contain circuits of M*.
Hence

:(M; C, t).= ICI and r(M* x C)= ICI.
We also have

Therefore A(M*) _<-ICI-<- n 1.

r(M* ) =/x (M. ) =/x (M) -/x (M C)

=/x(M)- l=>n- 1

-->lcI.
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A special case of this theorem is the next graph theorem.
COROLLARY 2. Let G V, E) be a planar connected graph of W-connectivity n,

where n is finite, and G* be its dual. We then have:
(a) If the minimum cardinality of the cut-sets ofG is greater than n, the connectivity

of G* is at most n.
(b) Ifthe minimum cardinality ofthe polygons ofG is less than n and IEI- VI / -->

n, then the connectivity of G* is at most n 1.
In the following theorem we will give a simple sufficient condition for A (M)=

X (M*).
THEOREM 9. Let M (17, C) be a matroid and M* (17, C*) be its dual. If

min IcI min Ic*l n,
CC C*C*

and r(M), (M) _-> n + 1, then A (M) A (M*) <_- n.

Proof. Step 1. We prove A (M), A (M*)_<-n. Suppose C* is a circuit of M* such that
[C*I n. Then

se(M; C*, *) Ic*l- , (M C*)-/z (M* C*) + 1

However,

r(M x C*) -_< Ic*l n.

r(M x t*) r(M)- r(M. C*)

r(M) -/z (M* x C*) r(M) 1 -> n.

Thus A (M) _-< n. Similarly, we can show A (M*) <_- n.
Step 2. We prove X (M) X (M*).
We assume that A (M) k and A (M*) k*, where k, k* <- n, as shown above. Let S

and S* be the collections of k-separators of M and k*-separators of M*, respectively"

s {(s, g)l(M; S, g) k and r(M x S), r(M x g) _-> k}.

s* {(s*, g*)I(M*; S*, g*) k* and r(M* x S), r(M* x g*) => k*}.
If $ f’)S* is not null, then there exists ($’,) $ f’)$* and

k :(M; $, g)= (M*; $, ,{)= k*.

Accordingly, A (m) A (M*).
Suppose S CIS*= . Then, if (S, ) is a member of S, r(M*xS)<-k -1 or

r(M* x ,) _-< k 1. Without loss of generality, we assume r(M* x S) _<- k 1. Then we
have the following equality:

/.t (M x $) (M; S, S) +/z (M. S) + 1

=-k + r(M* x S)+ 1 _-<-k +(k-1)+ 1

=0
and similarly

/z(M* x S) -(M*; S, g) +/z(M* S)+ 1

-k+r(Mx$)+l

=1.

Therefore $ contains no circuits of M; however, it contains a circuit of M*. Let C* be a
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circuit of M* contained in S. Since r(M* x $) _-> r(M* x C*), we have

(M; S, S) k =/z (M. S) -/x (M x S) + 1

=/z (M. S) + 1 r(M* x S) + 1

-> r(M* x C*)+ 1 Ic*l min Ic*l n.
C*C*

Consequently, A (M) k n -_> A (M*).
Since S* is not null, we now choose (S*, *) S*. Repeating a similar discussion to

the above, we obtain A (M*)= k*= n. Therefore A (M)= A (M*)= n, and the proof is
complete. [3

In the next corollary we state the corresponding graph theorem.
COROLLARY 3. LetG V, E) be a planarconnected graph and let VI >= n + 2 and

IEI-->IVI + n, the minimum cardinality of the polygons of G is n, which is also the
minimum cardinality of the cut-sets, then the connectivity of G is equal to that of a dual
graph G*.

Proof. Since G is connected, we have

r(G) [VI- 1 >- n + I,

lz(G) lEl- r(G) >- n + I.

The corollary follows from Theorem 9. [-!

A number of properties of Whitney connectivity of matroids have been explored in
this section. The authors strongly believe that other theorems on vertex connectivity
may be generalized to matroids. Previously, the connectivity definition of Tutte was
used in generalizing graph theorems to matroids: for instance, Menger’s theorem for
matroids [5], matroid decomposition and graph-realizability of matroids [1], [3]. We
may also attempt to state these and other theorems in terms of Whitney connectivity. In
addition, those theorems on Tutte connectivity which are based only on the connectivity
function will also apply to Whitney connectivity. For example, since A(M)-<
max (M; $, $) for a matroid o finite connectivity, a trivial upper bound on the
connectivity is given by min (r(M)+ 1,/z(M) + 1). We have also found the maximum
value of in terms of the distance between maximally distant bases, a concept useful for
many other applications. IfB and B2 are bases of M, then the distance between them is
defined by IB-B21. A pair of bases which have the maximum distance are called
maximally distant bases. If we let B and B2 be a pair of maximally distant bases and
define do IBx-B21, where do may be easily computed, then we have shown [2]

max (M; S, S) do + 1.
S_E

Thus the connectivity is never greater than do + 1.
We conclude with the statement of an unsolved problem related to the connectivity

function :. Let B be a base of a matroid M and B its complement. The following
question arises in applications" what is the minimum value of r(M x/) for all the bases
B of M? Since (M; B, B) r(M x B) + 1, this problem is equivalent to finding the value
of mins:base (M; $, $). The corresponding graph theory problem is called the central
tree problem: given any graph G, what is the minimum rank of spanning roses (cotrees)
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of G? This problem is unsolved, and at present there exists no efficient algorithm for
finding a spanning tree that satisfies the above condition.
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SOME CONSTRUCTIONS FOR CONVOLUTIONAL AND BLOCK CODES*

PIERRE A. VON KAENELt

Abstract. A new construction for a class of linear block codes and an extension of the construction to a
class of convolutional codes are presented. Lower and upper bounds on the minimum distance and free
distance for the constructed codes are determined. In the case of the convolutional codes, a criterion for
constructing a noncatastrophic encoder is given.

1. Introduction. The main result of this paper is presented in 3 and consists of
the construction of noncatastrophic encoders of the form N(D)= N1 +N2D which
generate a new class of convolutional codes of block length two. Lower and upper
bounds on the free distance of these codes are also determined. The block codes defined
as the row space of [N1N2] have been analyzed, and, because a number of good binary
block codes have been found, a general construction for these codes is presented in 2.

2. A class of linear block codes. Let Gi be an ai n matrix over GF(2) having rank

ai (i--1, 2), where a2> 1, and let Ci be its row space. Choose T, an a2 a2 non-
singular matrix over GF(2) with the property that uT = u holds for all nonzero binary
a2-tuples u. For example, T may be chosen as the companion matrix of a primitive
polynomial of degree a2 over GF(2).

Construction K1. Let C denote the (2n, al + a2) code defined as the row space of
M, where

M [M1, ME],

and

(That M has dimension al + a2 is a consequence of Theorem 1.)
If C1 and C2 are cyclic codes, and C2 is not generated by the all one vector, then C is

a quasicyclic code.
Bounds on d(C), the minimum distance of a code derived from construction

are next determined as a function of the minimum distances d(C1) and d(C2).
THEOREM 1. The minimum distance d(C) satisfies

min {2d(C1), d(C2)} <_- d(C) <- 2d(C1).

Proof. The minimum distance of C is determined by considering the weight of
codeword xM, where x (x l, xE) and xi is a row ai-tuple.

Case 1. x 0, xE 0. Then w(xM) >= 2d (C1), where equality holds for the proper
choice of xl.

Case 2. xE O. Then

w(xM) w(xM1) + w(xME)

>= w(x(M1 + ME))
w(x.(G. + TGE))

>-d(C).

* Received by the editors July 25, 1978 and in revised form October 2, 1980.

" Department of Mathematics and Computer Science, University of Nebraska at Omaha, Omaha,
Nebraska 68101.
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The parameters n and k of binary linear codes that have good minimum distance
are listed in the Appendix.

3. A class o| convolutionai codes.
3.1. Definitions and construction. The following construction is an extension of K1

to convolutional codes of length two. Unfortunately, designing these codes with good
distance properties is more complex than designing good block codes. As a result the
block codes C1 and C2 used to generate the convolutional codes cannot be chosen
arbitrarily as in construction K1.

Let P be an n x n nonsingular matrix, and choose M1, an (a + a2) n matrix of
rank (al -[- a2), satisfying the following conditions:

1. If B and BP denote the row spaces ofM and M1P, respectively, then B BP.
2.

MI=
G2

where Gi is an aixn matrix of rank a (i=1,2) and Gx generates BBP. If
B CI BP {0}, G is chosen to generate any proper subspace of B.

Denote by C1, C2 and CPh the row spaces of Gx, (2 and GIPh (h an integer),
respectively. Next define T, an a2 a2 nonsingular matrix over GF(2) satisfying

(i) uTu,

and, if B BP {0},

(ii) uTG2 CP- ::), U(2 . CIP-1,
for all nonzero binary a2-tuples u. Finally we define matrix M2 so that

Construction K. Let C denote the convolutional code generated by
M(D) M + (MP)D.

Implementing K may appear difficult, since the matrices P, G, G and T are
interrelated, especially when B fl BP {0}. Furthermore, the resulting encoder, M(D),
may even be catastrophic. This occurs when an infinite information sequence yields a
finite codeword. We address these difficulties and then determine bounds on the free
distance of C in the next two subsections.

3.2. Noncatastrophic encoders. The following theorem gives a criterion for a
noncatastrophic encoder.

THEOREM 2. Let Co be the convolutional codes defined above. M(D is a noncatas-
trophic encoder if and only if

N
fq CIPh {0} ]’or some N <
h=0

Proof. The theorem is a consequence of the discussion found in [2, 3]. We need
only consider the case B f’)BP {0}. If M(D) is catastrophic, then there exists an
infinite sequence of nonzero (a + a2)-tuples u that satisfy uM2P+ u/M =0 for all

_-> 0. Since B BP C, then

(1) uiMx, uiM2P C, > O.
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Assume that
i--1

(2) uiM1E I"l C1Ph,
h=0

holds. Then uM uM., and from (1) we have

which implies

i>0

uiM2P 1") C1Ph,
h=O

Ui+lMl C1Ph

h=O

for the nonzero n-tuple Ui+lM1. However, (2) holds for 1; hence by induction we
conclude that, for any N <

N

1") C1Ph {0}.
h=O

Conversely, if f") h=O C1Ph E {0}, then uiM E ::> uiM2 E =)> uiM2P E for
nonzero n-tuples uiM, uiM2 and uM2P. Given uiM2P E, there exists u/ such that
uiM2P + ui+M1 0. This construction implies M(D) is catastrophic.

3.3. Cyclic convolutional codes. If B and BP are equivalent cyclic codes which do
not contain the all one vector, then Co is a generalization of a cyclic convolutional code
(CCC). The algebraic structure of these codes can be used to choose G, G2, and T
without too much difficulty.

A binary CCC [3] is a code generated by sequences in the form

m-1

g(X, D)= Y’. D e(X’)[f(x")]’ mod (X" 1)
j=0

where e(x) is the idempotent generator of an irreducible (n, k, d) cyclic block code,
whose parity-check polynomial is h (X), and where f(X) is a primitive polynomial for
the field of polynomials modulo h(X). The convention b(])= oo is used when the
coefficient of D is 0. Also, (mn)= 1, (n, 2)= 1, r 1 and b(0)c. These con-
volutional codes appear to have as rich an algebraic structure as cyclic block codes;
however, little has been done in devising algebraic constructions for these codes.

Since e(X) and e(X) generate equivalent cyclic codes, construction K2 may
be applied to generate encoders of length 2 as follows. First choose a set of
distinct primitive idempotent polynomials E={ei(X)[i=l,...,m} for which

CIY=o {ei(X"’)li 1,. ., m} f for some N < oo. If B is the cyclic code generated by
E, and matrix P defines the automorphism : f(X)-->f(X"), then C is the code
generated by E f’) EP(EP {e(X")[i 1,.. , m}) and C2 is generated by E EP. The
resulting encoder M(D) is noncatastrophic by Theorem 2. For the case B f"l BP ,
matrix T can be constructed as follows: Let

G2= G’
where G is a generator matrix of CP- f-I C2 (the intersection is nonzero, otherwise
the encoder is catastrophic). G can easily be constructed by using those polynomials
e(x-l)(e(x)EfqEP)whicharecontainedinE-EP. Ifa2 istherankof 2, i=1,2,
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let T be an a2 )< a 2 nonsingular matrix with the property that ui # HiT/for all nonzero
a-tuples ui. Then let

3.4. Bounds on d(Co). We now determine bounds on the free distance of Co
given in terms of the minimum distances of the block codes C1, C2, B and B + BP.

LEMMA 1. Matrix T defined in construction K2 satisfies
uM2 E C1P-1 ::> uM CIP-for all nonzero (al + a2)-tuples u.

Proof. Let u =(u, U2) for artuple Hi. Then if uM2=UtGl+U2TG2 CIP- and
uM1 UlGI+ UEG2, the lemma now follows from condition (ii) of the definition of
T. U

THEOREM 3. ffM(D) is a noncatastrophic encoder, and dr denotes the free distance
of Co, then

min {2d(C), d (C2), 2d(B)+ d(B + BP)} <= dr <= 2d(C).

Proof. We consider the weight w(z) of a finite codeword

z uoM + ’. [ui-MEP + uiM1]D + UrMEPDr+,
i=1

where ui is an (al + aE)-tuple.
Case 1.

z uiMxD + UiMEPD i+1 for ui # O.

Since M2 and M2P generate equivalent block codes, we have, from Theorem 1,
min {2d(C1), d(C2)} _-< w(z) <- 2d(C1).

Case 2.

j+k

z uMD + , [ui-IM2P + uiM1]D + Ui+kM2PDj+k+l,
=/’+1

where k > O, ui, u]+k # 0 and ui-iM2P + uiM1 # 0 for some i, ] + 1 <-- <= ] + k. Then
w(z)>-_d(B)+d(B +BP)+d(B).

Case 3.

Z uiMID + Ui+kM2PDi+k+l for k > 0 and ui, U.i+k # O.

This case exists only if B BP # . Then Ui+kM . CI and uiM2P C hold, implying
Ui+kMEP.C1P and UiMEECP-. By Lemma 1, ujMxCIP-. Hence w(z)-
w(UiMl) + w(ui+kMEP) >- 2d(C1). []

3.5. Examples. In the following examples, gi(x) represents the irreducible factor
of x"- 1 whose roots are (a i)2k, k 0, 1, ., where a is a primitive nth root of unity.
The cyclic code generated by a polynomial f(x) is denoted If(x)],

Example 1. Let n 31 and zr 3. Let B =[go(x)gl(x)ga(x)], a (31, 20, 6) code.
Then BP [go(xa)gl(xa)ga(x3)] [go(x)g11(x)g(x)]. C1 [go(x)gl(x)ga(x)g(x)], a
(31, 15, 8) code. C2 [go(x)g(x)ga(x)gs(x)g7(x)g15(x)], a (35; 5, 16) irreducible code.
B+BP=[go(x)g(x)], a (35,25,4)code. If matrix G generates CI=BfqBP, then
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I"]=o C1Ph "-{0}; hence construction K2 yields a noncatastrophic encoder which
generates (by Theorem 3) a (31, 20) CCC with dr 16.

Example 2. Let n =51 and zr=5. Let B=[go(x)ga(x)g9(x)g17(x)], a (51, 32, 6)
code. Then BP [go(x)g3(x)g11(x)gaT(X)], Ca [gO(X)gl(x)g3(x)g9(x)gll(X)gl7(X)], a
(51, 16, 16) code, C2=[go(x)gl(x)gs(x)g9(x)g7(x)gx9(x)], a (51, 16, 14) code, and
B +BP [go(x)gx7(x)] and has minimum distance at least 2. Since f3 h=O,...,3flPh {0},
we have a noncatastrophic encoder generating a (51, 32) CCC with 14 <- dr 32.

Appendix. Table 1 lists the parameters of binary linear codes derived by con-
struction Kx whose lower bounds on the minimum distance d equal and whose upper
bounds exceed those of the best known binary linear codes listed in [1 ]. For (d) a pair of
numbers is given. The first number indicates the lower bound on d determined by
Theorem 1 which equals the best known d. The second number denotes either the upper
bound (from Theorem 1) or the known upper bound on d for any linear (n, k) code
(indicated by an asterisk), whichever is smaller. Included in the table is a (98, 31) code
with d 23 or 24 which improves the best known (98, 31, 22) code in [1]. There exist
many other codes derived from K1 whose minimum distances equal the best known.

TABLE
Linear codes from

n k (d) n k (d) n k (d)

24 15 4-5* 80 61 6-8 98 85 4-5*
26 17 4-5* 80 67 4-6 100 32 23-24
28 19 4-5* 82 69 4-6 100 80 6-8
32 18 6-8 84 64 6-8 100 87 4-5*
40 29 4-6 84 71 4-6 102 82 6-8
42 31 4-6 86 46 12-14 102 89 4-5*
44 33 4-5* 86 66 6-8 104 84 6-8
46 16 12-14 86 73 4-6 104 91 4-5*
46 25 8-10 88 48 12-14 106 86 6-8
46 35 4-5* 88 68 6-8 106 93 4-5*
48 26 8-11" 88 75 4-6 108 88 6-8
48 32 6-8 90 50 12-14 108 95 4-5*
48 37 4-5* 90 70 6-8 110 90 6-8
50 39 4-5* 90 77 4-6 110 97 4-5*
52 41 4-5* 92 52 12-14 112 92 6-8
54 43 4-5* 92 72 6-8 112 99 4-5*
56 45 4-5* 92 79 4-5* 114 94 6-8
58 47 4-5* 94 54 12-14 114 101 4-5*
60 49 4-5* 94 74 6-8 116 96 6-8
62 51 4-5* 94 81 4-5* 116 103 4-5*
72 53 6-8 96 31 22-24 118 98 6-8
74 55 6-8 96 76 6-8 118 105 4-5*
74 61 4-6 96 83 4-5* 120 100 6-8
76 57 6-8 98 19 28-30 120 107 4-5*
76 63 4-6 98 31 23-24 122 102 6-8
78 59 6-8 98 32 22-24 122 109 4-5*
78 65 4-6 98 78 6-8 124 104 6-8

124 111 4-5*
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MAXIMUM SEMIORDERS IN INTERVAL ORDERS*

PETER C. FISHBURN"

Abstract. Let s(n) be the largest integer such that every n-point interval order includes an s(n)-point
semiorder. Equivalently, s(n) is the largest integer such that every n-point interval graph includes an
s(n)-point unit interval graph. Although s(n 1)= s(n)= n/2 + for even n from 4 to 14, this pattern does
not persist since s(17)=9. In addition, s(n)>n/log2 n for n>=3, and s(n)/n-,O. It is conjectured that
s(n) (log2 n)/n c for some c in [1, 3].

1. Introduction. Throughout this paper we shall assume that < is an asymmetric
and transitive binary relation on a nonempty finite set X, with symmetric complement, so that x y iff neither x < y nor y -< x. A chain in (X, <) is a subset of X linearly
ordered by <, and an antichain in (X, < is a subset of X whose points all stand in the
relation to one another. We shall say that < on X, or (X, < ), is an interval order if

Vx, y, z, w X: (x < y and z < w)::> (x < w or z < y),

and a semiorder if it is an interval order such that

Vx, y, z, w X: (x < y and y < z) =), (x < w or w < z).

The latter property is sometimes referred to as semitransitivity [2].
Semiorder and interval order specializations of partial orders were introduced,

respectively, by Luce [10] and Fishburn [3], [4], and have been examined extensively by
others [1], [7], [8], [12], [15], [16], [17], [18], [19]. The present paper considers a
question that is not unlike the question of the largest integer t(n) such that every
tournament on n points includes a transitive subtournament on at least t(n) points [11 ],
[13]. In particular, we shall consider the largest integer s(n) such that every interval
order on n points includes a semiorder (semitransitive interval order) on at least
s(n) points. Formally, s(n) is the largest integer such that, for every interval order
(X, <) with IXl-’n, there exists a semiorder (X*, <*) such that X*_X,
<*= < f3 (X* xX*) and IX*l >-_ s (n ).

A graph-theoretic description of s that does not refer directly to transitivity can be
developed through the following representation theorem. Let # be the set of all
nondegenerate closed real intervals that have finite lengths.

TI-IEOREM 1. ([4], [16], [17]). (X, <) is an interval order,iff there is a mapping I:
X such that

Vx, yX: x<y iff supI(x)<infI(y);

and, when this representation holds, (X, < is a semiorder iff no I(x) intersects each of
three pairwise disjoint!(y). Moreov. er, (X, < is a semiorder iffthere is such a mapping]’or
which all intervals have unit length.

When (X, < is an interval order, we shall say that a four-point subset ofX (or the
interval configuration for these four points) is a O-set iff three of the four points form a
chain and the fourth point stands in the relation to the other three. By Theorem 1 and
our earlier definitions, an interval order is a semiorder if it includes no O-set, and s(n) is
the largest integer such that every interval order on n points includes an s(n)-point
subset that includes no O-set.

* Received by the editors July 11, 1980, and in final form October 15, 1980.
f Bell Telephone Laboratories, Murray Hill, New Jersey 07974.
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In terms of graphs, we shall set aside the usual convention and consider graphs that
contain all loops, since this is convenient with respect to -. With this modification, we
shall say that (X, -) is an interval graph [5], [6], [9] iff there exists I :X such that

Vx, yX: x.y iff I(x)I(y),

and that (X, ---) is a unit interval graph [14] if there is such an I for which all intervals
have unit length. By Theorem 1, (X, is an interval graph when (X, < is an interval
order, and (X, is a unit interval graph when (X, < is a semiorder. When (X, is an
interval graph (unit interval graph), there may be several interval orders (semiorders)
(X, <) for which is the symmetric complement of <.

This brings us to the alternative description of s alluded to above: s (n) is the largest
integer such that every n-point interval graph includes an s(n)-point unit interval
graph. Alternatively, every n-point interval graph includes an s(n)-point induced
subgraph that does not include any K13 subgraph [14] (with loops), and s(n) is the
largest integer for which this is true.

Clearly, s(n) n for n <- 3. For even n from 4 to 14, we argue that s(n 1) s(n)
n/2 + 1. If this pattern persisted then it would give s(17) 10, but in fact we shall see
that s(17)=9. Since s cannot decrease in n, s(15) and s(16) are in {8, 9}. It has been
determined that s(15) s(16) 9, but my proof of this is long and will not be given here.

As n increases, it appears that the rate of increase of s diminishes gradually. We
shall prove that s(n)-o while s(n)/n 0 as n c. In particular, we shall prove that
s(n) > n/log2 n for n => 3, while

s(2k(k + 4)) =< 3(2k) for k 0, 1,. .
It follows from the latter result that s(n)<7n/log2 n for all n _->2, and that s(n)
(log2 n)/n for n {2k(k +4)" k =0, 1,... } cannot converge to a value exceeding 3 as
n -oo. Hence, it is tempting to conjecture that s(n)(log2 n)/n -c for some c [1, 3],
but this remains open.

Two simple observations will be used without special mention in the proofs of the
foregoing results. First, the largest semiorder included in an interval order must contain
at least as many points as are contained in any two disjoint antichains. (A Q-set cannot
be formed from the points in two antichains.) Second, if X1," ’, Xr are subsets of X
for which X "Xi+ (i.e., xi.xi+l for all xiXi and Xi+l.Xi+l) for 1,..., N-l,
then the largest semiorder in the interval order (X, <) must contain at least Ei s’(Xi)
points, where s’(Xi) is the largest semiorder in X/.

2. Small n. Our first result gives an upper bound on s that turns out to be tight for
small n, but only for small n.

LEMMA 1. S (n 1) s (n) --< n/2 + 1 for even n >-- 4.
Proof. For even n->_4, let An be an n-point interval order consisting of an

(n/2 + 1)-point chain plus n/2-1 points that bear to each other and to every point in
the chain. (A4 is a Q-set.) This is pictured in Fig. l(a), where intervals are arranged
vertically as well as horizontally for visual convenience. In the figure, x < y iff I(x) lies
wholly to the left of I(y), and the integer written immediately above an interval is the
number of points in X that are mapped into that interval.

The largest semiorders in An are clearly the (n/2 + 1)-point chain and the (n/2 + 1)
points in two antichains that include the n/2-1 points for the long interval along with
two points in the chain. Hence s(n) <= n/2 + 1 according to the definition of s(n). Since s
does not decrease in n,s(n-1)<-s(n). [3
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Similar reasoning based on Figs. l(b) through l(d) shows that s(17) <-_ 9, s(19) -< 10
and s(21)_-< 11. The dashed lines in these figures identify two disjoint antichains that
maximize the number of points in two antichains of the illustrated interval orders.

THEOREM 2. s(n 1)= s(n) n/2 + 1 for even n from 4 to 14 inclusive.
Proof. In view of Lemma 1, it suffices to show that s(m)>-(m + 3)/2 for odd m

from 3 to 13. Clearly s(3) 3, and I shall leave the proofs for m 5, 7, 9 to the reader.
To prove that s(ll)->7, let (X, <)=({al , a11}, <) be a generic eleven-point

interval order with interval assignment I as in Theorem 1. With Ii I(ai), I- inf Ii
and I =sup Ii, arrange subscripts so that I-_-<I] =<... =<I-1. Suppose first that
1 <I for at least three <_- 6. Then, since all I for _-> 7 begin after these three or more
end, (X, < must include a semiorder with at least s(3) + s(5) 3 + 4 7 points.

Suppose next that I <I for two or fewer i-< 6. Then at least five points in
{al," ", aT}, including aT, form an antichain. If {as," ", a11} includes a two-point
antichain, then we have two disjoint antichains with at least seven points. Assume
henceforth that {as, , a11} does not include a two-point antichain, so that it gives the
four-point chain as<a9< alo<a11. Then, if I <I (i.e., a <as) for three or more
=< 7, we obtain a semiorder with at least s(3)+ 4 7 points. Otherwise, if fewer than

three I are less than I, then {a 1, , a8} includes an antichain with at least six points.
Such an antichain, plus any other point, gives a semiorder with at least seven points.
This completes the proof that s(11)-> 7.

Henceforth, let ({a 1, , a13}, < be a 13-point interval order with I- -<. -< I-3.
We consider four exhaustive cases as follows to prove that s(13)-> 8.

Case 1. I <I for at least five = 7. Then there is a semiorder with at least
s(5) + s(6) 8 points.

Case 2. I <I for two or fewer =< 7. Then {a 1," , as} includes a six-point
antichain. If {a9," ’, a13} has a two-point antichain then we are done, so suppose
henceforth that a9 through al form a five-point chain. It’ 1 <1 for three or more
i---8, we get a semiorder with at least s(3)+ 5 =8 points; if I <I for less than
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three -< 8, then {a 1, ’, ag} includes a seven-point antichain and hence an eight-point
semiorder.

Case 3. I- <I for exactly three =< 7, so that {a 1," , as} includes a five-point
antichain that contains as. In this case we shall assume that there is no eight-point
semiorder and derive a contradiction. Thus, assume henceforth that {a9,’", a13}
includes no three-point antichain. Assume also that I <I for at most four =< 8, since
otherwise we get a semiorder with at least s(5)+ s(5)= 8 points.

Suppose that exactly three i-<8 have I-<I. Then {a1,’", a9} includes a
six-point antichain. Hence, to preclude an eight-point semiorder, we require a lo <
all< a12 -< ala. Given this four-point chain: if I < I]-o for at least five -<_ 9, we get a
semiorder with at least s(5) + 4 8 points; if fewer than four -<_ 9 have I- < I-o, then
{a 1, ’, a 10} includes a seven-point antichain and hence an eight-point semiorder; and
if exactly four -<_ 9 have I < I-o, then {a 1, , a 10} includes a six-point antichain, so
that the four a with I < I]-0 must form a chain to prevent an eight-point semiorder, in
which case these four a plus a 10 through a 13 form an eight-point chain.

Hence, if there is no eight-point semiorder, exactly four -< 8 have I <I. These
four consist of the set A of the three -<_ 7 for which I <I, plus another a with -< 7,
which we denote as ai. (If the fourth point were as then A 13 {as} would be a semiorder,
which along with a four-point semiorder from {a9, , a 13} would yield an eight-point
semiorder overall.) Let B {a 1," ", a7}\(A (3{ai}) comprise the other three points
from {a 1, , aT}, each of which bears the relationship to a8 and a9. To prevent an
eight-point semiorder, it is easily seen that A (3 {ai} must be a Q-set, and all three points
in B must bear to a point in A, say ak, whose interval extends farthest right. Hence
B LJ{ai, ak} is a five-point antichain, which requires that there be no three-point
antichain in {as, a9," , a13}. Fig. 2 indicates the interval picture that applies at this
time in our analysis of Case 3.

other two no three-point
I for A antichoin for

18through 113
I9Ij ,Ik and the other

two I for A form o
Q-set =Iloto Ii3

I’s for B

FIG. 2

With respect to Fig. 2, suppose first thatI < 11-o, or a9 < a10. If {a 10, , a 13} form
a Q-set, then Is can intersect at most 110 of 110 through I13, and we get an eight-point
semiorder forA U{a8, a9} I..J {a11, a12, a13}; if {alo, , a13} does not form a Q-set, then
A LJ {a9} LJ {a10,. a13} forms an eight-point semiorder. Suppose next that a9 a10,

so that 19 and I10 intersect. Then Is must end before 110 begins" if a9 all then alo < all
and A 13 {as, a 10, a 11, a 12, a 13} yields an eight-point semiorder; if a9-< a 11 then A 1.3 {as,
ag, a11, a12, a 13} forms an eight-point semiorder. Since this exhausts the possibilities,
there must in fact be an eight-point semiorder in ({al,. "., a 13}, < ).

Case 4. I < I- for exactly four _-< 7. Let C be these four ai, and D {a l, ,
aT}\C. If C is not a Q-set, then C plus four from {as,’", a13} gives an eight-point
semiorder. Assume henceforth that C is a Q-set, with ay and ak its points whose
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intervals extend farthest to the right. If at least one point in D does not bear to both aj
and ak, then this point, along with a8 through a13, has a five-point semiorder (since
s(7) 5), which combines with a three-point semiorder from C to yield an eight-point
semiorder. Assume that all three points in D bear to both aj and ak, SO that these five
points form an antichain. Then, if {as, , a 13} includes a three-point antichain, we get
an eight-point semiorder. Otherwise, a picture similar to Fig. 2 applies, and an
argument like that used in the preceding paragraph shows that there must be an
eight-point semiorder. I-1

Our next result shows that the pattern set in Theorem 2 breaks down by n 17.
THEOREM 3. S(17) 9.
Proof. Since s(17) -< 9 by Fig. 1 (b), we need only show that s(17) -> 9. Proceeding as

in the proof of Theorem 2 with I- -<. =< I-7, let k be the number of -< 8 for which
I- < I. If k -> 3, then a three-point semiorder from these k plus a six-point semiorder
from {a9, a 17} yields a nine-point semiorder overall. If k =< 1, then {a 1, , a9} is a
semiorder (one or two antichains). If k 2, then {a1,’’’, a9} includes a seven-point
antichain. Then, if {alo, ", a17} includes a two-point antichain, we are done. Other-
wise, {al0," ", a17} forms an eight-point chain, which along with the special k 2
elements from {al,. "’, as} yields a ten-point semiorder. [3

3. Large n. Our next result gives a lower bound on s which shows that s(n) is
unbounded. We then consider upper bounds.

THEOREM 4. s(n) > n/log n, for all n >-3.
Remark. Here and later, all logarithms are to base 2.
Proof. By Theorem 2, the inequality on s(n) in Theorem 4 holds for small n. For

larger n, we shall presume that the result holds for n’ < n and prove that every interval
order on n points includes a semiorder on at least n/log n points. Throughout the proof,
h (r) r/log r for real r > 0, and g(r) is the smallest integer as great as h (r).

Let (X, <) be an interval order on n points, with interval representation I as in
Theorem 1. If (X, <) includes two antichains with at least g(n) points, then we are
done. Assume henceforth that no two antichains have more than g(n)- 1 points.

For each real r, let

fl(r) I{x" sup I(x) < r}l,
fz(r) I{x" inf I(x) > r}l,

let ri be an r that minimizes fi(r) subject to

fi(r) >-
n+2-2g(n)

and let ni =f(ri) for 1, 2. The last jump in fl(r) before rl (as r increases) and the last
jump in f2(r) before r2 (as r decreases), cannot involve more than g(n)- 1 points by the
two-antichains restriction. Therefore

2[n 2 2g(n)] 2n + 1 g(n)
nl+n2< +g(n)- 1

3 3

Let n3 be the number of points in X whose intervals lie strictly between rl and r2. Since
no more than g(n)-I points have intervals that contain rl or r2, nl+n2+n3 >-
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n + 1- g(n), and therefore

n3n + 1-g(n)-(nl + n2)

>n+l-g(n)-
2n+l-g(n)

n+2-2g(n)

Thus (X, <) includes a semiorder on at least g(nl)+ g(n2)+ g(n3) points, with

n+2-2g(n)
ni -> for 1, 2, 3,

3

nx + n2+ n3 >-_n + 1-g(n).

By definition, g(ni) >- . h (ni). Since h (r) is concave increasing for r > 4, , h (ni) is
minimized subject to the constraints on n, when n and nz are made as small as possible
and n3 n + 1-g(n)-(nx + nz). Since -g(n)>-(n/log n + 1),

n ) 2n
+1 nn + 2- 2 ,og logn n

ni >=
3 3

for i= 1, 2, and n3>-_n+l-(n/logn+l)-(n+n2). This lower bound on n3 equals
[n +n/log n]/3 when n= n2=[n -2n/log n]/3. It follows that

2n n
n n+

.h(n,)>=2h( lgn) ( lg n,.).+h..
3 3

Hence, if the right-hand side of this inequality is greater than h(n), then g(n)>
n/log n and the proof is complete.

Thus, it remains to show that

2(n 2n/log n)

log ( n 2n/lg n)3

(n + n/log n)
3

lg( n+n/lOgn’)3
n

log n

say, for n 32, since our previous analysis shows that Theorem 4 is true for smaller
values of n. After cancellation and rearrangement, the preceding inequality can be
expressed as

3 (log 3-1) log n +(log n) log
(log n)-[(log n -2 log n -4]

(> 3 (log 3 1) log 3 + (3 log 3 + 1)log 2)\log n
1 logn 4)]-[log (1 +iog n,)][3 log (log n_2-)+(3 log 3-

For n -> 32, the left-hand side exceeds its first term and the right-hand side is less than



MAXIMUM SEMIORDERS IN INTERVAL ORDERS 133

the sum of its first two terms. Therefore the inequality holds if

3 log 3 + 1
log n > log 3 +

3 (log 3-1)
( l_o_g nlog
\log n -2)"

This is true when n 32 and, since its left-hand side increases in n while its right-hand
side decreases in n, it is true for .all n => 32. I-1

We now develop an upper bound on s(n) that is considerably sharper than the
bound in Lemma 1, for large n. This is done by constructing a symmetric hierarchical
series Co, C1, C2,’" of successively larger interval orders such that the largest
semiorder in each Ck is realized (among other ways) both by a chain and by two
antichains. The first order in the series, Co, consists of an (n/2 + 1)-point chain and
n/2-1 other points that bear to everything else. That is, Co is an A, as described in
Fig. l(a).

Given Ck, the next order, Ck/l, consists of two copies of Ck, one of which lies
completely to the left of the other (one copy < other copy), plus 8k other points that
bear to everything else, such that

(maximum number of points in an antichain of Ck)

maximum number of points in two antichains of Ck+

number of points on the maximum chain of Ck+

2 (number of points in the maximum chain of Ck).

Fig. 3 illustrates the construction when Co is the Q-set A4. The figure shows C3, as built
up from two copies of C2, four copies of C and eight copies of Co. It should be apparent

80=2 2 2 2

II ;I I| Ik--J--q 4

FIG. 3. C3 based on A4.

from the figure that if the 82 points are used for a semiorder in Ca, then the largest such
semiorder will consist of two antichains, with a total of 8 + 2(4 + 2 + 1 + 1) 24 points.
On the other hand, if none of the 82 points are used for a semiorder in Ca, then the
largest such semiorder has twice as many points as the largest semiorder in C2, namely
2(12) 24. The latter maximum semiorder in C3 can be realized in several ways, one of
which is the 24-point chain consisting of the shortest intervals on the figure. Hence
s(56)-< 24.

For each Ck let

Ok --number of points in Ck,

number of points in a maximum antichain in

Yk number of points in a maximum semiorder in Ck,

8k number of points added to the two copies of Ck to give
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The equalities in the preceding paragraph give

(k + 2//k Tk+l 2yk.

According to this and the construction,

ak+ 2Ck + tk.,

[k+ k -" k,
Tk+l 2Tk 2fig + k,

The next theorem shows what we can conclude from this recursive scheme when
Co=A4.

THeOreM 5. S(2 (k + 4)) 3(2) for k O, 1,. . The resultant upper bound on
s(n)(log n)/n for n {2 (k + 4): k’= 0, 1,. } approaches 3.

Proof. Given Co A4, (ao, o, To, o) (4, 2, 3, 2). It then follows easily from the
recursive scheme that 3(2) and a 2 (k + 4). Hence, by the definitions of a,
and s, s(2(k +4)) 3(2). With n 2(k +4), log n k +log (k +4), and therefore

log n3[k +log (k +4)]
n k+4

The right-hand side of this inequality approaches 3 as k gets large.
The following corollary of Theorem 5 provides an upper bound on s(n) for all

n>l.
COROLLARY 1. For any >0, s(n)< (6+ 8)n/log n for n suciently large, and

s(n)<7n/log n for all n 2.
Pro@ With ak 2k(k +4), ak Nn Nak+ gives s(n)NS(k+)N3(2k+)=6(2k)<

7(2k)(k +4)/[k +log (k +4)]= 7ak/lOg ak N7n/log n, so s(n)<7n/log n for all n N
a0 4. The same bound on s(n) holds for n e {2, 3}. When 7 is replaced by 6 + 8 in the
preceding series of inequalities, we get 6(2k) < (6 + )2k (k + 4)/[k + log (k + 4)] for
suciently large k, and therefore s(n)< (6 + )n/log n for suciently large n.

We used C0 A4 for Theorem 5 since the successive terms in the recursive scheme
are easiest to compute in this case. However, similar conclusions are obtained when we
start with other A. In particular, the bound obtained on s(n)(logn)/n always
converges to 3 regardless of whichA is used for C0. To see this, we note without proof
that the recursive scheme gives

k 2k0,

/ 212 + (_ 1)+] /o

212 + (_ 1)+1] Yo--+ (- 1180,

a 2ao+ [2 +(- 1)+] 8o o+2[(3k 2)2- + (- 1)]

ao+a+(3k -2) __
k 3

With n ak, s(n)(log n)/n yk(lOg ak)/ak, and it follows from the equations just given
that yk(lOg ak)/ak 3.
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4. Discussion. The main open questions for large n that arise from the preceding
analysis are whether s(n)(log n)/n converges, and, if so, to what value in [1, 3]. My best
guess is that s(n)(log n)/n - 3.

As noted earlier, it is known that s(15)= s(16)= 9, but a proof of this (available
from the author) has been omitted due to its length. Thus, s(n) is known precisely for n
from I through 17: the series of s(n) values is 1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9.
The question of whether the number of successive n for which s(n) m + 1 is as great as
the number of successive n for which s(n)= m is open. It would also be interesting to
know if the bound in Theorem 5 were exact, i.e., if s(2k(k +4))= 3(2k) for k 0, 1,
2,. . Our earlier results show only that equality holds for k {0, 1}.
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EIGENVECTORS OF A TOEPLITZ MATRIX: DISCRETE VERSION OF
THE PROLATE SPHEROIDAL WAVE FUNCTIONS*

F. ALBERTO GRIINBAUM"

Abstract. The discrete Fourier transform leads one, in a natural way, to consider the extent to which a
function in Zv and its transform can both be sharply concentrated. This requires the study of a Toeplitz matrix
and its eigenvalues and eigenvectors. For the case at hand this can be done successfully.

Integral operators of convolution type which act on L2([ T, T]) and have a kernel
given by

K(t,s)=R(t-s), -T<-_t,s<=T

arise in numerous applications. The discrete version of these operators is given by a
matrix

K,(i,])=r(i-]),

acting on the space of sequences (Xl,. ’, x,).
The special nature of these operators suggests that problems involving them should

be amenable to a simplified treatment. This is certainly true for the problem of solving
linear equations or finding the inverse of these operators; starting with the work of
Levinson, Szego and Krein one has very efficient ways to deal with this problem,
requiring O(n log2 n) instead of the usual n 3 operations. For a nice account of this topic
see [6] as well as [11], [12].

Another problem where simplifications could be expected is that of computing
eigenvectors and eigenvalues of the operator K, but here the situation is quite different.

If the interval [- T, T] is replaced by (-, o), or the set (1,.. , n) by the set of all
integers or, much in the same spirit, if Kn is "cyclic" or "circulant," the problem is
trivial since then the operator K is a simple function of the "shift" operator and thus
shares its complete set of eigenfunctions. Except in these simple cases we know of no
general method to exploit the Toeplitz nature of K in connection with the eigenvector-
eigenvalue problem.

A notable exception is contained in a very detailed study done by Slepian, Landau
and Pollak in connection with "prolate spheroidal functions" and the uncertainty
principle; see [1], [2] and [3]. They consider the kernel

sin I’ll:r() ,
acting as a convolution integral operator L2[-T, T]; they observe that a second order
differential operator can be found which commutes with K, and since both operators
have a simple pure point spectrum they must have the same eigenfunctions. In this
fashion the problem has been reduced to a much more manageable one.

Notice that r() is the Fourier transform of an interval symmetrically placed around
the origin, and [-T, T] is of the same type.

One could expect that this is the "generic" case, but this is far from true.
Indeed, Morrison [13] proved that the only convolution kernels which commute with
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a second order self-adjoint differential operator are given by

r(s)
b sin c:
c sin b’

for arbitrary complex constants b, c. Morrison’s result was never published in full, but
it has been quoted in [14]. I learned of it through the kindness of a referee.

Notice that if r(s) is required to be the Fourier transform of an L2 function of
compact support, we get b 0 and are back in the case mentioned earlier; so much for
the negative side.

On the positive side this situation has been shown by Slepian [4] to hold in the
higher dimensional case when intervals are replaced by balls centered at the origin, and
more recently Slepian I-5] extended this to the case when the interval [- T, T] is replaced
by the set of integers {-N,..., N} and the other interval is replaced by the interval
W =< 0 =< W of the unit circle. In this latter case one ends up with a Toeplitz matrix of

the form
sin2W(i-j)

Kit -N <- i, ] <=N.
7r(i -j)

One can also (see [5]) exchange the roles of these two "intervals" and end up with
an integral operator in L2[ W, W], with kernel given by

K(s,t)=
sin Nzr(s t)
sin 7r(s t)

An important problem for a number of applications would be to go beyond this
very restricted situation. Indeed, many "reconstruction" problems can be modeled as
follows. The Fourier transform Ff of an unknown function f is known only on the set B
and one has the a priori information that f has support in the set A. This is formalized by

BFf g known,

Af =f,

where A, B denote, by abuse of language, the operators of restriction to the sets A, B.
These two equations can be combined into the single equation

Ef =- BFAf g,
which is best handled by looking at

E*Ef E*g.

The operator E*E acts on L2(B) as a (finite) convolution, with kernel given by the
Fourier transform of the characteristic function of the set A. For an example of an
"imaging" problem leading to a pair of sets A, B for which the treatment given here has
not been possible, see [9].

In the discrete case a natural problem to consider is, thus, the determination of
those Toeplitz matrices which allow for a (nontrivial) tridiagonal matrix commuting
with them. We have found that, at least in the symmetric case, there is a four-parameter
family of Toeplitz matrices with this property: loosely speaking r(0), r(1), r(2), r(3) can
be picked arbitrarily and all the other diagonals determined from r(1), r(2), r(3). The
proof is rather laborious, due to a number of special cases; it is given in [10].

Notice that in all the examples discussed above we are dealing with an Abelian
group G and its dual G, while A and B are "balls" centered at the identity element of G
and t respectively.
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In this paper we treat the case of the Toeplitz matrix which arises when G is taken
to be Zp, the group of Pth roots of unity. In this case G is Zp again. Although this is
really a special case of the result in [10], we feel that being the "discrete-discrete"
analogue of the situation studied in [1], [2], [3], [4], [5] it is likely to have a number of
applications; therefore giving it without the complications of the more general case
discussed in [10] seems worthwhile. One such application is given in [15].

We take A and B to be given as follows:

A {e i2rj/P, Ill M}

and

(1)

with

B l ei2"k/P, Ikl <-N N even

In this case the Toeplitz matrix in question has dimensions N + 1 x N + 1 and is given by

Kij= r(i-]),

t sin (2M + 1)(zrk/P)
(2) r(k)= Y’. e2’ik/P=

---t sin (zr/P)k

Here Tk and UEt are Chebyshev polynomials of the first and second kind. We
notice that these Toeplitz matrices have recently been used in some reconstruction
algorithms for X-ray tomography; see [8]. We will find that the situation uncovered by
Slepian, Landau and Pollak holds in this instance too.

We show in this paper that the N + 1 xN + 1 matrix given by (1), (2)commutes with
a (essentially unique) tridiagonal matrix. It is advantageous to write this tridiagonal
matrix in the form

T D_AD/ +B.

Here A and B are diagonal matrices and D+/- stand for the usual difference operators,
explicitly,

Aii Aiih Bi] bitih D i+/-l,j i,],

with the convention ao arr+l O.
One clearly has

bl-a al

a b2-a2-al

T= a2

a2

b3-a3-a2
aN-1

aN- bN aN aN-

If K denotes the matrix (1) and we put, as before,

aN

br+ av

the commutativity condition

Kii= r(i-.i),

KT TK
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is equivalent to the system ot (N + 1) x (N + 1) equations

(a, aj)(r(i - + 1)- 2r(i -) + r(i -] 1)) + (a, + a,_l)(r(i -)- r(i - 1))
(3)

+(aj ai_l)(r(i -+ 1)- r(i -)) + r(i -])(b, bi) O.

We proceed now to solve these equations. Eliminate the bi’s from (3) by setting
] i- 1 in (3) and i-2 in (3) to obtain

(4) (r(2) r(1))(ai ai-2) + r(1)(b bi-1) 0

and

(5) (r(3) r(2))(a- ai-3)-(r(2)- r(1))(ai-1- a-2) + r(2)(bi- b-2) 0.

Now replace by i- 1 in (4) and add the resulting equation to (4) to obtain

(6) (r(2)- r(1))(ai_l- ai-3) + (r(2) r(1))(ai- a-2) + r(1)(b- bi-2) 0.

Finally multiply (5) by r(1) and (6) by r(2) and subtract to get

(7) (a,-a,_a)(r(3)r(1)-r2(2))+(a,_l-a,_2)(r2(1)-r2(2))=O.
This third order difference equation has for its characteristic equation

(8) 2 r(2)2-r(1).2 1] 0.

Observing that

r(2)2- r(1)2
1 +r(2)2_r(1)r(3) 2 1 2 cos2 -2 cos ---,

one can express (8) in the form

(A 1)(A -e(2"/’))(A + e -(2"ri/e)) O,

and thus, with the boundary conditions a0 as+l 0 taken into account, the solution to
(7) is given (except for a multiplicative constant C(P, N)) as

(9)

2r 2r.

_
a sin -(N + 1) -sin --I -sin (N + 1 -])

2 sin ff(N + 1) cos ff(N + 1)- cos (N + 1 2])

To solve for b return to (4) and observe that

(10) b-bj_l 2r(1)-r(2)[ zr ]r(1) cos(N+5-2])-fi-cos(N+l-2]) sin (N+ 1).

The vector b is determined up to the multiplicative constant C(P, N) just
mentioned and an additive constant which can be adjusted by picking bl, and we get

(11) bi bl +4r(1)-r(2)[ ,r ] zr

r(2)
cos fiN-cos (N + 2- 2]) sin (N + 1)ff cos ft.

Notice that a, bi as given by (9) and (11) are the (essentially) unique solutions of a
very special subsystem of the equations given in (3). Now we proceed to show that they
actually satisfy the complete system of equations (3).
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Notice that (3) can be rewritten as

(3’)
(r(i-j + 1)-r(i-j))(ai-ai-1)+(r(i-j- 1)-r(i-j)(ai_l-aj)

+r(i-j)(b,-bi)=O,

and thus, omitting a common factor 2 sin (Tr/P)(NN + 1), we have to check

( 2(r(i-] + 1)- r(i -])) cos (N + 3 ])ff- cos (N + 1 2i)

+(r(i -]-1)- r(i -]))(cos (N+I-2])-cos (N+3-2i))
+2r(i_])

r(1)- r(2) ( rr rr) zr

r(1) cos(N+2-2])-ff-cos(N+2-2i)-ff cos if= 0.

If C denotes the factor multiplying (r(i-] + 1)-r(i-])) and D the factor multiplying
(r(i-]-1)-r(i-])) this can be expressed, after multiplication by r(1), in the form

r(1)(r(i-] + 1)- r(i-])C + r(1)(r(i-]- 1)- r(i-]))D + r(i-])(r(1) r(2))(C + D)

r(1)(Cr(i-] + 1) + Dr(i -]- 1))- r(2)r(i-])(C +D)
--0.

Observing now that

C -2 sin (N + 2- i-])ff sin (1 + i-])--fi,

D=2sin (N+2-i-j)ffsin (l+j-i)ff,

C +D -4 sin (N + 2 -i)ff sin (i -i)ff cos if,

we have to check that

-2
sin (2M + 1)(zr/P) /[sin (2M + 1)(/-] + 1)+ sin (2M + 1)(/-]-1)}’\

sin (rr/P) \ /--!

+4
sin (2M + 1)(2zr/P)

sin (2M + 1)(i -/)ff cos ff 0,
sin (2zr/P)

which certainly holds.
We conclude with the remark that by choosing the arbitrary constants C(P, N) and

bl properly and, letting P and M grow to infinity so that

M

we obtain in the limit the case discussed by Slepian in [5]. The correct values are

c(P, N)= 8(zr/p)3(N + 1)’

bl
N+2

W
N2

+ cos 2r
2 4’
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and in this fashion we obtain (in the limit),
1.a I(N + 1 j)

and

bi aj aj-1 cos 2rw(N + 1 )22
-/’-1 I=</_-<N+I,

as in [5].
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SET ORDERINGS REQUIRING COSTLIEST ALPHABETIC
BINARY TREES*

D. J. KLEITMANt AND MICHAEL E. SAKSt

Abstract. It is shown that an ordering of a set with weighted elements which requires the most expensive
alphabetic binary tree is a "sawtooth order." For the set {e0, el, , et}, with the elements indexed from least
to greatest weight, this order is Co, et, el, et-1," ",ei, et-1," This result was conjectured by Hwang and
leads to an upper bound on the cost of alphabetic binary trees.

1. Introduction. Let E be a finite set whose elements are assigned positive
weights. The cost c (T) of a rooted binary tree T whose leaf set is E (such a tree will be
called an E-tree) is defined to beeE w(e) dr(e), where dr(e) is the number of arcs in T
between the root and e and w(e) is the weight of e. An E-tree T is said to be alphabetic
with respect to some linear order of E if, in some planar embedding of T, the
left-to-right order of the leaves is the given order.

In [6], Hutfman described a linear time algorithm for finding the minimum cost
E-tree. Hu and Tucker [5] gave an algorithm for finding the minimum cost E-tree which
is alphabetic with respect to a given linear order. Garsia and Wachs [1 proposed (and
proved correctness of) a variation of the algorithm, and Hu, Kleitman and Tamaki [4]
generalized it and provided an elementary proof of correctness.

F. Hwang has raised the following question: given a weighted set E, what linear
order maximizes the cost of the minimum cost alphabetic tree. He conjectured that, for
a set {eo, el, , et} indexed from least to greatest weight, the most expensive order is
eo, et, el, et-1, e2, et-2,’’’. It is the purpose of this paper to give a proof of this
conjecture, thereby characterizing the "worst case" cost of an alphabetic tree.

This problem arose from an effort to make general statements about the cost
imposed on the optimal E-tree by restriction to alphabetic trees. Characterizing the
"worst case" order gives rise to a bound on the cost of this restriction. The bound
implied by the above solution is as follows. If {wl, , Win} is the set of weights of a
given set, let H({wl, ", win}) be the cost of the optimal Huffman (unrestricted) tree on
the set. The cost of the optimal alphabetic tree for the worst case ordering is then

H W 4" W,,,-i+lli 1," ", / . Wi
i=1

for m even, and

({Wm+l}[_J{Wi_.Wm_i+l]i_.l, m--I})H
2 "’" 2

+ wi w<,+1)/2
i=

for rn odd.
In what follows, capital letters will usually represent a sequence of elements, that is,

a set together with a fixed linear order. A small letter will denote individual elements. A
comma is used to concatenate sequences and elements" El, el, E2, e2, E3 is the set
E1 I,] E2 I,.J E3 {el, e2} with the obvious order. For a sequence E, the same set with the
reverse order is denoted by ER. The cost of the optimal alphabetic tree on E is denoted
by A(E).
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In an E-tree, a nonleaf is called an interior node. A node lying on the path between a
given node n and the root is an ancestor of n and the first such node is the ]ather of n.
Every interior node is the father of two sons, referred to as the right and left sons
if the tree is embedded in the plane (alphabetic trees are always assumed to have
the embedding which gives the required leaf order). The subtree rooted at a node n is the
tree with root n consisting of n and its descendants. For any node n, L(n) is the set of
leaves in the subtree rooted at n.

2. Some facts about optimal alphabetic trees. In this section we present some facts
about alphabetic trees which are needed to prove the theorem. For a more complete
discussion the reader is referred to [4].

Given the ordered set E, the Hu-Tucker algorithm constructs a rooted binary tree
T with leaf set E which, though not necessarily alphabetic, satisfies dr(e) dr,(e) for all
e e E, where T’ is the optimal alphabetic tree for E. Starting with the sequence E of
leaves, the algorithm assigns a father to two nodes a and b, removes them from the
sequence and inserts their father (a, b) in the sequence where the smaller weighted of a
and b was. This node is assigned a weight of w(a)+ w(b). This operation, called a merge
of a and b, is repeated until one node remains; this remaining node is the root and the
tree is completed. At each stage, the choice of which pair of nodes to merge is made as
follows. Two nodes in the sequence are said to be compatible if they are adjacent in the
sequence or separated only by nonleaf nodes. The pair of nodes a and b which are
merged is a locally minimum compatible pair (l.m.c.p. for short), which has the property
that b has the smallest weight of those nodes compatible with a and a has the smallest
weight of those nodes compatible with b. There is always at least one 1.m.c.p., the
smallest weight element together with the minimum weight element with which it is
compatible. If there is more than one 1.m.c.p., any one can be merged; it is a property of
the algorithm that the resulting tree will have the desired properties for any sequence of
1.m.c.p. merges.

The above construction can be used to prove several lemmas about the optimal
alphabetic tree.

LEMMA 1. (i) If (E, e, E2, e2, E3) is a sequence with the weights of el and e2
exceeding the weight of any element in E2, then

A(E1, el, E2, e2, E3) A(EI, el, E, e2, E3).

(ii) If in the sequence (E, el, E2) the weight ofe exceeds the weight ofany element
in E2, then

A(E,, e, E:) A(E, el, E).

Proof. (i) We show that the Hu-Tucker algorithm performs the same set of merges
in both sequences, so that each node is at the same depth in the optimal tree for both. If
IEzl- 1, the result is trivial. Otherwise, E2 contains an 1.m.c.p. which is also an 1.m.c.p.
in E, so it is merged in both. This process is repeated merging 1.m.c.p.’s which lie
between e- and e2 until there is no 1.m.c.p. between e and e2. This can happen only
when there is at most one leaf remaining between e and e2 in the sequence. If there are
no leaves remaining, the compatibilities occurring in both sequences are now the same.
If there is one leaf e remaining, but no l.m.c.p., then e has smaller weight than any of the
(nonleaf) nodes lying between e and e2. Perform all l.m.c.p, merges not involving the
nodes between el and e2 (these are obviously the same in both sequences). After this,
there is an 1.m.c.p. involving at least one node lying between e and e2, which must be e
since anything compatible to a node lying between el and e2 is compatible to e.
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Moreover, e has the same compatibilities in both sequences, so this l.m.c.p, can be
merged in both. Once e merges, the compatibilities in the two sequences are identical
and the algorithm will act in a parallel manner on the two sequences.

The proof of (ii) is essentially the same.
LEMMA 2. Let (E, e, F, f, G) be a sequence of weighted elements such that all

elements in F have smaller weight than e and f. Let s be the smallest weight element in F.
Then there is an ordering (F’, s) ofF such that

A(E, e,F’,s,f, G)=A(E, e,F,f, G).

Proof. The proof is by induction on IFI. If IFI 1, the result is trivial. Otherwise, let
m be the element in F of largest weight and write F as (F1, m, F2), so that the given
sequence is (E, e, F1, m, F2, f, G). If s e F2 we can apply induction since IF21 < IFI; if
s e F1 we can apply Lemma 1 to reverse F and then use induction on F. 71

LEMMA 3. If (El, el, E2) is a leafsequence with the weight ofel greater than that of
every element in E2, then in the optimal alphabetic tree T, dT(e) >- dT(ea.) 1 for all e E2.

Proof. Suppose the lemma does not hold, and let f e E2 be the first element of E2
such that h dr(f) < dr(el)- 1. Then a cheaper alphabetic tree can be constructed as
follows. Let g be the ancestor of el at height h + 1 with no and n its left and right sons.
Let n2, nk-1 be the sequence of nodes at height h + 1 to the left of f and to the right
of g and set nk f. Detach n (and its subtree), reducing the height of the subtree rooted
at no by 1, and detach n2, n3, nk (and their subtrees) from T. Attach ni to where
was for 1-<_ i-<_ k- 2 and merge nk- and nk, attaching them to where nk was. In the
resulting tree, nodes n2, , nk-1 remain at depth h + 1 but the depth of f is increased
by 1 and the depth of no and n are decreased from h + 2 to h + 1. Since el is a leaf of no
or n and w(el)> w(f), the resulting tree is cheaper, contradicting the minimality of
T. U

LEMMA 4. If Tis an alphabetic tree ]’or (E, F), then there exists an alphabetic tree T’
]:or F such that

c(T’)<= , dT(e)w(e)-min w(e).
eF eF

Proof. The elements of E can be removed one at a time from T. Each time an
element is removed, the other node with the same father is elevated one level, reducing
the depth of all nodes in its subtree by 1. Removing the final node of E must elevate
some element in F, reducing its depth by 1. Thus, the resulting tree T’ has cost bounded
by the above expression. [3

LEMMA 5. Let E1 and E2 be sequences and a an element with smaller weight than
any in E1 or E2. Then

A(El, a) +A(E) <_- A (El, E:).

Proof. Let T be an optimal alphabetic tree for (Ex, E2). We will construct
alphabetic trees T1 for (Ex, a) and T2 for E2, such that c(T)>-c(T1)+C(T2).

Let f be the final element of E2 and let p be the ancestor of f in T which is also an
ancestor of an element in E1 and such that dr(p) is maximum. Let SR be the right son of
P; SR is an ancestor of f and dr(SR)> dr(s), so, by choice of p, SR precedes only
elements of E2. Construct T1 by removing the subtree rooted at SR from T and
replacing it by a, then reducing the tree, according to Lemma 4, by removing any
remaining elements of E2. The depth in T of every element ofE is no greater than in T
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and a is at depth dr(p)+ 1, so

(1) c(T1).<-- E dr(e)w(e)+(dr(p)+ l)w(a).
eE

Since T is alphabetic and p is an ancestor of both [ and an element of El, it must be an
ancestor of every element in E. Let T be the tre obtained from the subtree T rooted
at p by deleting all elements of E. By Lemma 4, c(T2) eE2
dr, (e)w(w) min w(e). Since for all e E2, dr, (e) dr + dr(p), we have

eE2

eE2 xeE2 eE2
(2)

eNe eN

Combining (1) and (2), we have

eEUE2

eE2

<-_c(T)+(dr(p)+ 1)(w(a)- min w(e))
eEE2

<-c(T),

since w(a)< w(e) for all e

3. Main theorem.
THEOIEM. Let (eo, el," ", et) be a set indexed from smallest to largest weight.

Then the linear order of the set requiring the most expensive alphabetic tree is

(eo, et, el, et-1, ei, et-i, ).

Proof. Let E be the most expensive sequencing of the elements and let be the
largest integer such that the first 2i elements of E are eo, et, el, et_l, ., ei-, e-i+l (if
the first two elements of E are not e0, e,, then 0). Call this subsequence B and the
remaining subsequence F, so E (B, F). If IFI--<- 1, E is as prescribed by the theorem.
For IFI > 1, we show that there exists a reordering (ei, et-i, F’) of F such that A(B, F) =<
A(B, ei, et-, F’) and the theorem will follow by induction. Write F as (F1, et-, F:z) and
suppose e F1 (if not, apply Lemma 1 (ii) to reverse F). By Lemma 2, there is a
reordering (F, e) of F1 such that (B, F, e, e,_, F2) is the same cost as E. Let T be the
optimal tree for (B, e, e_i, F, F2); we construct an alphabetic tree for
(B, F, e, e_, F2) which is no more expensive than T, which will prove the theorem.

The pair (ei, et-) is an 1.m.c.p. in (B, e, e,_, F, F2), so it can be merged first in the
Hu-Tucker algorithm.Therefore, in the final Hu-Tucker tree (and, hence, also in T) e
and et-i are at the same depth h. Lemma 3 implies that every leaf to the right of e_ is at
depth at least h- 1.

Case 1. e and e,_g have the same father no in T. Let n 1, , nk be the sequence of
nodes at depth h 1 in T which lie to the right of no and let nc be the first of these such
that L(nc)t.JF2 . In the tree, permute the subtrees rooted at no,"’, n-i by
attaching nl where no was, n2 where nl was,..., n_ where n-2 was and no where n_x
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was. The resulting tree T* has the same cost as T. If L(nc)_ F2, then the order of the
leaves in T* is (B, F’, el, e,-i, F2) and we are done. Otherwise, let St. and SR be the left
and right sons of no. For convenience, the positions occupied by ei, et-, SL and SR in T*
will be referred to, respectively, as P1, P2, P3 and P4.

There are three possibilities to consider"
(a) L(SL)

_
F’, L(SR)

_
F2;

(b) L(St)_ F’, L(SR) intersects both F and F2;
(c) L(S) intersects both F and F2, L(SR)_ F2.
For (a), attach St. to P1, e to P2, e,_ to P3 and SR to P4. The result is alphabetic for

(B, F’, ei, e,-i, F2) and the same cost as T*.
For (b) write L(SR) as (G1, G2) where G

_
F and G2

_
F2. By Lemma 5, there

are alphabetic trees Tx for (G, ei) and T2 for G2 such that c(T) + c(T2) does not exceed
the cost of the subtree rooted at SR. Hence, attaching S to P1, T to P2, et- to P3, and
T2 to P4 yields an alphabetic tree for (B, F, ei, e,_, F2) which is cheaper than T*.

For (c), do for SL what was done for SR in (b) and assign T to P, e,-i to P2, T2 to P3
and SR to P4.

Case 2. e and et-i have different fathers. Let SR be the right son of the father of
et-. If L(SR)

_
F’, then attach SR to where ei was, e to where e_ was and e,_i to where

SR was, and now Case 1 applies. Otherwise, write L(SR)= (G, G2), where G1 G F,
G2

_
F2, and construct trees T and T2 as in (ii) of Case 1. Attach T to where e was and

T2 to where SR was, and the result is cheaper than T and alphabetic for (B, F, ei, F2).
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A TIGHT ASYMPTOTIC BOUND FOR
NEXT-FIT-DECREASING BIN-PACKING*

B. S. BAKERt AND E. G. COFFMAN, JR.’l"

Abstract. In this note we derive a tight asymptotic bound on the relative performance of the Next-Fit-
Decreasing approximation rule for classical one-dimensional bin-packing. The proof provides a novel
application of certain well-known sequences of unit fractions. Potential applications are mentioned.

1. Introduction. Bin-packing problems model a large variety of practical prob-
lems arising in computer sciences and operations research. The general problem
assumes a collection of equal capacity bins and a list of pieces which are to be packed
into the bins subject to the requirement that the capacity of no bin be exceeded. (As
usual, the pieces are assumed to have sizes not exceeding the common bin capacity.)
The specific problem, which is NP-complete [3], is to minimize the number of bins used
in the packing. A number of approximation algorithms have been analyzed for this
problem with the objective of characterizing worst-case performance relative to
optimal packings. This paper is devoted to a similar analysis of one such algorithm,
called the Next-Fit-Decreasing (NFD) rule.

Broadly speaking, three basic bin-packing algorithms can be identified: Next-Fit
(NF), First-Fit (FF) and Best-Fit (BF). To define these approximation rules let B1,
B2, be an arbitrary ordering of the bins, and let L (pl, P2," , Pn) denote the list of
pieces to be packed, with the convention that they are to be packed in the order given.
Without loss of generality we assume unit bin capacities so that p (0, 1 for all i. The
Next-Fit (NF) rule begins by placing as many of pl, p2," into B1 as can be done
without exceeding the bin capacity. If we assume that pl, , pi, < n, are thus packe.d
into B1, the next step is to pack as many of pi+l, P,, as possible into B2. This process
is repeated with B3 and so on until the last piece is packed.

The FF rule places each successive piece into the first (leftmost) bin of the sequence
Bx, B2, into which it will fit. The BF rule places each successive piece into the
leftmost bin for which the resulting unused capacity is the least; i.e., each piece goes into
a smallest, sufficiently large hole (unused capacity) that can be found at the time it is
packed; ties are resolved in favor of the bin of lowest index. Note that according to FF
and BF it is generally possible for a piece to be packed to the left of the rightmost
occupied bin. But this does not occur with NF, which fills the bins in sequence; i.e.,
Bx, , Bi- receive no further pieces after the first piece is packed in Bi.

Important variations of these rules are obtained by augmenting each with an initial
arrangement of L into nonincreasing order of piece size. These variations are denoted
NFD, FFD and BFD, with the D standing for "Decreasing".

The analysis of approximation rules has concentrated on the derivation of worst-
case bounds of the form A(L)<-aOPT (L)+ fl, where a and/ are constants and A(L)
and Opt (L) are the numbers of bins required to pack L by algorithm A and an
optimization rule, respectively. The multiplicative constant is an asyrnptotic bound on
A(L)/OPT (L), and it is the main focus of the analysis. For all but NFD of the six rules
we have defined, tight asymptotic bounds have been known for several years [5], [6];
these are a 2 for NF, 0 for FF and BF and for FFD and BFD. In the next section we
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t Bell Laboratories, Murray Hill, New Jersey 07974.

147



148 B. S. BAKER AND E. G. COFFMAN, JR.

show that the sum

1
y= --=1+1/2+++... =1.691,

i=l ai

where aa 1, ai/a ai(ai + 1), _-> 1, is a tight asymptotic bound for NFD.
For specific illustrations of the wide variety of applications served by bin-packing

models, the reader is referred to [6]. From the description given earlier, note that the
particular applications of the simpler NF rule correspond to situations in which a strict,
sequential processing of the bins is required, and ordering the input, L, is either
impossible or too costly to implement. The more effective FFD and BFD rules will
apply whenever L can be ordered by piece size and strict sequencing of bins is not
required, or whenever the input can be put initially into that order from which a packing
of the bins in sequence produces the corresponding FFD or BFD packing. The NFD
packings, less effective than FFD and BFD, appear to be limited to those NF situations
where ordering by size is possible, but not by precomputed FFD or BFD packings, a
situation that might occur if the bin size is not known when the input can be ordered. In
this connection, it is perhaps best to consider our NFD model as a special case of the
more general problem where bin sizes vary unpredictably, so that packings cannot be
determined in advance.

Apart from potential applications, the proof of the NFD results lends further
significance to an interesting Sequence, the ai’s defined above. This sequence has arisen
in other research in bin-packing problems [2], and it is closely related to classes of
sequences studied by Golomb [4] and Aho and Sloane [1].

2. The NFD bound. In the main result to follow, we provide a general bound in
which maximum piece size is a parameter (similar results can be found in [5], [6] for the
other rules). For this purpose we shall be using two simply related classes of sequences.
First, for s => 1 an .integer, let

tl(S) S + 1, t2(s) s + 2,

ti+a(s) ti(s)[ti(s)- l]+ l, i>-_2.

For example, the first few integers of the first three sequences are

2, 3, 7, 43, 1,807,...

3, 4, 13, 157, 24,493,...

4, 5, 21, 421, 17,6821,.

Next, define the 3"s-sequences, {ai(s)},

ai(s)=ti(s)-l, i>=l,

and let 3"s Y.i=a 1/ai(s) ,i=a 1/(ti(s)- 1). Note that the sequence {ai} given earlier is
the 3q-sequence, and 3’ 3"a. It is easily verified that i=a 1/ti(s) 2/(s + 1) and that the
tails corresponding to partial sums are given by

2 k-a 1 1
S "+" 1 --Ei=l ti(S----- tk(s)----"

THEOREM. For listL (Pa, ",Pn), Pl -> P2 -> -> Pn, let s be the smallest integer
such that pa (1/(s + 1), 1/s]. Then

NFD (L) _-< 3"* OPT (L) + 3,
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where y** (s-1)/s + ys. Note that the y** are monotone decreasing. Moreover, the
multiplicative constant y** is the smallest possible.

Proof. We begin with the following notation. If k ti(s)-1 for some i, then the
interval (1/(k + 1), l/k] is called a ys-interval. Pieces whose sizes are in y-intervals will
be called y-pieces.

Next, we define below a weighting function of piece size, W(p), which we shall
prove has the following two properties. If W(L) is the cumulative weight of the pieces
in L, then 1) the length of the NFD packing of L cannot exceed Ws(L) + 3; and 2) W(L)
can not exceed y* times the length of an optimum packing. The bound follows
immediately from NFD(L) 3 -<_ W(L) <- y* OPT(L).

Define the weighting function W(p) as follows. For p (1/(k + 1), 1/k], k >-s,

if k ti(s)- 1 for some _-> 1,

k+l
k p otherwise.

Note that Ws(p) is a nondecreasing function of p that is strictly increasing except in
y-intervals, where it remains constant. Note also that W(p)/p decreases monotonic-
ally in y-intervals but is a constant in any other interval.

CLAIM 1. W(L)>-_NFD(L)-3.
Proof. If an NFD bin, B, has k pieces in the interval (1/(k + 1), 1/k], then the total

weight, Ws(B), of pieces in B is at least k(1/k) 1, whether or not (1/(k + 1), l/k] is a
y-interval. Otherwise, if B is not the last bin, it must contain pieces from at least two
different intervals; such bins will be called transition bins. We now verify that the
cumulative weight of these transition bins is at least two less than the total number of
such bins. We divide the transition bins into two categories.

Case i. B is a transition bin with at least one y-piece.
Let the smallest piece of B be in (1/(k + 1), 1/k], k _-> s + 1. By definition of the

NFD rule the unoccupied space in B is no more than l/k, and hence B is at least
(k-1)/k full. Therefore, W(B) is at least (k-1)/kmin W,(p)/p; and since
Ws(p)/p 1 for all p >0 we have W(B)>-_ 1 1/k, and a maximum shortfall (amount
less than 1) of 1/k. Now at most two successive transition bins can have ys-pieces from
the same y-interval. Thus, the cumulative shortfall of the transition bins with ys-pieces
is no greater than twice the sum of the numbers 1/k over all k >_-s + 1 such that
(1/(k + 1), 1/k] is a y-interval. Specifically, since the y* are decreasing in s we have

2 2
1

2 ’s 2(y* 1) < 2(y 1) <-
i= ti(s)-- 1 2

as a bound on the shortfall due to transition bins with at least one y-piece.
Case ii. The transition bin B contains no ys-piece.
If the smallest piece in B is in the interval (1/(k + 1), 1/k]; then B is at least

(k 1)/k occupied, as before. Since B has no y-pieces, W(p)/p >- (k + 1)/k, the lower
bound corresponding to the smallest piece. Thus, Ws(B)>-(k-1)/k .(k+l)/k=
1 1/k2, and hence the shortfall is at most 1/k2. Now the smallest piece in a transition
bin with no ys-pieces can be no larger than 1/(s / 3). Hence, the cumulative shortfall of
such transition bins is at most the constant

1 7r
2 49 1

Y k_-<-<k>_s+3 6 36 "
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Finally, the cumulative shortfall of all transition bins is at most + 1/2 < 2. Adding
one for the maximum weight of the last NFD bin we have Ws(L)->NFD (L)-3. I3

CLAXM 2. In any packing of L the weight of any bin is at most ,*. Hence,
Ws(L) <-_ y* OPT(L).

Proof. Suppose first that a bin B has s- 1 pieces in the (largest) 3,-interval
(1/(s + 1), l/s], with a cumulative weight of (s-1)/s, and total length at least (s-
1)/(s + 1). Let q _->qz _>- _->q,, be the remaining pieces in B, packed into an interval
of length at most 1-(s 1)/(s + 1) 2/(s + 1).

If for all i, q is in the interval (1/ti(s), 1/(t,(s)- 1)], then

W(B)
s- 1 1
S i=1 ti(s)-- 1

Thus, suppose r is the least such that q, (1/ti(s), 1/(ti(s)- 1)] and hence q, <- 1/t,(s).
The total weight of the largest r- 1 pieces is -1__1 1/(t(s)- 1), and their total length is at

,-1
1/t,(s). The remaining capacity is thus no more than 2/(s+l)-least

r--1
Ei=I 1/ti($)=Y/(t,($)--l) Since q,<-l/t,($), we have Ws(qi)/qi($)<--(tr(S)+l)/t,(s)
for all i>=r. Thus, the cumulative weight, W’, of the remaining pieces, qm must satisfy

t,(s)+ 1 1 1 1W’ < +
t,(s) t,(s)- I t,(s)- I t,(s)(t,(s)- l)’

or

1 1W’ =<
t,(s)- 1

+
t,+(s)- 1"

Finally, therefore,

s-1 ’- 1
W(B)<-+

S i= ti(s)-- 1
+w’

s- 1 r/l 1<-+ <r*.
S i--1 ti(s)- 1

It remains to consider the case when there are only h -< s- 2 pieces with sizes in
(1/(s + 1), 1/s]. These pieces occupy a length of at least h/(s + 1) and have a total weight
of his. The remaining pieces {q} are packed in an interval of length at most 1 h/(s + 1),
and their sizes are at most 1/(s+l). Thus, (W(q)/qi)<=(s+2)/(s+l) for all i, and
hence

Ws(q) s+2( h )Y. W(q,) <= max q, -< 1
i---1 lim qi i---1 S "" 1 S -[- 1

and

Ws(B)<_h_+s+2(l_ h )s s+l s+i"

Since this is an increasing function of h -< s- 2, we have

W(B)<S-2 s+2(s-21) s-2--, 1
s s+l s+ s
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OPTIMUM PACKING, EACH BIN HAVING
ONE PIECE EACH OF SIZE

I_.+,
z *’ +"’"

NFD PACKINO

2

FIG.

But it is routine to verify that for all s -> 1

s-2 3(s +2) 1 1
-I--------<I-I- ,,--I- <ys*

s (s + 1)2 s + 1 (s + 1)(s + 2)

We complete the proof of the theorem by defining lists which show that the bound
can be approached as closely as desired. To do this we need only formalize the
construction maximizing bin weight as implied in Claim 2. Specifically, for s _-> 1 and
k _-> 1 given, we construct the following optimum packing in m OPT (L) bins. For an
e > 0 suitably small, each bin begins with s 1 pieces of size 1/(s + 1) + e and terminates
with the sequence 1/tl(s)+e, 1/t2(s)+e,.", 1/tk(s)+e (note that 1/tl(s)+e
1/(s + 1) + e, so that we in fact have s such pieces). The packing is clearly a valid one,
since the sum of piece sizes is

s-1 1
s+l +=+O(e)<l

for a suitably small e.
Now take this set of m(k + s 1) pieces, put it into nonincreasing order, and apply

NFD to the resulting list, L. Assuming that m is a sufficiently large multiple of t- 1,
the NFD packing begins with m 1 bins having s pieces of size 1/(s + 1)+ e only, one
transition bin, m/(t(s)-l)-I bins having pieces of size 1/tz(s)+e only, another
transition bin, etc., with the last bin having pieces of size 1 /t (s) + e only. An example is
shown in Fig. 1 for s 1. Thus,

1
NFD(L)>-m+m Y’. -(k+l),

i=2 ti(s)- 1
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and the ratio

NFD (Lk) >_ 1 q- . 1 k + 1
OPT (Lk) i=2 ti(s)- 1 m

s--1 k 1 k+l
-t-

S i=1 ti(s)-- 1 m

can be made as close to y* as desired by appropriate choices for k, m and e.

We note that the closeness with which we want to approach y* determines the
minimum size of the list Lk. But because of the fast convergence of the series {1 ! ti(s)},
we need only small values of k to achieve y* to within several decimal places. For
example, if s 1, then for k >= 5

NFD (Lk)
> 1.691.

OPT (Lk

The first few values of y* are given approximately by y’ 1.691..., y2*
1.423 , y3* 1.302 , y* 1.233 , etc. Using the first two terms of the series,
we see that y* approaches 1 with increasing a roughly as (s + 2)/(s + 1).
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RANDOM FLIGHTS ON REGULAR POLYTOPES*

LAJOS TAKCS5.

Abstract. In a series of random flights a traveler visits the vertices of a regular polytope. The traveler
starts at a given vertex and in each flight, independently of the others, chooses a vertex at random as the
destination. In each flight the transition probability depends only on the distance between the starting vertex
and the end vertex. In this paper we determine the probability that the traveler returns to the initial position at
the end of the n th flight, and give explicit formulas for the n-step transition probabilities of a Markov chain
describing the random flights.

1. Introduction. Let be a regular polytope with cr vertices. Denote by Xo, xl,

’’, x-i the rectangular Cartesian coordinates of the vertices. We assume that in a
series of random flights a traveler visits the vertices of the polytope. The traveler starts
at a given vertex and in each flight, independently of the others, chooses a vertex at
random as the destination. In each flight the transition probability depends only on the
distance between the starting vertex and the end vertex. Denote by v,, (n 1, 2, ..) the
position of the traveler at the end of the n th flight and by v0 the initial position.

In the theory of probability it is an important problem to study the recurrence
properties of various random flights such as the one described above. Most of these
recurrence properties are determined by p(n), the probability that the traveler returns
to the initial position at the end of the n th flight. Here we are concerned with the
determination of p(n) for n _-> 0. By symmetry we can choose any vertex, say Xo, as the
initial position. Then the problem is to determine

(1) p(n) P{v,, Xo[Vo Xo}

for n _--> 0.
The sequence {vn; n 0, 1, 2,...} is a homogeneous Markov chain and we can

determine p(n) by calculating the n-step transition probabilities. If or, the number of
vertices, is large, it is not easy to determine the n th power of the transition probability
matrix whose elements depend on several parameters. Fortunately, as we shall see, we
can solve the problem in a simpler way too.

The results of this paper have their origin in a problem posed by G. Letac [6]. For a
solution of this problem see L. Takics [14]. In a series of three papers G. Letac and L.
Takfics [7], [8], [9] studied random walks on various regular polytopes. In this paper, it
will be demonstrated that for any polytope other than the four-dimensional 120-cell,
the problem of finding p(n) can be reduced to the particular case where the traveler
always moves to an adjacent vertex. In addition, several surprising formulas will be
derived for regular polytopes. These formulas reflect some interesting properties of the
symmetry groups of the regular polytopes.

2. A Markov chain describing the random flights. Let us choose a fixed vertex, say
Xo, and divide the cr vertices of into disjoint sets in such a way that all vertices whose
distances from Xo are the same belong to the same set. Denote by dl, dE, ,dm the
possible distances arranged in increasing order and let do 0. Define

(2) S. {xr: ]]Xr X0[] dj}

* Received by the editors July 9, 1979, and in revised form December 3, 1980.
5" Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106.

153



154 LAJOS TAK.,CS

for ] 0, 1, ", m. The sets $o, S1, ", $, are called the sections of . Denote by

(3) tr N(S)
the number of vertices in the set S. Then

(4) Y. crj or.
/=0

We assume that

(5) P{v,, XslV,-1 x} pj

if IIx -xll d and n 1, 2,. ., where Po, p," ", p, are given nonnegative numbers
satisfying the requirement

(6) Z trjpi 1.
=0

Let us define a sequence of random variables o, :1, , ,, in such a way that
:,, ] if and only if v,, Sj. We can demonstrate that for each regular polytope other than
the four-dimensional 120-cell the sequence of random variables {:,; n 0, 1, 2,...}
forms a homogeneous Markov chain with state space I {0, 1,. ., m} and transition
probabilities

(7) Pii Z ao,P,,,
v--’-0

where ao, is the number of subscripts s 0, 1, ..., tr-1 for which Ilxs- Xoll dj and

Ilxs- Xrll dr, and xr is any vertex for which Ilxr- Xoll di. Briefly,

8 a,,, N(s: s 0, , ,,- , II- xoll d, IIx- xll d, I1’,-Xoll- d,,

The transition probability matrix

(9)

can be expressed in the form

(10) t= Y Avp,
v----O

where

(11) A [aijv]idel.

Obviously, A0 is the identity matrix.
,<) (i I, j I) in the form of aIf we arrange the n-step transition probabilities

matrix, then we get

(12)

and

(13) p) =p(n)

yields the desired probability (1).
In most of the cases m is much smaller than tr and thus it is easier to handle the

Markov chain {:,; n -> 0} than {v,; n -> 0}. However, the transition probability matrix
(9) still depends on the parameters p0, p, , Pro, and at first sight it seems hopeless to
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determine xt" for all n->0. Fortunately, several favorable circumstances make it
(n)possible to determine the Jordan decomposition of xt in each case. Thus Pik can be

determined explicitly.
The aforementioned method can also be applied to the four-dimensional 120-cell,

but we should change somewhat the definition of the sections So, $1, , Sin. Some of
the sets Sj defined by (2) should be split into two or three disjoint subsets. Otherwise the
procedure is similar.

In the following discussion we exclude the case of the four-dimensional 120-cells.
This will be considered separately. For all other regular polytopes we determine

(n)explicitly the n-step transition probabilities p ik for I and k L

3. Determination o the higher transition probabilities. In what follows we
exclude the four-dimensional 120-cell, and 3 denotes any other regular polytope.
Denote by x0, Xl," ’, x,-i the rectangular Cartesian coordinates of the vertices of in
a Euclidean space.

If we choose the center of the sphere which contains the vertices of 3 as the origin
of the coordinate system, then IIx ll =0 for r 0, 1,... ,.tr-1, where p is the circum-
radius of 3, and for any two vertices of 3 we have

(14) IIx xll= --Ilxsll= / IIxll= 2(x, x) 2=- 2(x, x),

where (x, x,) is the inner porduct of x and x. Now we can replace (8) by the following
equivalent definition"

(15) aij,,=N{s: s=O, 1, ,O’--l, (Xs, XO)’-Ch (Xs, Xr)--Cv, (Xr, XO)-’Ci},

where

(16) c /9
2 --1d2

and x is any vertex for which (x, x0) ci. By choosing a suitable vertex x, we can easily
enumerate ai if we use (15).

From the definition of aij it follows that

(17) o’iaii, o’a]i,

and

(18) aii,,, aivi

for i, j, , s L These properties imply that triai is invariant under the six permutations
of (i, i, ’).

Obviously, we have

(19) ., aii,, o’,

for i, , L By (17) and (19) we get

(20)
iI il

for ], , I.
If the polytope has central symmetry, then

(21)

for , e L and

(22) ai,, a,,.,-i,m-i,, ai.m-i,m-,, a,,-ia,
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for i, ], v L We can easily derive these equations if we choose the vertices of so that
X-r-1 --Xr for r 0, 1, , tr- 1. The exceptional polytopes which have no central
symmetry are the polygons with an odd number of sides and the simplexes in r
dimensions (r >_- 2).

(n)Our aim is to determine the n-step transition probabilities pik for the Markov
chain {:,; n 0, 1, 2,. .}.

In what follows we shall use the notation I for the (m + 1) (m + 1) identity matrix;
that is,

(23)

where

1 if/=],
(24) ao= 0 if i#].

The eigenvalues of the matrix A (v I) arranged in some specific order will be
denoted by Ai (] I), and we define

(25) A
for v I.

LEMMA 1. The eigenvalues A (] I) of A are real and satisfy the inequality
for ] I and v L There exists a real nonsingular matrix H such that

(26) AH=HA
for I, where A is defined by (25).

Proof. Let

(27) D [a -/2

where the square root is positive. By (17) we have

(28) D2A 2AD

where A’ is the transpose of A. This implies that

(29) DAD-1 D-1A’D (DAD-I’).
Accordingly, the matrix

(30) Q =DAD-1

is symmetric. Obviously, A, and Q, have the same eigenvalues. The eigenvalues of Q,
are real and there exists an orthogonal matrix M, such that

(31) QM, M,A,,

where A, is defined by (25). In (31)

(32) M’M [Siim]]i,iei,

where m (j s I) are arbitrary positive real numbers which we shall choose later in a
convenient way.

Now the matrix

(33) H =D-1M
is nonsingular, and by (30) and (31) it satisfies (26).
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The elements ofA are nonnegative and, by (19), inA each row-sum is o-. Thus o-
is an eigenvalue of A, and every eigenvalue of A has absolute value <-r. This
completes the proof of Lemma 1.

By (32) and (33) the inverse of I-I can be expressed by the transpose ofM in the
following form:

(34) HS MD
The following observation is crucial in determining
OBSERVATION 1. The matrices A (v I) commute in pairs; that is,

(35) A.A AA.
if lz Iand vI.

If we take into consideration that Q’ Q where Q is defined by (30), then we can
easily see that (35) holds if and only if

(36) Q,Q QQ.,

or if and only if

(37) Q.Qy DA,AyD-1

is a symmetric matrix.
In checking (35) it is convenient to use the second criterion. For the matrix (37) is

symmetric if and only if cricij rjcii for I and/" I where cii is the (i, /’)-entry of A,A.
Observation 1 implies that there exists an orthogonal matrixM such that, if My M

for v /, then (31) and (32) are satisfied for all v L
If we define

(38) H= D-M,
then by (26)

(39) AH HAy

for each s I, and

(40) M’M= [,im]
is a diagonal matrix whose diagonal elements are positive real numbers.

By (38) and (40) we have

(41) H- [m[18ij]H’D2.
If we know H, then the eigenvalues of Ay (v I) can be determined simply by

matrix multiplication. For by (39) we have

(42) Ay H-1AyH

if v s I and H- can be calculated (41). By (42) the eigenvalues of Ay, A (/" s I), are
automatically arranged for v s I in some matching order.

Observation 1 implies that the eigenvalues of r are linear combinations of p0, p,
’’, Pro. For by (10) and (39) we have

(43)

where

(44)

xtH HL,

L= p,A,=[iA],,,
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is a diagonal matrix with diagonal elements

(45)
,-’0

for ] e L Hence we can conclude that A (] I) are the eigenvalues of , and

(46) r I-ILI-1-1

is a Jordan decomposition of . The n-step transition probabilities, p l, ), are the
elements of the matrix

(47) " =HL"H-1.
(n)Accordingly, we reduced the problem of finding p ik to the problem of finding the

matrix H and the eigenvalues ofA for u L It is worthwhile to point out that, while the
problem of finding the eigenvalues ot t is an algebraic problem (the elements of
depend on the parameters p0, p, , p,), the problem of finding the eigenvalues ofA
(u I) is a numerical problem (the elements of A are given nonnegative integers).

The eigenvalues Ai (/" /, u I) are completely determined by the matrix

(48) H [hii]i,ir,

defined by (38). If we form the (0, ])-entry on both sides of (39), we get

(49) tr,,h,q hoiAi,,.

Since tr > 0 for all u I and since h,q 0 for some u /, therefore hoi # 0. Thus we
obtain that

h,,i(50) X=rhoi
for ] /, u L This is a very simple formula for the determination of the eigenvalues of
A (uI).

It remains to solve the problem of how to choose H such that (39) will hold for all
u L Fortunately, the next observation provides an easy solution.

OSrRVATON 2. The eigenvalues of A are distinct.
This implies that in the equation

(51) AIH=HA
the elements ol the matrix (48) are determined up to a nonzero factor depending only
on i. Consequently, h,q/ho/is uniquely determined by A. We can choose h0/ 0 as we
please.

Thus we have demonstrated that the problem of finding the Jordan decomposition
ol can be reduced to the problem ol finding the Jordan decomposition o A. Stated
more simply, if we know the matrix H for a regular polytope, then we have all the

(n)information needed to determine the n-step transition probabilities pi
We can deduce the statement in Observation I from some general properties of the

symmetry groups ol the regular polytopes considered, and we can also extend the
results o this paper to random walks on groups which share the characteristic
properties of the symmetry groups of the regular polytopes.
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In what follows we assume that H is a nonsingular matrix satisfying (39), and the
elements of

(52)

are the eigenvalues of A for , e/.
First, we express the quantities aik with the aid of the elements of the matrix H.
THEOREM 1. We have

(53)

.for el, k el, , el, where

Proof. By (50),

(55) A= o" H’D2,
i, hoiJ

and, by (38),

(56) H’ =M’D-x.
Thus

(57) ’i]M’MAH=
hoJ

is a diagonal matrix. On the other hand, we have

[ tr hji ](58) AH
hoiJ i,]l

By comparing the (k, k)-entries in the matrices (57) and (58) we get the identity

0..( hik 2
mk(59) iz ’\hok] (hok)----’

for k e L The left-hand side of (59) is independent of the particular choice of H. If we
choose hok 0 as we please, then by (59) we get

(hok)2
(60) m ,

where tOk is defined by (54). This answers the question of how to choose mk in (40) or in
(32).

By (41) and (60) we have

(62) AH [80/]
i,].I

We note that by (57)

to ] H’D2(61) H-X= 8’Jih0i)2 ,.i,
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and consequently

(63) A- tt q
i,]I

By (39), (48), (50) and (61) we obtain that

A, HA,H- [hq] 6qo’,ho,J
)]

(64)

The (i, k)-entry of (64) is given by (53). This completes the proof of Theorem 1.
By Theorem 1 we can conclude that if the numbers aika are known for /, k /,

then the numbers aik are uniquely determined for all /, k I and v I. It would be
interesting to express aikv directly as a function of aikl (i Z, k I) without the
intervention of the matrix H.

Finally, we can express the n-step transition probabilities in an explicit form with
the aid of the matrix

THEOREM 2. The n-step transition probabilities of the Markov chain {so,; n
O, 1, 2,...} are given by the following formula:

(65)

where

Pik =Ok tO A i,
iz \hoi/\hoi/

and toj is defined by (54).
Proof. By (47) and (61) we have

(67) ’n" I-I[6qi ]H-a= n[tijAj tiJhoj)2 I’I’[tiio’j],

where A is given by (66). If we form the (i, k)-entry of r", then we get (65).
In particular, if follows from (65) that

(68) P)
jI

We note that

(69) Z to- 1

and

1(70) too --.

Remark 1. If the polytope has central symmetry, then (22) holds and this
implies that

(71) A_,, A,,T TA,,
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for v L where

(72)

In this case H satisfies the matrix equation

(73) TH= HU,

where

(74) U- [ijej]i,jI

and

1 for 0_-<]_-<,
(75) e m

-1 for -<j_-< m.

By (71) and (73) we can prove that

(76) A,_ AvU
for v L

The matrices T and U satisfy the equations

(77) T2= U2= I.

Remark 2. In addition to the Euclidean distance between two vertices Xr and xs,
IIx -x ll, we can define another distance, D(xr, xs), as the minimum number of edges in
the paths connecting xr and x. In a regular polytope two vertices are connected by an
edge if and only if their distance is dl.

For every regular polytope, except the four-dimensional 24-cells, 120-cells and
600-cells, D(x,,x,)=] if and only if IIx-xll=d. Even for the 24-cell and for the
600-cell D(xr, Xs) is uniquely determined by [[x- x ll.

Accordingly, if, as an alternative to (5), we assume that the transition probability
P{vn Xs[V,,-1 xr} depends only on D(xr, x), then p(n) can be determined by the
same formula as in the case of (5).

If X S], then we write

(78) D(xr, Xo)=Di,

whereas IlXr- x011-
In the rest of the paper we shall give the matrices Av (v 0, 1, , m), H and A for

(n)each particular polytope. If we know either It or A, the transition probabilities p i are
determined by (65). In each case we shall choose &o r for v I; however, this is not
essential.

4. Regular polytopes in general. Regular polytopes in two dimensions (regular
polygons) and in three dimensions (Platonic solids) have been known from ancient
times. Four- and higher-dimensional polytopes were discovered by L. Schlifli [12]
before 1853.

Denote by No, N1, Nz, N3, the numbers of vertices, edges, faces, cells, of a
polytope. In generalizing Euler’s formula for polyhedra, L. Schl/ifli proved that for an
r-dimensional simply connected polytope we have

r--1

(79) Y. (-1)ixi 1--(--1) r.
i=O
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We define a vertex figure of an r-dimensional regular polytope as an (r-1)-
dimensional regular polytope whose vertices are the midpoints of all the edges of the
r-dimensional regular polytope which originate in a given vertex.

We characterize regular polytopes by the Schlifli symbols. The Schlifli symbol of a
regular p-gon is {p}. A regular polyhedron which has p-gonal faces, q at each vertex, is
characterized by the Schlifli symbol {p, q}. A four-dimensional regular polytope which
has Schlifli symbol {p, q, r} has cells of type {p, q} and vertex figures {q, r}. Similarly, a
general regular polytope {p, q,..., v, w} has cells {p, q,..., v} and vertex figures
{q," ",v, w}.

Tables 1, 2 and 3 show all the regular polytopes in three, four, and higher
dimensions. For the theory of regular polytopes we refer to H. S. M. Coxeter [1], L.
Schliifli [12], P. H. Schoute [11 ] and D. M. Y. Sommerville [13].

TABLE
Regular polyhedra in three dimensions

Polyhedron SchlJifli symbol No N1 N2

Tetrahedron {3, 3} 4 6 4
Octahedron {3, 4} 6 12 8
Cube {4, 3} 8 12 6
Icosahedron {3, 5} 12 30 20
Dodecahedron {5, 3} 20 30 12

TABLE 2
Regular polytopes in four dimensions

Polytope Schl[ifli symbol No N1 N2 N3

5-cell {3, 3, 3} 5 10 10 5
16-cell {3, 3, 4} 8 24 32 16
8-cell {4, 3, 3} 16 32 24 8

24-cell {3, 4, 3} 24 96 96 24
600-cell {3, 3, 5} 120 720 1200 600
120-cell {5, 3, 3} 600 1200 720 120

TABLE 3
Regular polytopes in dimensions (r >-_ 5)

Polytope Schlifli symbol No

r+lRegular simplex {3,. , 3} + 1
] +

( )2’+ 2’Cross polytope {3,. ., 3, 4} 2r
] + 1

Measure polytope {4, 3,..., 3} 2’ (2’-i 2r
\.]!

5. Regular polygons. Let be a regular t-gon with circumradius p I. We can
choose

(80)



RANDOM FLIGHTS ON REGULAR POLYTOPES 163

(r=0, 1,..., t-l) as the vertices of . Then r=t, m =[t/2], So={Xo} and Si
{xi, x,_i} for ] 1, 2,..., m. Now we have ro 1, ri 2 if 1 <-] <t/2 and o-i 1 if
] t/2 and is even. The probabilities po, pl, , p,, satisfy

(81) Po + 2pl +. + 2p,,_ +Pm 1

if is even, and

(82) po + 2p +. + 2p,,_x + 2p, 1

if is odd.
For any event A, let 6 (A) 1 ifA occurs and 6(A) 0 ifA does not occur. Then we

can write that

(83) aiiv 6(j ]i- v]) + 6 j -- -- v

for 1 --< v --< m 1, aqo 6q and aq 6i,-.
The eigenvalues of A. are

(84) A, cos (2]v]
for ] I and v L Now we can choose hq Aq and we have wi i/t for ] L

The transition probabilities p) are given by (65), and in particular we have

(85)
i=0

where Ai is defined by (45).
Now the Markov chain {v,; n =0, 1, 2,...} has state space (0, 1,. ., t- 1) and

transition probability matrix [p+], where pt+=p (v=0, 1, 2,...) and p=p,_
(t/2 < v t). The transition probability matrix is cyclic and has the following Jordan
decomposition"

(86)

where

(87) ei exp (2*r-4-1]
and

t-1

(88)
-’0

6. Regular simplexes. In two dimensions a regular simplex is an equilateral
triangle, in three dimensions a tetrahedron, and in four dimensions a 5-cell. In r
dimensions (r _-> 2) we can choose Xo (1, 1,. , 1) and xl, x2, ’’’, xr as the r cyclic
permutations of (1, -1, , -1) for the vertices of a regular simplex. Then ro r + 1,
m 1, So {Xo} and Sx {xt," ’, Xr}. Now we have ro 1, rt r and

1 r-1
H=

1 -1 1
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Since 0)0 1/(r + 1) and 0)1 r/(r + 1), therefore

1 r
(90) P) ;J- 1

-+
r+l

(P-Pl)’

for n _-> O, where po + rpl 1.

7. Regular cross polytopes. In two dimensions a regular cross polytope is a
square, in three dimensions an octahedron, and in four dimensions a 16-cell. In r
dimensions (r->2) we can choose Xo, xl, ’’’, x2,-1 as the 2r permutations of (:t:
1, 0,..., 0) for the vertices of a cross polytope. Then tr 2r, m 2, tro 1, O’1
2(r 1), r2 1 and

(91)
A= 2(r-2) 1, It= 1 -1 A= -2

2(r-1) 1 (r-l) 0

Since 0)0 1/(2r), 0)1 (r-1)/(2r) and 0)2=1/2, therefore

1 (r 1)
(po- 2pl +p2)" + 1/2(po p2)(92) P) rr+ 2r

for n -> 0, where po + 2(r-1)pl + P2 1.

8. Measure polytopes. In two dimensions a measure polytope is a square, in three
dimensions a cube, and in four dimensions an 8-cell. In r dimensions (r _-> 2) a measure
polytope has 2’ vertices, say,

(93) {(01, O2," Or): O 1 or -1 for all 1, 2,. ., r}.

Then tr 2r, rn r and trj (7) for ] 0, 1, ., m. Now

(94) }[ij (-1,()(m-/
v=0 f--/

for 0 _<- _-< m and 0 -< ] _<- m. We can write down also that

(95) E Az (1-z)(1 +z)"-
/=0

for 0 <= <_- m. Now we can choose hii Ai, and then

(96) 0)=
j -.

In this case

(97) (n)
P ik E hijhikA

]=o

where

(98) A= E hjp
----0
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for 0, 1, , m and p0, pl, ", Pm satisfy the requirement

(99) E p 1.
v=0 /

In the particular case where pl 1/m and p 0 for v # 1, the above results can be
deduced from some results of M. Kac [3], [4] for the Ehrenfest urn problem. See also E.
Schr6dinger [10], F. G. Hess [2], M. J. Klein [5], L. Takics [15] and G. Letac and L.
Takics [8].

Now we have

(Joo) ai,Li+i-2v () (/’- v

9. The icosahedron. The icosahedron has tr 12 vertices which may be chosen as
the cyclic permutations of (1, 0, r) with all changes of sign. Here and in the rest of the
paper

1+4 
(101) r

2

In this case m 3, A0 I, Aq is given below, A2 AT and A3 T, where T is defined by
(72). We have

(102) A1
2 2
2 2

5
(n)where the dot means 0. Tables 4, 5 and 6 furnish all the data needed to find P ik

TABLE 4
The icosahedron

] 0 2 3
trj 5 5

12toj 5 3 3

TABLE 5 TABLE 6

0 1 2 3 j 0 1 2 3

0 5 x/g 4g 0 5 5
-1 -1 -1 -1 1

2 -1 -1 2 4 -x/ -1
3 5 -x/g -x/g 3 -x/g x/g -1

The n-step transition probabilities are given by (65). In particular, we have

(103) 12p P + 5, ’ + 3A + 3,

for n _>- O.
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10. The dodecahedron. The dodecahedron has tr 20 vertices which may be
-1chosen as (+ 1, + 1, + 1) and the cyclic permutations of (0, z -) with all changes of

sign. Here - is defined by (101). In this case m 5, Ao I,

3

1 1 1
1 1 1

2 1
3

(104) A=

6
2 2 2

1 1 1 2 1
1 2 1 1 1

2 2 2
6

(n)Now pik is given by (65), and in particular we have

(105) 20p =Ao +4A1 +5A +4A3 +3A4 +3A5
for n _-->0. See G. Letac and L. Takfics [7], where (105) is determined by another
method.

11. The 24-cell. The 24-cell has tr 24 vertices and m 4. See Table 7 for the
sections of a 24-cell with circumradius 2.

TABLE 7
The 24-cell

0 (0, 0, 0, 2) 0 0
1 (1,1,1,1) 8 2 2
2 (2, 0, 0, 0) 6 9 2x/ 2
3 (1, 1, 1,-1) 8 8 2x/ 2
4 (0,0,0,-2) 4 4 3

In each section only one representative vertex is displayed. To obtain all the vertices in
Sj we should equip the first three coordinates of the displayed vertex by the signs +/- and
form all permutations of the first three coordinates.

Now Ao I,

(106) A1

6
3 3 1 3 3
4 4 A2 1 4 1
1 3 3 1 3 3

8 6

A3 AT and A4 T, where T is defined by (72).
The elements of the matrices H and A are given by Tables 8 and 9.

TABLE 8 TABLE 9

hii A#,

0 2 3 4

0 2 3 4 2
1 1 -1 0 -1 1
2 2 -1 0 0
3 -1 0 -1
4 1 2 3 -4 -2

0 1 2 3 4

0 8 6 8
1 -4 6 -4 1
2 1 0 -2 0 1
3 -2 0 2 -1
4 4 0 -4 -1
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Now pl, is given by (65), and in particular we have

(107) 24p =hg +2A’ +9A +8A3 +4A4

for n ->_ 0.

12. The 600-cell. A 600-cell has tr 120 vertices. A 600-cell with circumradius
p 2 and center (0, 0, 0, 0) contains the following vertices: the 8 permutations of
(+2, 0, 0, 0), the 16 permutations of (+ 1, + 1, + 1, + 1) and the 96 even permutations
of (+/- z, +/- 1, +/- z-a, 0), where z is defined by (101). Now rn 8. See Table 10 for the
sections of this polytope. In each section only some representative vertices are
displayed. To obtain all the vertices in Sj we should equip the first three coordinates of
the displayed vertices by the signs +/- and form all permutations of the first three
coordinates.

TABLE 10
The 600-cell

i $i cr 120oi a D

(0,0,0,2) 0 0
(1, O, "r-, r) 12 16 6-2/ 1
(1, 1, 1, 1)

20 9 4 2
(,r, "r-a, O, 1)
(’r, O, 1, "r

-1 12 9 10- 2/" 2
(2, O, O] O)

25 8 3
(’r, 1, "r- O)

3O

(’r, O, 1, "r
-a 12 16 6 +2/ 3

(1, 1 1, 1)
20 36 12 4

(’r, ’r -a’, O,-1)
(1, O, "r-a, -’r) 12 4 10+2/ 4
(0, 0, 0, -1) 4 16 5

Now Ao I, A1,/k2,/Ik3, A,4, are given in Tables 11, 12, 13 and 14, and As =/3T,
A6 A2T, A7 AaT and A8 T.

TABLE 11

0 1 2 3 4 5 6 7 8

12
5 5
3 3 3
1 5

2 2

3
5 1
4 2
5
3 3

1

1
3
5

12
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TABLE 12
ai2

0 2 3 4 5 6 7 8

0 20
5 5 5 5

2 3 6 6 3
3 5 5 5 5
4 2 4 2 4 2 4 2
5 5 5 5 5
6 1 3 6 6 3
7 5 5 5 5
8 20

TABLE 13
aij3

0 2 3 4 5 6 7 8

0 12
5 5

2 3 3 3 3
3 5 5
4 2 2 4 2 2
5 1 5 5
6 3 3 3 3
7 5 5
8 12

TABLE 14

0 2 3 4 5 6 7 8

0 30
5 5 10 5 5

2 3 6 3 6 3 6 3
3 5 5 10 5 5
4 1 4 4 4 4 4 4 4 1
5 5 5 10 5 5
6 3 6 3 6 3 6 3
7 5 5 10 5 5
8 30
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The elements of the matrices H and A are given in Tables 15 and 16.

TABLE 15

ho

i 0 2 3 4 5 6 7 8

0 1 4 3 3 5 4 6 2 2
1 1 -1 -z-1 0 1 -1 - -z

-1

2 0 0 -1 -1 0 1
3 -1 -r-1 r 0 -1 r- -r

4 0 -1 -1 1 0 0 0 0
5 -1 -r- r 0 1 -1 -’-
6 0 0 -1 0 -1 -1
7 1 -1 z -r- 0 -1 -r z

-1

8 1 4 3 3 5 -4 -6 -2 -2

TABLE 16

x 0 1 2 3 4 5 6 7 8

0 12 20 12 30 12 20 12
-3 5 -3 0 -3 5 -3 1

2 4z 0 -4z- -10 -4z- 0 4r 1
3 -4z-1 0 4z -10 4z 0 -4z-4 0 -4 0 6 0 -4 0 1
5 1 3 -5 -3 0 3 5 -3 -1
6 -2 0 2 0 -2 0 2 -1
7 6z 10 6r- 0 -6r-1 -10 -6r -1
8 1 -6r- 10 -6r 0 6r -10 6r-x -1

The n-step transition probabilities are given by (65). In particular, we have

(108) 120p =ho+16hl +9A2+9A3+25A4+16hs+36A+4A7+4A8

for n _-> 0. See also G. Letac and L. Takfics [9].

13. The 120-ceil. A 120-cell has 600 vertices. Now the state space of the Markov
chain {vn; n 0, 1, 2,. .} consists of 600 states. If we define the sequence of random
variables {n; n 0, 1, 2,. .} such that , whenever v s Sj, where Sj is defined by
(2), then the state space of {,; n =0, 1, 2,...} consists of 31 states, but {:; n
0, 1, 2,. .} is not a Markov chain. If we want to restore the Markov property of {:n;
n 0, 1, 2,...}, then some of the sections S (/" 0, 1,..., 30) should be subdivided
into two or three disjoint subsets. Proceeding in this way we arrive at a homogeneous
Markov chain having 45 states. We shall study this Markov chain in a subsequent paper.
Here we would like to mention only that if pl 1/4 andp 0 otherwise, that is, if in each
flight the traveler visits one of the four neighboring vertices of the starting vertex with
probability pl =1/4, then the probability p(n) that the traveler returns to the initial
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position in n steps is given by

(109)

+ 16{ (’x/--!)" 1,’()"} +4{ 3/+ 1)" 1)"}," +- (" +-""(’’-

+48{(4- 1)" + (-1)"(4+ 1)"}

+25 + 3 cos
cos + + 3

cos
3

{(1 2x/’ )" (1 2x/-’ (g,-2rr))"+36 + 3
cos + + 3

cos

cos

where

43 151
(110) cosq=

44x/
and cos=

44x/

Note added in proof. After formula (104) the following should be added: A3 A2T,
/Ik4 =/ll’r and T, where T is defined by (72). The following tables furnish all the
data needed to find ko

TABLE 17
The dodecahedron

j 0 1 2 3 4 5
tr 3 6 6 3
20to 4 5 4 3 3

TABLE 18

2 3 4 5

6
-4

1
-4
6

3
1

-1
-1

3

2 3 3
o -,/ ,/

-1 1 1
1 -1 -1
0 4 -4

-2 -3 -3

TABLE 19

0 2 3 4 5

0 3
-2

2
3 1 0

5 1

6 6 3
1 -2

-2 -2
-3 3 0
2 -2
2 -2 -x/

-1
-1
-1
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ADJACENCY ON THE POSTMAN POLYHEDRON*

RICK GILES

Abstract. Let G V, E) be a loopless, undirected graph and C
_
V have even cardinality. A postman set

is a subset J
_
E such that for every node v V, the number of edges of Jincident to v is odd if and only if

v C. The postman polyhedron P(G) is the sum of the convex hull of all incidence vectors of postman sets and
the nonnegative orthant i+z. We give a simple characterization of adjacency for vertices of P(G). An upper
bound on the distance between two vertices, and hence the diameter of P(G), is given.

Let G (V, E) be a loopless undirected graph with node set V and edge set E, and
let C

_
V be given, with ICI even. Subset J ___E is called a postman set if for all

v V, IJ fq 8(v)l 1 (mod 2) if and only if v C, where 8(v) denotes the set of edges
incident to v. It may be the case that G has no postman set. However, it is not
difficult to see that G has a postman set if and only if each component of G contains an
even number of nodes of C, and henceforth we assume that G has a postman set.

The following two important examples of postman sets are obtained by making
appropriate choices of C. First, if IC[ 2, say C {s, t}, then J is a minimal postman set
if and only if J is the edge set of an s path. Second, if C {v V" v has odd degree},
then a postman set corresponds to a set of edges such that if an additional copy of each
edge in the set is made, then the resulting graph is Eulerian. We refer the reader to
Edmonds and Johnson 14] for the details of this correspondence.

Edmonds and Johnson [4] describe an efficient algorithm for the problem of finding
a minimum weight-sum postman set. Their work includes the description, as the
solution set of a linear system, of the following unbounded polyhedron associated with
postman sets. Let [E denote the set of real-valued vectors (xj’] E). For J

___
E, xI

denotes the incidence vector of J. We define the postman polyhedron, P(G)=-
conv {x I" J is a postman set} + R+z. Thus the vertices of P(G) are the incidence vectors of
minimal postman sets and, given a vector c l+z, the Edmonds-Johnson algorithm is a
good algorithm for finding a vertex of P(G) which minimizes cx over x P(G).

Here we study the adjacency relation between vertices of P(G). Two vertices w
and x of a polyhedron P are said to be adfacent if the line segment w, x is an edge of P,
i.e., no point of [w, x] is a convex combination of points of P-[w, x]. Two postman sets
are ad]acent if their respective incidence vectors are adjacent on P(G). Before giving a
characterization of adjacency for postman sets, we establish three properties of
postman sets.

PROPERTY 1. LetJ Eand letPbe the edge set ofa polygon. Then Jis a postman set

if and only ifJ/ P is a postman set, where Ax denotes symmetric difference.
Proof. If J

_
E, P is the edge set of a polygon and v V, then

IJ f’) 6(v)[ =-[(J/ P)CI 6 (v)l(mod 2). [-1

PROr’ERT 2. IfJandKare two differentpostman sets, then J/ Kcontains the edge
set of a polygon.

Property 2 follows from the observation that if J and K are two different postman
sets, then for every node v, [(J/ K) f’l 6(v)l is even, and so J/ K contains the edge set

* Received by the editors October 15, 1979, and in final form November 20, 1980. This research was
supported in part by the National Science Foundation under grant MCS 78-01982, and by Sonder-
forschungsbereich 21(DFG), Institut fiir Okonometrie und Operations Research, Universitt Bonn, Bonn,
West Germany.

t Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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of a polygon. Notice that Properties 1 and 2 imply that a postman set is minimal if and
only if it does not contain the edge set of a polygon.

PROPERTY 3. Let J and K be two minimal postman sets and let E J K. Then
J Kcontains the edge set ofonly one polygon ifand only ifJandKare the only postman
sets.

Proof. Suppose J t2 K contains the edge sets, say P and Q, of two different
polygons. Then, by Property 1, J/k P and J/k O are two postman sets, each different
from J. If J/k P K J/k Q, then P J/ K Q; a contradiction. Hence J/k P or
J (2 is a third postman set.

Conversely, suppose J K contains the edge set, say P, of only one polygon. If
J/ P K, then (J/k P)/k K (J/k K) P contains the edge set of another polygon, a
contradiction. Hence J/k P K and J k K P. If L is a third postman set, then,
because L J t_J K and J
P
_
K/k L. But then P J

_
L and P K P J

_
L; whence P

_
L. L/k P

_
J CI K is

also a postman set; contradicting the minimality of J and of K. Hence there is no third
postman set.

THEOREM 1. LetJandKbe two minimalpostman sets. Thefollowing are equivalent.
(i) J, K are adfacent.

(ii) There do not exist two postman sets L, M, different from J, K, such that
LM_JKand LMJK.

(iii) Y t.J K contains the edge set of only one polygon.
Proof. (i) ::> (ii). Suppose L, M are two postman sets, different from J, K, such that

Y K LL M
_
J K and L LIM

_
J LI K. Where x (x + x and y (x + xt), we have

x >- y. If x y, then J, K are nonadjacent because xt and xt are not on the line segment
[x, xK]. If x y, then y,’ [x, x g:] and, because P(G)=P(G)+R+, there is a vector
z P(G)-[x, x: such that 1/2(y + z) x.

(ii) ::> (iii). If J LI K contains the edge sets of two different polygons, then, as was
argued in the proof of Property 3, there is the edge set, say P, of a polygon such that
P
_
J LI K and L =- J/k P, M K/k P are two postman sets different from J, K. By

definition of L and M, L CIM J fq K and L LIM
_
J LI K.

(iii) => (i). Suppose
[x J, x]. Then xj 0 for all f E- (J LI K). If x is a convex combination of points of
P(G) -Ix, x], then we may assume that one of these points is the incidence vector of a
third postman set, which must be contained in J IA K. This contradicts Property 3, so
J, K are adjacent.

Given two vertices w and x of a polyhedron P, there is always a sequence
W=Xo, Xl,...,x,,=x such that xi and xi/l are adjacent on P for 0-<i_-<n-1.

The distance on P from w to x, do(w, x), is defined to be the minimum integer n for
which a sequence of this type exists. The diameter of P is max {do (w, x): w, x are two
vertices of P}.

THEOREM 2. If J,K are two minimal postman sets, then de((x,x:) <-
min {[J K[, [K J[}.

Proof. Suppose IJ-K[ _-< ]K -J[. Let P c__ J I..J K be the edge set of a polygon such
that P-J is minimal. We claim that L --- J/k P is a minimal postman set. Suppose O

_
L

is the edge set of a polygon. Then O
_
J IA K, O J

_
P J and, by the minimality of

P J, Q J P J. It is impossible that Q P because P J and (P J) L. But then it is a well-known graph property that for any f (O-J) (P-J),
(P (2)-/" contains the edge set of a polygon, say R, and R -J P-J; contradicting
the minimality of P-J. Hence L is a minimal postman set. Clearly J LI L J IJ P. If
J LI L contained the edge set of another polygon, then, as argued above, P J would not
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be minimal. Hence, by Theorem 1, J and L are adjacent. Furthermore, [L KI < J-KI
and the theorem follows by induction on J-K[. [-1

The bound in Theorem 2 may be realized. For example, if G is the graph of Fig. 1,
C ={s, t}, edges of Y are solid and edges of K are dotted, then dp<)(x, x:) IJI
min {IY K[, IK Y[}.

/ \ / \ / \
/ \ / \ / \

/ \ / \ / \
/ \ / \ / \

FIG.

COROLLARY 1. The diameter ofP(G) is at most

max {IJ KI" J, K are minimal postman sets, IJ KI <- IK Jl}.
Again, the graph of Fig. 1 shows that the bound of the corollary may be realized.
A d-dimensional polyhedron Pwith n facets has the Hirsch property if the diameter

of P is at most n d (see [2, p. 168]). Klee and Walkup !-5] have shown that unbounded
polyhedra may not have the Hirsch property, but we now show that P(G) does.

COROLLARY 2. P(G) has the Hirsch property.
Proof. Since R+ is the recessional cone of P(G), P(G) has dimension ILl and it is

easily seen that for each/" E, xj _-> 0 defines a "trivial" facet of P(G). If J is a minimal
postman set, then xs is a vertex of P(G), and it follows from elementary polyhedral
theory that P(G) must have at least IJ[ nontrivial facets. The corollary now follows from
Theorem 2.

The postman polyhedron is closely related to the matching polyhedron. J
_
E is a

perfect matching if IJ f’l 8(v)l 1 for all v V. It is nontrivial to decide whether G has a
perfect matching; Edmonds [3] gives an efficient algorithm for determining whether G
has a perfect matching. Assuming that G has a perfect matching, the matching
polyhedron, M(G), is defined as conv {xs: J is a perfect matching}. Let C V. (Since G
has a perfect matching, IC[ is even). M(G) is a face of P(G), namely M(G)=
{x P(G): F.jE xj vl/2}. Hence, for perfect matchings J and K,

X
Kand are adjacent on M(G)

:}x and xr are adjacent on P(G)

JOK contains the edge set of only one polygon

:>J/k K is the edge set of a connected subgraph of G.

This characterization of adjacency of vertices on M(G) is also a special case of a result
of Chvfital [1].

The components of the subgraph induced by J [.J K, for perfect matchings J and K,
are even polygons and isolated edges. It follows from the above characterization of
adjacency in M(G) that dt)(x, xr) <-IJ A KI/ <- VI/a, where a is the minimum
length of an even polygon of G. Hence M(G) has diameter at most IV[/a and it is a
straightforward matter to construct graphs G such that M(G) has diameter Ivl/a.
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Suppose that G is a complete graph. Padberg and Rao [6] have shown that M(G)
has diameter 2. If C {s, t}, then every minimal postman set is adjacent to the postman
set consisting of the single edge Is, t]; so P(G) has diameter 2. However, in general the
postman polyhedron for a complete graph may have diameter greater than 2. Let G be
the complete graph on node set V {1, 2,. , 7}, C {1, 2, 3, 4} and J and K be the
minimal postman sets illustrated in Fig. 2, where edges of J are solid and those of K are
dotted.

-5
/

/
/

4 /

\\\ \\\
3

FIG. 2

I
I

I
\I

6

If L is a third minimal postman set, then without loss of generality we can find edge sets
A and B of 1-2 and 3-4 paths respectively such that A f’l B , A I,,J B L. From this
it is a straightforward matter to check that J U L or K 1,3 L must contain the edge sets of
at least two polygons. Therefore, by Theorem 1, L cannot be adjacent to both J and K,
so P(G) has diameter at least three.
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SAMPLING SCHEMES FOR
FOURIER TRANSFORM RECONSTRUCTION*

MARCI PERLSTADTt

Abstract. We study a problem that arises in radio astronomy and other fields. Astronomers measure a
function in order to recover its Fourier transform. Restrictions on the locations of telescopes limit the number
of measurements made. It is generally assumed that if the measurements obtained are in some sense
"equispaced" then recovery of the transform will be satisfactory. We develop more objective criteria for
evaluating the appropriateness of different sampling schemes. Applying these criteria to a simplified model
we show that equispaced samples are not always optimal.

The problem can be abstracted as follows. Let ]’be a function and/its N-point finite Fourier transform. If
we measure f at N appropriate points we can recover 1 using standard techniques. Suppose instead that f
cannot be measured at N values. Assume one has some knowledge of 1, e.g., that f is band-limited so/ 0
outside a band. Given L values of)we need only p N-L values of f to recover/in full. Now we ask: Which
p values of f is it "best" to sample?

Our criterion for a sampling scheme to be good is that the computation of/ be fairly insensitive to any
sampling errors in f. We show that this is equivalent to studying the effect of perturbations on a matrix whose
entries depend upon the values where f is sampled and the values where 1 is unknown. Different quantities
associated with this matrix are studied to determine the effectiveness of the sampling scheme.

1. Introduction. We study a problem that arises in radio astronomy as well as in
numerous other fields [1], [3], [5], [11]. Radio astronomers measure the visibility of a
source in order to obtain its brightness distribution. It is known that brightness is the
Fourier transform of visibility, so that if it were possible to measure the visibility at all
points, the brightness could be recovered in a straightforward manner. In practice, the
number of visibility samples is limited by the locations of radio telescopes. This is
particularly significant for VLBI (Very Long Baseline Interferometry) studies, where
sampling coverage is fairly sparse. It is generally assumed that if the samples obtained
are in some sense "equispaced" then recovery of the brightness from the visibility is
satisfactory. Our concern will be to develop criteria that will provide a more objective
basis for determining the appropriateness of various sampling schemes. Using these
criteria we show that equispaced samples are not always optimal.

The mathematical problem can be abstracted as follows. Let f be a function and
its N-point finite Fourier transform. If we could determine the value of f at N
appropriate points then we could recover / using Fourier transform techniques.
Suppose instead that we are unable to measure f at all N values but still wish to recover
] Assume that one has some knowledge of/ e.g., if f is band-limited then ]= 0 outside
of a band. Given L values of f we need only measure p N-L values of f in order to
recover the missing values of 1 The question arises as to which p values of f it would be
"best" to sample. Our criterion for being a good sampling scheme is that the compu-
tation of ) be fairly insensitive to any sampling errors in f.

It should be noted that there exist a large number of papers dealing with various
aspects of the sampling problem for functions and their Fourier transforms. For a
comprehensive review of these, see [7]. The particular question dealt with here is of a
somewhat different nature.

Section 2 contains a formal statement of the problem. It is shown that the
sensitivity of/ to sampling errors in f can be measured by the condition number of a

* Received by the editors April 29, 1980. This work is based in part on the author’s PhD thesis at the
University of California at Berkeley.

" Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.
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matrix E whose entries depend upon the points where f is sampled and where f is
unknown. In 3 we show the conditions under which equispaced sampling is optimal.
Clearly the quality of a sampling scheme depends upon the class of functions being
sampled. For the general class of band-limited functions we show that equispacing is
optimal. However, for appropriate subclasses of these functions we may have additional
a priori knowledge of f. Under these circumstances equispacing is frequently a poor
scheme.

In 4 we consider the case when we are able to sample more values of f than are
needed in order to recover ] This leads to an overdetermined system (i.e., E is
rectangular) and we consider the problem from the point of view of least squares. We
see that equispacing is no longer the only optimal sampling configuration for a
band-limited function.

Section 5 deals with the problem of determining for which missing values of/it will
be possible to sample f in such a manner that the resulting matrix E has a condition
number of 1. It is shown that this is equivalent to looking at the roots of a certain
polynomial with all its coefficients either 0 or 1.

Section 6 uses the material developed in 5 to study a special case referred to as
L gap L. By the L gap L case we mean the case where f is known outside of two bands of
L points each. This is meant to be a simplified model of a double source. We show that
by taking our samples in a certain nonequispaced fashion we can be assured that the
condition number of E is less than or equal to x/.

Section 7 contains a brief discussion of alternative measurements of sensitivity to
perturbations. Although the determinant of a matrix is generally a poor indicator of
sensitivity, we show that for matrix E we can bound the condition number based on the
determinant. This can save time in computer searches for small condition numbers.

Section 8 extends the results of earlier sections to the two-dimensional case. Once
again, "equispaced" samples are shown to be optimal for "band-limited" functions, but
not necessarily optimal in general. A two-dimensional extension of the L gap L case is
also considered.

Section 9 contains a brief discussion of applications to radio astronomy. Given the
widespread use of the finite Fourier transform throughout engineering, it is anticipated
that many other applications exist.

2. Statement of the problem. Let f be a function of {0, 1, 2,..., N-1}. Its
discrete Fourier transform, f (also a function of {0, 1, 2, , N- 1}), is given by

1 N-1

E f(j)to-i

where to e 2ri/N. We know that

N-1

(2.2) f(])= E (k)toik,
k=O

and so f(/’) can be recovered from/(k). Note that (2.2) can be written in matrix form as

(2.2)’ f=R
where f and f are column vectors with ruth entryf -f(m) and. -f(m) and where R
is N xN with mnth entry

(2.3) R,,,,, to("-)("-.
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Suppose that) is known at of the values {0, 1, 2, ., N 1} (as would be the case,
for example, if f were known to be band-limited) and that we are to sample f(]) at some
points in order to recover the unknown values of/ We need p N- values of f(]) to
recover the rest of f. The question dealt with here is’ at which p values of j would it be
"best" to sample f? By "best" we mean for which ,/’2," , ] will a "small" sampling;
error in f(j), f(]2), ’, f(],) result in only a "small" error in the computed values of f.
Let

fl h
(2.3)’

where/’2’" f, are the p values where f is sampled and k,..., kp are the p values
where f is not known. By rearranging the rows and columns of matrix R in (2.2)’ we
obtain

((2.4)
\f2 \h/ O H

where/ is the N xN matrix with stth entry/ ojskt and the blocks E, F, G, H are the
result of partitioning R so that E is p x p, F is p x (N-p), G is (N-p) x p and H is
(N-p) x (N-p). Thus

(2.5)

Since we assume that f. was known exactly and that f will be sampled, one measure-
ment of the sensitivity of) to perturbations in f is given by the condition number of E
(see [4]).

Recall that the condition number of a (p x p) matrix A is ix(A)= IIAIIIIA-II. The
norm we will use is the 2-norm. Thus tx(A)=/-Ap/A, where 0<Ax---A2<-. .<-Ap
are the eigenvalues of A*A (here A* fi, the conjugate transpose of A). The larger
the quantity/x (A), the more sensitive the solution to the system Ax b is to pertur-
bations in b [4]. It should be noted that having/x (A) large means that the problem itself
(as opposed to a particular algorithm for solving the problem) is ill-conditioned. Thus if
matrix E of (2.4) is ill-conditioned, then regardless of what method we use to solve for/1
(including exact arithmetic), the results obtained are still sensitive to perturbations in E
and/or f.

From the above discussion we have that E is the p x p matrix with mnth entry
E,g,=toik". Since the known frequencies are given, the unknown frequencies,
k,..., k, do not change. On the other hand, j, j2,’", jp correspond to the points
where f is sampled, and we assume either that we are free to choose these or that we have
at least some freedom in our choice of h," ",/’. Our goal is to find choices of/’,.. , jp
that make/z (E) as small as possible. As a first approximation we assume any choice of
j,. , j is possible and try to minimize/x (E) for fixed k,. ., ko.

It is convenient to make our problem "continuous" by letting E have mnth entry
E,,, :, where q,. , G are points on the unit circle. Lemma 2.6 is immediate.

LEMMA 2.6. For all p x p matrices of the form E, the trace of E*E (denoted by
tr (E’E)) isp2 and, therefore, 0 <= IE*E[ <- pO (where IE*EI determinantofE*E). Thus
tz (E) 1 if and only if IE*E! p ifE*E pI EE*.

Note that matrix R of (2.2)’ and (2.3) satisfies Ix(E)= 1.
A convenient pictorial display for/’x,...,/’o and k,..., k (or, equivalently,

a," ", G and ka,. ., k) can be made using the unit circle. Associate with j,. .,
the quantities wi=:x,...,oi,=G, where o=e’wt, and similarly associate
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kvkl,’", kv with (.0 kl, ,tO Thus, for example, if N= 12, jl, j2,j3=O, 1, 4 and
kl, k2, k3 2, 5, 9 we draw Figs. 1 and 2.

3
4 2

5

6 0

8 -10
f: k 1, k2, k3 2, 5, 9

8 -10

f:jl,j2,j3=O, 1,4

FIG. 1 FIG. 2

With the aid of this pictorial representation we now state:
LEMMA 2.7. Let P and P’ be congruent polygons inscribed in the unit circle, with

vertices 1, ", p and ’1, , ’ respectively. Let E and E’ be p p matrices with stth
entries Est (s)k, and E’,t (,,)k,. Then Ix(E) Ix (E’). In a similarfashion, ifthe polygon

kt k k , k ’, thenwith vertices tO ,. , tO is congruent to the polygon with vertices tO , tO

kl, ., kp in matrix E can be replaced by k’l, ", k’t, without affecting tx (E).
Example. The condition number of the matrix associated with Figs. 1, 2 is the same

as the condition number associated with Figs. 3, 4.

6 0

8
9

/: kl, k2, k 3, 6, 10

6 0

8-W 10

f: ja,u,j =0, 8, 11

FIG. 3 FIG. 4

Proof. By an isometry of the unit circle we mean a one-to-one, distance-
preserving map of the unit circle onto itself. Note that any isometry of the unit circle is
completely determined by its action on any two points that do not lie on the same
diameter. Thus every such isometry is either a rotation or a reflection about the x-axis
possibly followed by a rotation. Note that Ix (E) is unchanged by such a reflection or
rotation of the :i’s. Since 1," p and s, , are vertices of congruent p-gons if
and only if there exists an isometry mapping {:i}’=x onto {:}’=1, we are done. [3

3. Equispacing. We return to the original question: Which p values of f do we
sample? At first glance it may seem reasonable to choose p equispaced samples, i.e.
choose Sl,. , : to be the pth roots of unity. In this section we discuss one case where
this strategy works and then show that in most cases this is a very poor strategy.

A. Band-limited functions. Consider a function f where is known outside of a
band. This would be the case for the so-called "band-limited" functions for which/
vanishes (and thus is known) outside, say, 0, 1, 2,..., p-1. If p samples of f are
measured at sl, .., sp then we have that E has stth entry

(3.1) E,, :-.
The following theorem tells us how to choose q, , ep.
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THEOREM 3.2. For a function f with fknown outside 0, 1, 2, , p 1, the matrix E
of (3.1) has a condition number of 1 if and only if the p samples of f(l, p) are
equispaced.

Proof. First assume that :1, ’, :p are equispaced. By Lemma 2.7 we may assume
2 o.)P--l 2-a’i/p1-" 1, 2 "--to, 3--tO ,’’’, p where to e Thus E has stth entry Et

(s-1)(t-1)
to which is exactly the form of matrix R in (2.3). Thus (E)= 1.

Suppose now that E has the form of (3.1) and/x(E) 1. Thus EL* pI by Lemma
2.6, and we may assume :1-1 by Lemma 2.7. This means that the entries in the
first column of E* are just l’s, and since EL*= pI every row of E but the first must
sum to 0; i.e., 1 + r +" + SCp- 0 for r 2, 3," , p. Thus 2, p satisfy
1 + x + x 2

/.. / x p- 0, and must be the pth roots of unity other than 1.
An interesting consequence of this theorem is that it yields an alternative proof of

the following well-known fact:
COROLLARY 3.3. Suppose p points on the unit circle are to be chosen so as to

maximize the product o] their mutual distances. Then this product is maximized if and
only if the p points are equispaced. The maximum value of the product is

Proof. Matrix E of (3.1)is Vandermonde, and so Itz* l =. i.e.

]E*EI is the square of the product of all of the mutual distances points :,...,
Also, O<-_IE*EI<-_p p and IE*E] =pP if and only if/x(E) 1. The result follows.

B. Arbitrary functions. We now show that, in general, equispacing is not a good
strategy. The basic result is stated below.

THEOREM 3.4. Suppose is unknown at k 1, ", kp, and p equispaced samples off
2 top--l 2ri/Nare measured at 1, 2 "--to, 3---to ,’’’, p where to e Then the

corresponding matrix E has [El 0 (and thus lz(E)= ) unless kl, kp are distinct
mod p. If k 1, , kp are distinct mod p then t.t (E) 1.

Proof. E has stth entry Et (tok,)-a. Thus E is Vandermonde and the magnitude
o I1 is given by 1a<_-<r_-<p [to-k 1. If k 1, ", kp are not distinct mod p, then I 1- 0. On
the other hand, if kl,’ , kp are distinct mod p, then E is just matrix R of (2.2)’ (up to
some possible column interchanges) and so/z (E)= 1.

As an example consider the case when N 12 and/ is known outside of two bands
of three points each. In particular let kl," ", k6--0, 1, 2, 6, 7, 8 as shown in Fig. 5.
Since 0, 1, 2, 6, 7, 8 are not distinct mod 6, by (3.4) equispaced sampling as in Fig. 6
yields/x (E)= . It will be shown later that sampling as in Fig. 7 yields/z (E)= 1.

2 4 2 4

6 0 6 0 0

8 ) //z(E) oo 9

(equispacing) ,f/x(E)

FIG. 5 FIG. 6 FIG. 7

4. Least squares and equispacing. We consider a modification of the situation
described in 2-3. Before, if values of" were unknown then exactly values of were
measured. In many applications this is an artificial constraint on the number of samples.
In the following discussion we assume that at least values of/c are measured, thus
introducing the possibility of an overdetermined system. A formal description follows.
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Letfbe unknown for kl,’’’, kt and be known exactly for k/+l,’’’, ks. Suppose f
is measured at/’1,...,/’v but not/’v+,...,/’. Let

71 (i(kl), f(kl))T f2--(i(kl+x), f(kN))T
(4.)

fl --(f(/1),’"", f(jp))T, f2- (f(jp+l),

Reordering the entries of matrix R of (2.2)’ and (2.3), we obtain (2.4), where
mn (.0 Jmkn 2"rri/Nto e and/ is partitioned into blocks E, F, G, H, where E is p l, F
is p x (N- l), G is (N-p) and H is (N-p) x (N- l). Thus (2.5) holds.

To recover 1 we need N pieces of information. From fl and f2 we have p +N-
pieces, so we assume p >_- I. If p we have exactly the situation described in 2. If p > l,
however, then we have more equations than unknowns in (2.5) and due to sampling
errors in fl it is impossible to solve for f exactly. Instead one commonly requires that
the solution to (2.5) be best in the "least squares" sense. Thus we choose fl so as to
minimize

IIEfx (fx Ff)ll2.
Once again we want to know the effect of perturbations in our measured values fl,

on the solution fx. One measurement of this sensitivity is given by the condition number
of the rectangular matrix E (denoted by/z(E)). See, for example, [6]. For the p x
matrix E(p > l),/z(E) x/h/hl, where 0<A1 --<A2 -<" --<At are the eigenvalues of
E*E (assuming our underlying norm is the 2-norm). It should be noted that/z (E) i if
and only if E*E =pll, where It is the identity matrix. It does not follow that if
E*E pll then EE* lip.

We can now return to the question of equispacing. We first consider the case whenf
is band-limited, i.e., kx, k2, k 0, 1, 2, , l- 1. We will see that if 1, &," , G
are chosen equispaced, then/x (E)= 1. On the other hand, this need not be the only
choice of p points that makes/z (E)= 1. This is in contrast to the situation of 3 where
/z (E)= 1 if and only if the samples were equispaced. We have:

THEOREM 4.2. Let f be band-limited, i.e., k1,’", kt =0, 1,..., 1-1. If f is
sampled at 1, , p andE is the matrix with stth entry E, k, -, then Ix (E) 1 if
and only if 1, ", p satisfy the l- 1 equations

(4.3) +/ +...+/ =0, i- 1, 2,..., l-1.

Proof. The proof follows from the fact that/x (E)= 1 if and only if E*E pit. [
If p l, then note that the only solution to (4.3) (on the unit circle) is p equispaced

points. This follows from Theorem 3.2, where we showed that when p l, equispacing is
the only scheme that makes/x (E)= 1.

When p > many solutions exist. They will preserve some sense of "equispacing,"
since having 1 + :2 +" + G 0 means that , 2, , G have center of gravity 0. As
an example consider the case when kl, k2 0, 1 and p 4. By Theorem 4.2, any choice
of 1, 2, 3, 4 with center of gravity at 0 will make/z (E) 1. Thus, if , s2, :3, 4 are
chosen as the endpoints of two diameters,/z (E) 1. For instance, let : e i1, 2 e i2,
s3 =-1, and s4 =-s2 (see Fig. 8).

In general, equispacing is not a good strategy for the least squares case. We have
the following analogue of Theorem 3.4.

COROLLARY 4.4. Let 1, ", G 1, w, 00
2 - 2.rilp, where oo =e LetEbe

the p matrix with mnth element E,,, ;,", where k 1, , kl are given. Then Ix (E) 1
if and only if kl,. ", kt are distinct mod p. If kl,. , kt are not distinct mod p, then
,(E) oo.

Proof. The proof is analogous to the proof o (3.4). El
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2

FIG. 8

5. When does p (E) = 17 In this section we examine the following problem: given
k 1, , kp, when do there exist 1, 2, , p such that Ix (E) 1.9 Although we cannot
answer this question completely, the lemmas below provide criteria that are useful for
specific cases. Furthermore, if we restrict to the discrete case (i e2rik/N for integers k
and N) then there is an algorithm for deciding when Ix (E) can be 1.

Two things should be noted. First, it is not always true that for a given kl," ’, kp
we can make IX(E) 1. For example, if kl, k2, k3 0, 1, 3 then it can be shown [12] that
[E*E[ _-< 20 for all choices of 71, :2, :3. Thus, by Lemma 2.6, (E) > 1. Second, it is not
necessary to have IX(E)= 1, but only to have IX(E) relatively small. Our hope is that
patterns of s1, ., that make Ix (E) I for some k1, , kp are similar to patterns of
1,""", p that make g (E) small for other k1,’", kp (see 6).

Lemma 5.1 below is stated for the "discrete" case. Parts (i) and (ii) of the lemma
generalize in the obvious way to the "continuous" case. The proof of Lemma 5.1
follows from Lemma 2.6.

LEMMA 5.1. Let kl, ", kp be distinct nonnegative integers. Then TFAE’
(i) There exist N and ]1," ", ] (distinct integers) so that every element of

A {toi"-i" ]1 <- n < rn < p, to e 2ri/N}
satisfies the equation

(5.2) x kl + x k2 +" + x kp 0.

(ii) There exis’t N and h, ", Jp (distinct integers) such that matrix E with mnth
entry E,,n toimkn(to e2,,/N) has Ix(E)= 1.

(iii) There exist N and h, ",Jv (distinct integers) such that each element of

satisfies the equation

e 2"n’i/NB {tok"-k"ll<m<n<p, to= }

xi+xi+" +xi O.

Furthermore, N and ]1," , ]p satisfy (i)/f and only if they satisfy (ii)/f and only if
they satisfy (iii).

We note that, for fixed k 1," , ko, there is an algorithm to test whether Ix (E) can be
1 in Lemma 5.1. The existence of the algorithm depends upon several properties of
cyclotomic polynomials [9]. We let dPN(X) be the Nth cyclotomic polynomial; i.e.,

(x) I-[ (x a), where A {vii(j, N) 1, v eEri/N}.
aA
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The degree of CI)N(X) is b (N), where b is the Euler phi function. Note that, for fixed
L, there exists M such that for all M’> M, 4,(M’)> L. Thus there is an algorithm
to determine all roots of unity which are also roots of (5.2). By Lemma 5.1 this yields the
desired algorithm.

Several examples of the use of this lemma are given below.
Example 5.4. Let kl, , kp O, 1, 2,..., p 2, r, where 0 < p 2 < r. This is a

natural generalization of the band-limited case, in that/ is assumed to be known every-
where outside of a band except for the point r. It is of interest to see what happens as
kp r is moved about the circle. We have noted that for kl, k2, k3--0, 1, 3, (E) is
never 1. The following corollary can be proved using (5.1) [12].
COROLLARY 5.5. Let kl, , kp O, 1, 2, , p 2, r, where 0 <p 2 < r. Then

unless plr + 1,/x(E) 1. Furthermore, i[plr + 1, then/x(E) 1 if and only if l, p
are equispaced.

Example 5.6. This example arises as a natural generalization of the band-limited
case, and provides a verysimplified one-dimensional model for a double source in radio
astronomy. We assume f is known everywhere except in two bands of L points each. In
terms of E, this corresponds to having p 2L and kl, k2, k2L
0, 1, 2, , L- 1, M, M+ 1, , M+L- 1, where M_->L. We refer to this case as
L gap L. By (3.4), equispacing should be used if and only if L =M(mod 2L). The
question now becomes: what should be done if LM(mod 2L)? We begin with

DEFINITION 5.7. Let L1, L2,’"", Lr be r distinct regular L-gons inscribed in the
unit circle. We call the set of vertices, q, , :p (p Lr), an r-Lgon set. Note that any
r-Lgon set is completely determined by specifying one vertex from each of L1, , Lr.
This set of r vertices is called a generator.

Example. A 2-5gon set is shown in Fig. 9, where to e 2ri/5. A generator is given by
{1, v}. We assume from now on that the vertices :j e ij, 1, 2, ., p are ordered so
that 0 <_- 01 < 02 <" < 0o < 2r. Thus {:1, :} is a generator.

COROLLARY 5.8. For the case L gap L (kl, kEL O, 1, L- 1, M,
M + 1,..’, M +L-1), there exist ,..., 2L such that the corresponding E satisfies
(E)= 1 if and only if LIM. Furthermore, if LIM then /z(E)= 1 if and only if, , p are isometric to the 2-Lgon set generated by {1, ,}, where t, is an Mth root

oi-.

0)

’,"4 VtO
4

FIG. 9

Proof. The proof follows from Lemma 5.1. Details can be found in [12]. As an
example we consider the case mentioned at the end of 3, where k1,"’, k6-
0, 1, 2, 6, 7, 8. Here L 3 and M =6. Thus LIM and /z(E)= 1 if {,..., ’6}

2 2 2ri/3 e 2"a’i/12{1, to, to v, vto, vto [to e v } (see Figs. 5, 6,. 7). In 6 we show that for the
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case L gap L we can have/x (E) _-< x/ (even if L[ M) by choosing :1," , SC2L to be an
appropriate 2-Lgon set.

It should be noted that the least squares case has its own analogue to Lemma 5.1.

6. A special case. We return to the L gap L case in Example 5.6. By Corollary 5.8,
/z (E) I if and only if L/M and :1, , sop form a certain 2-Lgon set. We now consider
the case when LIM, and minimize (E) over all 2-Lgon sets. We find that this
guarantees a way of choosing 1,"" ", :p so that/x(E)_<-x/. We have

COROLLARY 6.1. Let kl, , k2L O, 1, , L- 1, M, M+ 1, ., M/L- 1,
where LIM. Then lz (E) is minimized over all 2-Lgon sets by choosing 1, , p to be the
2-Lgon set generated by {1, u}, where u e2ri/(2Q-L) and Q is the (unique) integer such
that Q{M,M+I,... ,M/L-1} and LIQ. In this case [tx(E)]E=(2+d)/(2-d),
where d l1 + , and i(E) <- x/-.

The proof of Corollary 6.1 depends upon the fact that if sq, ’, sop form an r-Lgon
set (p Lr) then E*E (where E,, :k.) is block circulant with r x r blocks. Thus the
eigenvalues of E*E can be computed with relative ease. Details can be found in [12].

If , is chosen as in Corollary 6.1, then the quantity Q/(2Q-L) completely
determines (E). As the gap between the two unknown bands of/ grows (i.e., M
increases), Q/(2Q-L) gets "closer" to 1/2 and 11 + ,o1 gets "closer" to 0. Thus as M
increases the values of [/x (E)]2 decrease rapidly, as shown in Table 1.

TABLE

O O/(2Q-L) d [/x (E)]2

2 2/3 1. 3.
3 3/5 .618034 1.894427
4 4/7 .445042 1.572417
5 5/9 .347296 1.420276
6 6/11 .284630 1.331858
7 7/13 .241073 1.274114

Thus, for example, given k1,’’’, k6--0, 1, 2, 10, 11, 12 we have L 3 and Q 12.
Thus Q/(2Q-L)=74-, and if q,..., sop are chosen as in Corollary 6.1 then [/z(E)]2

1.572417.
As an illustration of the relative sizes of/z (E) for the case L gap L, we computed the

values of /z(E) when k1,’’ ", k4"-0, 1, 7, 8 and N 48. There 2,168 nonisometric
cases (see 2). Table 2 summarizes the results.

TABLE 2

Range of [/z (E)]2 Number of cases in this range

10,000, oo) 146
1000, 10,000) 178
[500, 1000) 77
[100, 500) 386
[50, 100) 339
[25, 50) 396
[10,25) 371
[5, 10) 192
[2,5) 81
[1,2) 2
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7. Alternative measurements to Ix(E). The condition number of E, /z(E) pro-
vides a "worst case" analysis of potential problems. It is often considered an overly
pessimistic measure. A common alternative measurement of the sensitivity to sampling
errors is provided by K(E)=tr (E*E)-a =Y.=I 1/Ak, where 0<A1,..., Ak are the
eigenvalues of E*E. It should be noted that, for the p matrix E, K(E)>-lip and
K(E)= lip if and only if/x (E)= 1.

Another quantity that is often used to measure the sensitivity of a system is the
determinant of E’E, IE*EI (here E is assumed to be p p). This, however, turns out to
be a very unsatisfactory way of measuring this sensitivity. This is discussed, for example,
in [4]. We will see below that in the case of matrix E, the quantity IE*EI can be of some
use.

Recall that IE*EI attains its maximum value of pP if and only if/x (E)= 1. In fact,
[E*EI can be used to provide an estimate for/x (E) when p is "small". This estimate in
turn can be used to reduce computation time for test cases since IE*EI is somewhat
cheaper to compute than/x (E). Again the fact that the eigenvalues, 0 =< A =< A 2 =<" -<
Ap, sum to p2 provides the basis.

DEFINITION 7.1. The determinant band for a (given p) is the closed interval
IDa, D2], where D is the minimum and D2 the maximum of the quantity

subject to the constraints

p

Y. /zi pZ, /zp a/xa,
i=1

P

H
i=1

2 p

i= 1,2,...,p-1 ia +p

D2 -max (1 + a pa-a + 1
Proof. The proof follows from carrying out the maximization and minimization of

Definition 7.1. Details can be found in [12].
COROLLARY 7.3. Suppose 1 <-_ a < a’ andp is fixed. Let IDa, DE] be the determinant

band for a and lea, ELI be the determinant band for a’. Then E1 < D1 and E2 < DE.
Remark 7.4. Suppose that IEE*[ D. Then we can solve the equation

(7.5) D= min /a P
i=l,’.’,p--1 1, ia +p-i

for a and call the solution C. Note that Ca yields the smallest possible condition
number for matrix E. We can also solve the equation

4ap a_(7.6) D max
(1 + a pa-a + 1

and

where p is a given positive integer.
Thus the determinant band for a depends upon the choice of p. Let E be the usual

p p matrix with mnth entry Emn :kn. Note that if [/x(E)]2= a and [D1, D] is the
determinant band for a (given p), then D1 -< [EE*[ _-<D.

LEMMA 7.2. For fixed p, the determinant band for a is IDa, D], where
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for a and call the solution C2. C2 is the largest condition number possible when
lEE*[ D. We can call [C1, C2] the "condition number band" for D. Thus if D
then C1-</x (E)-< C2. It should be noted that in practice (i.e., numerically) (7.5) and
(7.6) are easy to solve since the right-hand side of each is a strictly decreasing function of
a for a > 1.

Example. Let K, K2, g3, K4 =0, 1, 5, 6. Suppose we wish to search for the
smallest/z(E) over all choices of J, J2, J3, J4, where N 48. There are a total of 2,168
nonisometric cases to consider. If we were to use N 24 instead ofN 48 there would
be only 256 nonisometric cases to consider. Suppose we first run the 256 cases for
N 24, computing only lEE* I. We find lEE*[ <- 195.98. Using Lemma 7.2, we get that
D <-_ 195.24 if and only if a ->2.9. We can now turn our attention to the 2,168 cases
arising when N 48. Instead of computing/z (E) for each case, we will compute IEE*I.
Since the determinant band for 2.9 is roughly [148.9009, 195.24], we only compute
tz(E) if IEE*I >- 148.9. The result is that while we compute I tz*l for all 2,168 cases we
need only compute tz (E) for 60 cases. This yields a reduction in computation time.

8. The two-dimensional ease. In this section we consider the two-dimensional
analogue of the problem discussed in 2. The situation becomes much more compli-
cated, and the results obtained are not as strong as those obtained for the one-
dimensional case. We proceed with a formal statement of the two-dimensional
problem.

Let f be a function on {0, 1, 2,... ,N-1}x{0, 1, 2,... ,N-l}. Its discrete
Fourier transform, f (also a function of {0, 1,..., N- 1} x {0, 1,. , N- 1}), is given
by

’(/, k)o-"/,(8.1) f(m,n)
s=0 k=O

where to e 2,"/N. In turn

N-1 N-1

(8.2) f(j, k) E ., f(m, n)to(jm+kn),
m=0 n=0

so that f(j, k) can be recovered from f(m, n). Just as in 1, (8.2) can be rewritten in
matrix form as f Rf, where the entries of f and f are in lexicographic order and
Rsk to oj.ok, where vi is the ith 2-tuple in the lexicographic ordering of {0, 1, 2, , N
1} x {0, 1, 2,. , N- 1} and to e2i/N.

We consider the two-dimensional analogue of the original problem. Namely, we
assume f is known at all but p points, and we sample f at p points. Let

f (f(h, kl),. f(]v, kp)) T, f2 (f(],+,. kv+)," f(jN, k-))T,
il (i(ml, n,),’’’, nt,)) T, f2 (.P(m,+,, nv+,),..., i(mr, nm.)),

where (/’1, kt),. ., (fp,,, kp) are the points where f is sampled and (m, nl)," ", (mr,,
are the points where f is unknown. By rearranging the rows and columns of matrix R

Jsmt+ ksnwe obtain (2.4), where R is the N2N2 matrix with stth entry/t to and
E, F, G, H are blocks of the appropriate size (E is p p). Thus we have (2.5).

Once again we want to study the effect of perturbations in the sampled values fl by
considering/ (E). Note that we still have/x (E)- 1 if and only if E*E pI. As in the
one-dimensional case we may make the problem continuous by letting to s" and

k
to v. Thus E has stth entry E, "’ ",v where :, v D {e10-< O < 2zr}. Thus the
problem becomes for fixed (M1, N),..., (Mp, Nv), choose (sc, ),..., (:p, vp)
D xD so that/x (E) is as small as possible.
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DEFINITION 8.3. The set {(/’r’, kr’)lr 1,"" ", p} is a translation (mod N through
(J, K)) of the set {(it, kr)[r 1,. ., p} if/’r’ ]r + J(mod N) and kr, kr + K(mod N) for
r=l,...,p.

Note that/x (E) is unchanged by translations of {(jr, kr)lr 1,’ , p} or {mr, nrlr
1,..., p}. For the "continuous" problem this is equivalent to saying that /x(E) is
unchanged if {(r, Pr)lr 1,. , p} is replaced by {Or [3Pr]r 1,..., p and a,/3 s D}.
Thus we may assume (:x, vx)= (1, 1).

It is now logical to ask how well equispacing works in the two-dimensional case. In
this case it is not as clear what is meant by equispaced samples, and the problem is a bit
more complicated. Definition 8.3 will provide us with an intuitively reasonable way of
choosing L2 equispaced points. In general, however, it is not clear what the "right" way
to equispace p points is, when p is not an integer squared. For this reason the various
examples that are worked below were carefully chosen so as to have an obvious way of
picking an equispaced set. Consider the following:

DEFINITION 8.4. Let R {1, p,/9 2, pL-1]p e2ri/L}. We call the L2 points of
the set R x R (as well as any translation of these L2 points) a set of L2 equispaced points.

It is clear that the L2 equispaced points defined above agree with our intuitive
notion of how L2 equispaced points should be placed. As an example, consider the two
36 "point" grids (Figs. 10, 11) (where each grid point is represented by a square). The
darkened squares represent sets of 9 equispaced points.

We will also wish to consider sets of what we will call nearly equispaced points.

FIG. 10 FIG. 11

DEFINITION 8.5. A set of L2 points is called nearly equispaced if it is of the form

(8.5a) {(Otlpi,/g/)]Ce0, ", aL-1 ( D, 0--< ] --< L- 1, p e2*ri/L},
or of the form

k 2"a’i/L(8.5b) {p,/o 1/30, ,/L- D, 0 <-- k -<_ L- 1, p e }

or is produced by a translation of (8.5a) or (8.5b). Recall that D {eilo<-_ 0 < 2zr}.
Thus the 9 darkened squares on the two 6 6 grids (Figs. 12, 13) represent two

9-point nearly equispaced sets.
We now consider what happens when f is "band-limited". For our purpose it is

convenient to define band-limited as follows:
DEFINITION 8.6. A function f is band-limited if vanishes outside of an L x L

square. Without loss of generality, we may assume f vanishes outside the L L square
{(/,k)lO<----/,k<--L-1}.

THEOREM 8.7. Letf be band-limited, so thatfvanishes outside of theLL square of
(8.6). Supposef is sampled at (l 1, vl), ", (IL2, VL2) (here Ii, vi D {ei[o <-_ 2}) and
the corresponding g2x g2 matrix E is formed. Then I(E)= 1 if and only if {(/.,i, vi)[i
1,. ., L2} is equispaced or nearly equispaced.
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FIG. 12 FIG. 13

Proof. The proof follows from the fact that /x(E)= 1 if and only if E*E =pL
Details can be found in [12]. I-1

In general, "equispaced" configurations need not be optimal. We can see this by
considering a two-dimensional analogue of the L gap L case discussed in 5 and 6.
Assume that [ is known outside to two nonintersecting squares, each of size L L. Thus
without loss of generality we have

{(Mi, Ni)[i 1, 2,..., 2L2} (E E) LI (E2 E3),

where E1 {0, 1, 2, , L- 1}, E2 {R, R + 1, , R +L- 1} and E3
{S, S + 1,. , S +L- 1}. This case will be referred to as Zgap[RS (the RS subscript
indicating the corner where the second square begins) or justTgap/. For example, in
Fig. 14 the darkened squares represent (El El) t3 (E2 E3) for the case [] gap [5.6.

We would like to know how to choose {(:i, vi)li 1, 2,..., 2L2} so that/x(E) is
small. We will see in the example below that an "equispaced" choice can be a very poor
solution.

012 34 567

2

FIG. 14

Suppose R S 3 for the case gap -] described above. On a 36-point grid this
is represented by the darkened squares of Fig. 15. Let {(:i, ,)li- 1, 2,..., 2L2}

2 4} 3 2zri/6(F1 x El) I,.J (V2 V2), where F1 {1, to o) and F2 {to, to 095}(09 e ). This
choice of (i, oi) agrees with our intuitive notion of "equispacing", yielding a checker-
board pattern on the 36-point grid in Fig. 16. The resulting matrix E is singular and so

From this example we can see that there is no reason to assume, a priori, that
"equispacing" is a good strategy. We have the following analogue of Corollary 5.8.
LMM 8.8. For the case ZTgap,s, tz(E)= 1 if and only if

1, 2,. ., 2Lu} is chosen so that [or ], (., v) is a root of

q(x, y) (1 + x + x2 +" + xL-1)(1 q- y q- y2 -b" ’-b yL-)(1 + xry s) O.
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0 12 34 5

FIG. 15 FIG. 16

Suppose that LIR and L[ S and we choose (:1, vl),. , (:L2, vL2) to be an equi-
spaced set of L2 points (q v 1) and (:+1, v//l), , (:2, v2t.:) to be a second
equispaced set of L2 points, where (:2/, vL-/) satisfies q(x, y) 1 + xry 0. Then it is
easy to see that/z(E) 1. It should be noted that this choice of (:i, vi) is very much
analogous to the 2-Lgon sets of Definition 5.7. Recall that for the case L gap L it was
2-Lgon sets that made it possible to have/x (E)= 1.

If we return to the case gap3,3 discussed earlier, we note that by Lemma 8.8
we have that if {(i, vi)[i 1, 2,. ., 2L2} (F1 [.J F2) F1, then/x (E) 1. For a 6 6
grid this yields the following sampling pattern (see Fig. 17).

FIG. 17

It should be noted that the two-dimensional case can be generalized in the obvious
way to the "least squares" problem discussed in 4. Although we have been unable to
state anything as strong as Theorem 3.4 or Corollary 4.4 for the two-dimensional case,
the examples presented do show that it cannot be assumed that equispaced samples are
optimal or even satisfactory.

9. Applications. The Fourier transform arises in many contexts in engineering
and science. See, for example, [1], [3], [5] and [11]. We will discuss a particular
application to radio astronomy.

Radio astronomers measure the visibility of a source, V(u, v), in order to obtain its
brightness distribution, I(x, y). The quantities V(u, v) and I(x, y) are related by the
equation

(9.1) I(x, Y)=II V(u, v) exp{-27ri(ux +vy)} dudv,

and so I I" [3]. If one were able to measure V(u, v) at all points, then I(x, y) could be
recovered from V(u, v) in a straightforward manner. In practice the number of visibility
samples is limited by the locations of radio telescopes. This is particularly significant for
VLBI (Very Long Baseline Interferometry) studies, where sampling coverage is very
sparse. These studies are done by using radio telescopes at various locations across the
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continent (hence the very long baseline). The results are increased resolution and sparse
sampling coverage of the u, v-plane.

The values of the argument (u, v) where V is actually measured are determined by
the relative locations of the telescopes and the location of the source. For every pair of
telescopes, T2 and T1, let

B distance from WE to T1,
D angle of declination of the vector from T2 to T, T2T,
8 angle of declination of the vector from the center of the earth to the source.

By the angle of declination of the vector ab we mean the foll__.owing" Translate vector ab
so that point a lies at the center of the earth. The angle that ab makes above or below the
equatorial plane is the angle of declination.

In the course of 24 hours, the pair of telescopes, T2 and T traces out measure-
ments of V along the path of the ellipse given by

2u (v -vo)(9.2) --+ b=1,

where a B cos D, n B cos D sin 8, and v0 B sin D cos 8. For a derivation of these
equations see [3]. Every pair of telescopes traces out an ellipse of this form, and this
determines our sampling coverage.

Once the samples are obtained, a variety of procedures are used to determine
I(x, y) in an attempt to compensate for the fairly sparse coverage of V(u, v). These are
discussed, for example, in [3] and [8]. In the end one obtains an approximation I’(x, y)
for l(x, y).

Regardless of which procedure is used, the question arises as to how well the
function I’(x, y) that is determined in the end actually approximates I(x, y). In general
there are some aspects of I(x, y) about which the astronomer is quite certain and other
aspects where there is much uncertainty. For instance, it may be clear that what is
involved is a small diameter source, in which case I(x, y) is band-limited, or that we
have a double source as in the/gap Zcase. If we wish to know how sensitive our final
answer I’(x, y) is to errors made in sampling V(u, v), we could proceed as follows.
Consider the points where the astronomer is fairly certain of I(x, y). Call these points
kl+l, kl+2, kN2, where k RE, 1, 2, ",N2. We assume the points where V was
actually sampled are labeled fl, 2, l’p, where ]i RE, 1, 2,..., N2. We now
consider how sensitive the computation of the remaining values of I(x, y) is to error in
the sampled values of V. This is exactly the situation described in 8.

Another problem that arises deals with the location of a new telescope to be built in
the Midwest for use in VLBI studies. A number of reports [2], [8], [14] have dealt with
this problem. The reports show u, v-traces for existing radio telescopes for sources at
several declinations and then show the additional u, v-traces obtained if the new
telescope is placed in various locations. The best location is deemed to be the one that
provides the most "equispaced" coverage of the u, v-plane. Although the model
discussed in 8 is greatly simplified and provides only a first approximation to the actual
situation, it indicates that in certain cases there may be little objective basis to seeking
the most "equispaced" coverage.

Note that when one is using the model studied in the last two sections, the adequacy
of sampling coverage would vary with the nature of the source (e.g., double source
versus small diameter source), as it is the nature of the source that determines a priori
knowledge of I(x, y). Thus (not surprisingly) it would be possible for a scheme that
works well for one source to work poorly for another source.
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HALF-PLANE MINIMIZATION OF MATRIX-VALUED
QUADRATIC FUNCTIONALS*

PH. DELSARTE,’ Y. GENINS" AND Y. KAMPS"

Abstract. The general subject of the paper is the minimization over space functions with half-plane
supports of certain quadratic functionals defined from a two-variable Hermitian-valued measure. A detailed
theory of the minimizing functions is developed for the particular situation where the supports are intervals in
the lexicographic ordering of the integer plane. The main results are concerned with topics such as stability
properties, recurrence relations and spectral factorization, which play a significant role in digital signal
processing and estimation theory.

1. Introduction and notation. This paper contains a generalization to matrix-
valued functions of the theory of half-plane Toeplitz systems [6]. It can also be viewed
as a two-variable extension of the theory of matrix polynomials orthogonal on the unit
circle [4], [21]. Emphasis is put on properties of recursive stability and computability,
which are very important for applications in digital signal processing and estimation
theory [8], [17], [20]. In this context significant topics are spectral factorization and its
approximations [3], [8], [16].

The scope of the paper is restricted to half-plane systems, which as shown by
Helson and Lowdenslager [11] constitute the simplest generalization of the classical
one-variable systems. In that respect, let us especially mention Hirschman’s contribu-
tion [12], [13], containing an appropriate extension of Szeg6’s orthogonal polynomials
to the half-plane situation (as part of a very general theory). In a recent paper, Marzetta
[16] studied these "half-plane orthogonal polynomials" from a different point of view
and emphasized their great significance regarding applications in linear prediction
theory. The present paper borrows several ideas from Marzetta’s approach, dealing
with two-variable functions of lexicographic interval support that minimize a given
quadratic functional. It turns out that the main properties of the matrix-valued
minimizing functions with such supports can be easily deduced from certain results
belonging to the theory of block-Hankel operators developed by Adamjan, Arov and
Krein [1]. The necessary material is given in a recent paper by the authors [7]. Most
results herein are obtained in the framework of the Hilbert-Lebesgue space L2, which
appears to be naturally adapted to our approach. However, the theory can also be
successfully developed in the more restrictive but very interesting context of the Banach
algebras first considered by Baxter [2] in the scalar case and recently extended to the
matrix case by Geronimo [9]. (See also Hirschman [12]-[15].)

After having mentioned the general background of the present work we will
describe its organization and emphasize some significant results. (These are obtained
under ad hoc technical assumptions which are not specified in this Introduction.)

Section 2 introduces the main theme of the paper, namely minimization in
prescribed function spaces of two quadratic functionals defined in terms of a given
Hermitian-valued measure. The existence, uniqueness and characterization of the
minimizing functions are established in the simple case where the space support is a
finite subset of the integer plane.
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Section 3 contains preliminary material from another source, namely the mini-
mization of one-variable Hermitian functionals depending on a parameter. The
normalized minimizing polynomials are defined, via spectral factorization, and their
main algebraic properties are reported: orthogonality and recurrence relations, partial
moment reconstruction.

In 4 the general half-plane minimization problem is investigated in the situations
where the space support is allowed to be infinite but restricted to have finite width. The
results quoted in 2 are shown to remain valid in such cases. In particular, when the
support is a horizontal strip the minimizing functions are identified to be the matrix
polynomials of 3; this fact plays an important role in the general theory. The last result
is concerned with convergence in the L2-norm of sequences of minimizing functions
with increasing or decreasing supports.

Section 5 is central. It contains a thorough study of those minimizing functions the
supports of which are intervals in the lexicographic ordering of the integer plane. In
5.1 it is first shown how these particular minimizing functions can be expressed in

terms of the parametric polynomials of 3 by means of a well-defined J-unitary matrix
function of the parameter variable. Section 5.2 is devoted to the derivation of the
stability properties of the minimizing functions, which leads to a partial reconstruction
of the measure. Section 5.3 is concerned with the important Schur parameters occurring
in the three-term recurrence relations connecting the minimizing functions of interval
support. The stability properties are shown to be hereditary with respect to these
relations, for any values of the Schur parameters.

The whole theory is reexamined in 6 under certain summability assumptions
regarding either the measure function or the Schur parameters. Sequences of minimiz-
ing functions of interval support tending to a horizontal strip are proved to be
convergent in a strong sense. Next, construction of the theory from the Schur
parameters is described. Finally it is shown how the interval functions can be approxi-
mated by asymptotically stable minimizing trigonometric polynomials.

Although it is implicitly present throughout the paper, the question of half-plane
spectral factorization is treated as such only in 7. It is pointed out that the canonical
spectral factor of the derivative of the measure function can be inversely approximated
by any sequence of minimizing trigonometric polynomials the supports of which tend to
the whole half-plane. This allows one to obtain the inverse of this spectral factor as the
limit of some interesting families of asymptotically stable minimizing functions.

Notation

parametric minimizing polynomials
normalizing factors for A, B.
contractive matrix function
block-Toeplitz matrix function
diagonal matrix I .+(-I)
J-unitary matrix functions
minimizing functions of support H...
normalized minimizing functions
upper half-plane in 7/ 7/
horizontal strip of width/’ in H
inverse lexicographic interval in H
finite subset of H., (defined by Is[ =< k)
Schur parameter (= contractive matrix)
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2. Minimization for finite support. Let be a Hermitian-valued measure in two
variables. By definition, (0, b) is a p p Hermitian matrix function, defined on the
square 0=< 0, b -<_ 2r, satisfying the nondecrease condition (01, bl)<-- (02, b2) when
01 =< 02 and bl -<-b2. (Throughout this paper the notation A <_-B is used to mean that
B-A is nonnegative definite.) With the measure E we associate both right and left
matrix-valued inner products

(P, Q)r-- (ei, e i4") dY_,(O, )Q(ei, ei4"),

(P, 0) =- O(e, e) dY..(O, )f’(e, e*),

where P and Q vary over a class of p p matrix-valued functions with suitable
properties. (For a thorough treatment of this subject the reader is especially referred to
Rosenberg [18].) Note that (P, P)r>--O and (P, P)l>--O for all P.

Next let us define the right and left Hermitian-valued functionals r and as
follows:

(2) dPr,l(P) (P, P)r,l- 2 Herm P(0, 0),

where P(0,0)=(4zr2)-1 Ip(ei,ei4")dOdb is the mean value of p(ei,e i’) and
Herm A (A +/[)/2 denotes the Hermitian part. The subscripts r and appearing in
(1) and (2) will often be dropped in the sequel. We are interested in the problem of
minimizing the functional over a given space L of functions. Specifically, a given P s L
is said to minimize dp over L if it satisfies (P) <_- (Q) for all Q L.

Let S be a finite subset of the integer plane 7/ 7/. Assuming S to contain the origin
(0, 0), let us write S ={(So, to), (s l, h),""’, (s,, t,)} with So to 0. A trigonometric
polynomial P(e, e i) is said to have support S if it can be written in the form

(3) p(ei,eW’) 2 eke i%+h’’t’),
k--O

i.e., if its coefficients vanish outside the set $. The inner product (.,.) is called
nondegenerate with respect to S if (P, P) 0 for all P of support S except for P 0.
We now consider minimization of the functional over the space L(S) consisting
of the trigonometric polynomials of support $. The following elementary theorem
yields a characterization of minimizing functions in terms of orthogonality relations
(see [4], e.g.).

THEOREM 1. Assume the innerproduct (., to be nondegenerate with respect to the
set S. Then the corresponding functional d admits exactly one minimizing trigonometric
polynomial P L(S), characterized by the relation (P, Q)= Q(O, O) for all Q in L(S).

Proof. We consider only the case of the right inner product. (The other case is
similar.) By definition, (P+H)- (I)(P) (H, H) + 2 Herm [(P, H)-H(0, 0)]. Let us
apply this identity to H QK with Q L(S) and K constant matrix, assuming P to be
a minimizing function of support $. Defining A (Q, Q) and B (P, Q)- Q(0, 0) one
obtains Ig2AK + 2 Herm (BK)>-0, for any K, as a consequence of (P+H)=> (P).
This clearly forces B =0. Conversely, the condition (P, Q)= Q(0, 0) yields (Q)-
(P) (P-Q, P-Q), hence (P)<-(Q), and thus characterizes P as a minimizing

function in L(S).
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It remains to be shown that the orthogonality equations admit exactly one solution.
Define the Hermitian matrix C of order p(n + 1) as follows"

(4) C

Xo.o Xo-,.o- Xo-..o-.1
sl-so tl--to 0,0 Sl--Sn tl--tn

sn--s tn--to XSn--$1,tn--tl

with X$., (4,r2)-1 e
-i$

e -i’* dX(0, 4’) denoting the trigonometric moments of the
measure X. From (1) and (4) one deduces the identity (P, Q)=fCY, with X=
(p,p,... ,p)r the coefficient block-vector of P (see (3)) and similarly Y-
(Qor, Q-,..., Qr)r. Hence it appears that C is positive definite, owing to non-
degeneracy. As a result, the orthogonality equations (P, Q)= Q(0, 0) for the basis of
monomials Q e

$0 e,,i, which can be written in the form CX (I, 0,. , 0) r, admit a
unique solution. This completes the proof. U

The present paper is exclusively concerned with half-plane supports, i.e., subsets of
the upper half-plane H consisting of the points (x, t) 7/x 7/such that _-> 0 for all s 7/

with ->_ 1 when s _-< -1. It is very interesting to notice that H induces a total ordering of
7/x 7/, compatible with the additive structure, namely the inverse lexicographic ordering,
given by (s, t) <-_ (s’, t’) whenever (s’- s, t’- t) H. (See Helson and Lowdenslager [11 ].)
As for finite subsets $ cH of particular interest, let us mention the set S Hk.m.i
consisting of all points (s, t)H satisfying (s, t)<-(m, ]) and Isl-<-k, where k, m, ] are
given integers subject to ] >_- 0 and Iml-<- k (cf. [3], [6]). The corresponding matrix C has
the half-plane block-Toeplitz structure. Fig. 1 gives the example of such a set S for
k=4, m =2,]=3.

x x X X

X X X X

x X’ X X

X x

X X X X

X X X X

FIG. 1. The set H4,2,3.

3. One-variable parametric minimization. Before treating the question of two-
variable minimization with infinite support, we need some results from the theory of
minimization for one-variable polynomials depending on a parameter. The results
below are mainly taken from [4]. (See also [21].) Let there be given a Hermitian-valued
function A(0, b) which is nondecreasing with respect to the variable b (almost every-
where in 0). For a nonnegative integer ], let Fi(0) denote the Hermitian block-Toeplitz
matrix built on the trigonometric moments of order 0, 1, , ] of A(0, ), i.e.,

ao(0)

a !o) ao!0).
_a io) aoiO) j
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with As(0)=(2zr)-1 e-i"dA(0., 4). For any two matrix polynomials P(e, w)=
E= w’ io, Qt(eiO)o Pt(e) and Q(e w) Y’,,=o w of formal degree/" in w, with coefficients
Pt and Qt depending on 0, one has the identity

(6) 2--- -(ei’ ei4") d4"A(O’ 49)0(e i, e i) 2(eO)Fi(O) y(eiO),

where X and Y stand for the coefficient block-vectors of P and O, respectively, i.e.,
x (eL..., P]3 and Y (Oor, O])r.

Assume now Fj(0) is nonsingular (henc.e positive definite) almost everywhere, and
define the matrix polynomial Aj(e, w) Y’,I__ o Ai,t(ei)w t, the coefficients of which are
given by

(7)

In other words, Ai(e, w) minimizes the parametric Hermitian-valued functional
(e, ei’)d6A(O, b)P(e i, ei’)-4zr Herm P(e i, 0). The minimizing polynomial

Bi(e i, w) relative to the dual functional is similarly determined from

(8) (Bi,i," , Bi,, Bi,0) (0," ", 0, I)F}-.
It is known that both matrices Ai(e, 0) and Bi(e, 0) are positive definite, with
Ai(e, O)>-Ai_l(e, 0) and Bi(e, O)>Bi_a(e ,0). Note also the identity Bi,j(e)
Aj,i(e). Let us now write down the important three-term recurrence relations satisfied
by the minimizing polynomials"

(9)
Ai_x(e i, w) Ai(e i, w) Ji(e i, w)Bi,o(ei’-XA) i,i,e" io),

Bi_.l(e i, w) Bi(e i, w)-Bi,i(ei)Ai,o(ei)-i(ei, w),

with i(e, w) wii(e, l/if) denoting the reciprocal of Ai(e, w) and similarly for
i(e, w). Immediate consequences of (9) are

(10) Aj,o- Ai-l,o /iiB -1
j,oAj,j, Bi,o Bi-l,o Bi,jAi,oAi,i.

To progress further we assume the trace of Ao(0) and the logarithm of the
determinant of Fi(0) to be integrable functions"

(11) tr Aos L1, log det Fi La.

Note that (11) implies log det FtL1 for O<-t<-_]. This readily leads to the conclusion
that Aj(e, 0)-1 and Bj(e, 0)-1 admit spectral factorizations. Thus one can write

(12) Ai(e i, 0)-1 ].(ei)M.(ei), Bi(e i, 0)-1 Ni(ei))i(ei),
where M. and N are outer matrix-valued functions of class L- which are uniquely
determined within left and right unitary constant factors, respectively (cf. [11], [19]).
For reasons that will appear in the sequel we now introduce the normalized minimizing
polynomials Si and Y., defined as follows:

(13) X.(e i, w)= Ai(e i, w)ll.(ei), Y.(e i, w)= li(ei)Bi(e i, w).

By construction, X. and Y. are the reciprocals of the matrix polynomials orthonormal
on the unit circle with respect to A. They are characterized by the parametric



MATRIX-VALUED QUADRATIC FUNCTIONALS 197

orthogonality relations

2r
ff(e’ e*) d,A(O, 4))O(e, e) M.(e)O(e, 0),

(14)

2--- O(e’ e) d(O, )(e, e) O(e, 0)N(e),

where O(e, w) is any polynomial of formal degree ] in w.
Next let us express the recurrence relations (9) in terms of the normalized

minimizing polynomials. To that end we introduce the p x p matrix function (0), for

] 1, by the equivalent definitions

(15) -._BdA,oM_, -NJB-,oAd._,"

where the argument 0 is omitted for convenience. (The consistency of (15) is a
straightforward consequence of (10) and (12) together with Aj, B,.) From (10), (12)
and (15) one deduces

(16)

which shows that fl(0) is strictly contractive almost everywhere. The normalized
version of (9) is easily found to be

(17) X._.I X.M-]r._ + I?N}-XN_lfl, Y._ N._IN;1Y. + IM._xM X.,
withJ and the reciprocals of X. and Y.. Applying (14), one obtains from (17) useful
expressions for tit(0), namely

(18)
-’Y_(e i, e i*) d,A(O, )J M._(eiO)-l,

nl(O) Ni_(ei)- [ 1 I e-ii4" (e id,A(O, 4)X.-x e

In order to write (17) in a very convenient compact form, let us introduce the 2p x 2p
matrix function U(e i) as

(19) U. -1. 0 M._M)-1

In view of (16) it appears that is J-unitary, in the sense that it satisfies .J
.JU J, where J denotes the diagonal matrix I (-I). It is then easily verified that
the inverse form of (17) can be written as

(20) [ ’] [WL-1 ’-1] G’,

owing to the property U JJ. Using (20) in an inductive manner one immediately
obtains, by the J-unitarity of ., the identity

(21) X(e ’, w)2(e ’, w) .(e ’, w).(e ’, w).

Let us finally recall how the moments Ao, A, , A can be reconstructed from . and.. The minimizing polynomials are known to be nonsingular in the closed unit disk

w N 1. Furthermore, the inverse of .’satisfies

(22)
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for 0, 1, , ] + 1, where is the Kronecker symbol. In view of (21) a similar result
holds for Y.. (In fact, (22) is explicitly given in [4] only for ], but the case ] + 1 also
follows without difficulty from the results of [4].)

4. Minimization for infinite supports of finite width. From now on (with an
exception in the beginning of 7) we assume the p-dimensional measure (0, b) to be
absolutely continuous with respect to 0. Thus one can write

0

(23) E(0, b)= J0 A(a, b) da,

where the Hermitian-valued function A(a, b) is nondecreasing in b. Henceforth the
integrability assumptions (11) on A are replaced by the corresponding more restrictive
assumptions of boundedness, namely

(24) tr A0 Loo, det F-1 L,

with Fj as in (5), for a given integer ]_->0. (This implies det F-IL for <].) As a
consequence of the boundedness of Fj, the right member of (6) belongs to the Lebesgue
space L, provided the coefficient functions Pt(e i) and Qt(e i) are in L2. In this case the
inner product (P, Q)r is well defined and can be written as the iterated integral

12I I ieb iO, icb(25) (P, Q)r------ dO (ei, e dg, A(O, b)Q(e e ).

Since P and Q are assumed to have formal degree / in w, application of (22) to the
b-integral in (25) yields

1
2(26) (P, Q)r - I do I ’; X;1Q d.

Expressions similar to (25) and (26) hold for the left inner product (P, Q)I. Let us
mention a useful Schwarz inequality on both inner products, namely

(27) II(P, o)11 P( + 1 )lltr AolloollPll llOIl=,

Here and in the sequel II" denotes the spectral norm, [l" IL is the usual sup norm and I1" II=
2 2is the matrix L2-norm (i.e., 4r [[P[[2 tr (/Sp) dO d). The proof of (27) from (25) is

elementary and left to the reader.
Let S be any subset of the integer plane 2’ x 2". A two-variable matrix function

P(e i, e i) is said to be of class Lq(S) if its elements belong to the Lebesgue space Lq, for
a given q ->_ 1, and if they admit the set S as Fourier support. In the present section we
consider the problem of minimizing the functionals r and in the class L2(S), for a
given subset S of the horizontal strip

(28) {(s, t) e (0, 0) <- (s, t) <

where the symbols -<_ and < are used for the inverse lexicographic ordering (see the end
of 2). Thus/-//contains all points (s, t) of the upper half-plane H subject to _-< ]. Fig. 2
shows the case j 3.

As pointed out above, the functionals , and are well defined over LE(S) with
S /-/.. Before characterizing the minimizing functions (Theorem 4) let us emphasize
the main properties of the polynomials X. and Y. that result from (24).

THEOREM 2. The normalized minimizing polynomial X.(e i, w) belongs to L(H.)
and its inverse X.(e i, w)- belongs to LE(H). Furthermore, X.(e i, w)-1 is essentially
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x x x x x x

x x x x x <

x x < T x x x

FIG. 2. The strip H3.

bounded in O, uniformly on every closed disk wl <= r < 1. The same properties hold for
Y.(e i, w).

Proof. By assumption, Fi and F-a have bounded entries, so that the functions Ai,
defined from (7) belong to Lo. On the other hand, Ai,o>-Ao,o A implies Ai,- Loo.
Hence one has M. L+oo andM-a L+oo in (12). This clearly leads to the first conclusion

X. Loo(/-/.), in view of X.,0 Ma. The second assertion, X-; L(H), directly follows
from X, L+oo together with the fact that X is nonsingular in wl--< 1 and satisfies

-aX-X db 2r A0 Loo (see (22)). Applying Poisson’s inequality to the last identity
one obtains

l+r
(29) X.(e ’ w)-X.(e’ w)-< Ao(O)

--1-r

for Iw[ -< r < 1, which proves the third statement. The properties of Y/are established in
the same manner.

From the normalized minimizing polynomials X., Y. and the spectral factors
M., N., let us define both polynomials

(30) F(e ’, w)=X.(e ’, w)/r.(0)- Gi(e ’, w)= .(0)-x Y.(e ’, w).

THEOREM 3. The polynomials F and Gi minimize the functionals and ,
respectively, over the space L2(/-/’).

Proof. Theorem 2 shows that F. and Gi belong to Loo(/-/). On the other hand,
0-integration of the first equation (14) gives (F., O) (2(0, 0), for all (2 Lz(H.), in
view of (25). By the same argument as in the proof of Theorem 1, this yields the desired
property (F.)-<_ (O). The dual result (Gi) <- t(O) whenever (2 L(/-/.) is
proved analogously.

The general result of Theorem 4 below about minimization in any class L(S)
follows from considering two particularly simple situations, namely the finite case
(Theorem 1) and the extremal case (Theorem 3). In fact, the first result provides
approximants for the general problem while the second result is used to prove
convergence of these approximants.

THEOREM 4. Let $ be any subset of the horizontal strip H containing the origin
(0, 0). Then the functional admits a unique minimizing function P(e, w)L(S),
characterized by the orthogonality relations (P, (2) (2(0, O) for all (2 Lz(S).

Proof. To be specific we consider the case of the right inner product. Note first that
the situation where $ is finite is covered by Theorem 1. (The nondegeneracy property is
obvious from (26).) Next we shall establish the existence of P for an infinite support $.

Let So Sx ’" S, =... = S be an ascending chain of finite subsets S, of S, with
(0, 0) So and U,=0 S, S. Let P, denote the minimizing trigonometric polynomial in
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L(Sn). The argument consists in showing the existence of the function P L2(S) given
by

(31) P(., w)= 1.i.m. Pn(., w).

Theorem 1 yields (P,, P, P,, P) P, (0, 0) P, (0, 0) for m -> n hence, by use of
(26) and Poisson’s inequality,

l+r., tr [P,,, (0 0) P, (0, 0)],(32) Ilx,.(. w)-Ee,( w) e,( w)311_-<]_ r

in the disk Iwl-< r < 1. By Theorem 2, the coefficients X..t are bounded in 0, so that (32)
readily leads to

(33) IIP,(’, w)-e(., w)ll<-c(r)tr [P,,(0, 0)-P,(0, 0)],

for a suitable constant c(r). Note that (33) remains valid in any disk Iw[ <- r < o, within
adjustment of c(r), because P,,-Pn is a polynomial of fixed degree/" in w.

From Theorem 3 one immediately deduces (F/)-<-(P,), i.e., P,(0, 0) =< F.(0, 0),
for all n. As a result, the sequence of numbers tr P, (0, 0) is bounded, hence convergent
since it is nondecreasing. Then, in view of (33), the Cauchy criterion shows that the limit
function (31) exists and belongs to L2(S). It is easily seen that P satisfies the orthog-
onality relations in L2(S). Indeed, Theorem 1 yields (P, Qk)= Qk (0, 0) for all Qk
L(Sk) with k _-<n. Let n--> for a given Qk. Owing to (31) and (27) one obtains
(P, Qk) Qk (0, 0). Hence the desired property follows from the fact that any function
Q L2(S) is the limit in the mean of an appropriate sequence of trigonometric
polynomials Qk L(Sk). Next the equivalence between minimality and orthogonality is
proved by the same argument as in Theorem 1. The uniqueness of the minimizing
function is then immediate.

THEOREM 5. Let there be given an ascending chain So c S1 $2 c H or a
descending chain H So $1 Sz ". Then, for n --> c, the minimizing function of
support S, converges in the mean to the minimizingfunction ofsupport [.J ,=o S, in the first
case and f’),=0 S, in the second case.

Proof. The argument is exactly the same as in the proof of Theorem 4 for the
ascending situation. The second case is quite similar. Details are omitted. El

Let us conclude with a remark. By Theorem 4 the minimizing function P(e i, w) in
any class L2(S) satisfies P(0, 0)= (P, P)=-(P). This shows that P(0, 0) is a positive
definite Hermitian matrix which is monotonically increasing with respect to the support
S (in the sense that PI(0, 0)<= P2(0, 0) when S $2).

5. Minimization for lexicographic interval supports. In this section we analyze in
great detail the minimizing functions of support H.., where the set H,.. is an interval
with respect to the inverse lexicographic order (see 2), i.e.,

(34) Hn.j {(s, t) s 7/ Z: (0, 0) -< (s, t) -< (m,/’)},

for a fixed nonnegative integer/" and any integer m. In other words, the point (s, t)
belongs to H,,.j if and only if both (s, t) and (m s,/" t) belong to the upper half-plane
H. Fig. 3 shows the example of (34) for m 2,/" 3. Of course Hm,i is infinite when
/" => 1, while H,,.0 is the interval [0, m] of the s-axis (which is empty in case m <0).

Let F,.i(e i, w) and G,,.i(e i, w) denote the minimizing polynomials in the space
L2(H,.i) relative to the functionalsr and l, respectively (see Theorem 4). Application
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x x x

x x x

X x

x x x

X X X

FIG. 3. The interval H2,3.

of Theorems 3 and 5 directly yields

(35) l.i.m.F.,j F., 1.i.m. Vm,j 15"i-1,
Jroo m---oo

and similarly O,,i Gi when m +c and O.,. - Gi_ when m -, where Ft and G,
are defined as in (30). On the other hand, let Fk..,j and Gk,.,i be the trigonometric
polynomials that minimize (I) and l, respectively, for the finite support Hk,,.i indicated
in 2. Then it follows from Theorem 5 that Fk,.,i converges in the mean to F,.. when k
tends to infinity. Similarly Gk,.,j G., when k .

It is often more convenient to consider the normalized minimizing functions Xm,
and Y.,i given by

(36) X..i(e i, w)= F.,j(e i, w)M.,i, Y.n,i(e, w)= NmdGmd(e i, w),

where the constant p x p matrices M.,i and Nm,i are chosen so as to satisfy Mm,i]’[.,,i
F.,i(0, 0)-1 and /.,iN,.,j- G,,i(0, 0)-1. (This makes sense because F.,i(0, 0) and
G.,i(0, 0) are positive definite; see the remark at the end of 4.) When expressed in
terms of the normalized minimizing functions, the orthogonality relations of Theorem 4
are

(37) (x,, O) x.,; (0, 0)-O(0, 0), (Ym,j, Q)l Q(O, O) Ym,j(O, 0)-1,

for Q varying over LE(Hm,i). Note that X., and Y,,i are only defined within arbitrary
right and left unitary factors, respectively, but they uniquely determine the minimizing
polynomials as F... X.,j3,,i (0, 0) and Gm, IT"m,i (0, 0) Y,,. Let us incidentally point
out that the class L2(H,d) functions X,,.* (e go, e g) e imO e ijb.,m,l"(e iO, e g6) are pairwise
orthonormal with respect to the inner product (.,.)l in the sense that they satisfy

* : imO ijcbm are(X.,, Xn,k)l 8,. 8j,kI for all m, j, n, k. Similarly the functions Y, e e
orthonormal with respect to the inner product (.,.)r.

5.1. Construction via generalized Schur representation. For m => 0 the functions
X,,0 and Y.,o simply are the reciprocals of the left and right orthonormal polynomials
of degree m associated with the weight function Ao(0) (see [4], [21]). Henceforth we
treat the more difficult problem/" _>- 1. The expression given in Theorem 7 below for the
normalized minimizing polynomials X,, and Y.. is crucially based upon the following
result concerning the generalized Schur representation [7] of the contractive matrix
function e -ira ’)-i (0), with l’l defined as in (13).
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LEMMA 6. There exist eight p x p matrix functions A..j(ei), ,D.,i(ei),
P.,i(ei), S,.,i(e i) of class L satisfying

(38)
I -e -e Oa]

--eim I --iO m J[C D,J -e R.i
together with A.i (O)P.i (0) S.i (O)Dm.i (0) L These functions are uniquely deter-
mined except for normalization corresponding to postmultiplication of (38) by the direct
sum of any two constant unitary matrices of order p. The functions A-.i and D.i-
necessarily belong to the class L. On the other hand, the secondfactor in the left member
of (38) is J-unitary.

Proofi This is part of [7, Thm. 1] (which has intimate connections with some results
by Adamjan, Arov and Krein [1]).

Let us introduce the J-unitary matrix function Um.i(e i) obtained by a simple
transformation of the second factor in (38), that is,

(39) Ua(eO) ,(e) -e ,te
-e ,ite Da(e

THEOREM 7. The normalizedminimizingpolynomialsX,i(e i, w)and Ya(e i, w)
of support H,I are given in terms of the class L functions Aa(ei), Ba(ei), C,i(ei),
Da(ei) and ofthe polynomials._(e i, w), _(ei, w) defined in 3 by the expression

(40) [I7,.,i X,.a]=[w_l X/_I]U...,

with Y.,i(e io, w)= wi,n(e ,1/) denoting the reciprocal of Y.a(e, w) and similarly
-’i_1(e i, w)= w i-1 _(ei, 1/).

Proof. Note first that, in view of Theorem 2, the functions X, and Y,i deter-
mined from (40) actually belong to L:(Ha). To prove the statement one has to check
(37) for the monomials O(e io, w) eiSwtI with (s, t)Ha. It clearly appears from (17)
that the required conditions are satisfied for 1 j 1. Next one shows, by use of (17)
and (18), that the conditions for 0 and j are exactly those of Lemma 6. The details
are left to the reader (cf. [6] for the scalar case).

For future use it is convenient to give a meaning to (40) in the case j 0, m 0. In
fact, there exists a well-defined J-unitary matrix U,o (having properes similar to
those of Ua for ] 1) such that (40) holds true with the interpretation wY_ I, X_
0 (see [5]). It is also interesting to express X,i and Y,i in terms of and ., instead of._ and ._. To that end let us define the 2p x 2p matrix function Va, closely related
to the dual of U,i in the sense of [7], by the following expression"

(41) V=[N._ 0 ][ P e

0 7’-1 e-’(*;05

where P, Q, R, S are as in Lemma 6 and M, N as in 3. In view of (19) one has

V.a U- U..a, which shows that V..i is J-unitary. From (20) and (40) one then
deduces

(42) [I,,.,,i X,,,i].=[ X.]V,,,,j.

As proved in [7], for a suitable normalization the matrix function U.a converges in
the mean to ! when rn --)-o and to U. when m --) +oc. (The meaning of U..o--) U0 for
rn --) can be found in [5].) Equivalently, V..i --) U- when m --) -c and V..i --) ! when
m --)+o. These results provide an alternative proof of (35).
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Let us finally mention some useful identities. Using the J-unitarity of Um,i or of Vm,i
one obtains from (40) or (42), together with (21),

(43) X..(e i, w)..(e i, w)= ’.a(e i, w)Yma(e i, w).

-(t)(eia)LetX)1 (eg) and rm.i denote the coefficients of w in the polynomials Xm i(e i, w)
and Y,.a(e i, w), respectively. Then (40) immediately yields

[’7"’) c") [j ](44) --m,l m, / 0
(i) x,() / M- Um,i.

m,j md

5.2. Stability and related results. In this section the minimizing polynomials of
interval support are shown to enjoy stability properties similar to those mentioned in
Theorem 2. In addition, partial reconstruction of the trigonometric moments of E is
obtained. (See [16] for the scalar case.)

THEOREM 8. The inverse X, of the normalized minimizing polynomial X,.,i
belongs to the space L2(H), where His the upper half-plane. Furthermore, Xma(e i, w)-1 is
essentially bounded in 0, uniformly on every closed disk [w[-< r < 1. The same properties
hold for Ym,j.

Proof. Let us write the second block equation of (40) in the form X}-Jl X,.,iDni
I-, where xI is defined as follows:

(45) xlt(e

In view of (21) and l,.,iDm, -B,,iJm. I (resulting from the J-unitarity of U.,i), one
hasI- --x - i=D.aD,.a for w =e As a consequence, xlt(e i, w) is a matrix-valued
Schur function of w, in the strict sense, so that ! xlt is nonsingular for w[=< 1 (almost
everywhere in 0). Hence Xma(e i, w)-1 is analytic in the closed unit disk [wl -< 1. On the
other hand, straightforward computation yields

(46) Xm,jXm,j-1 -1 .,;_11 [(I xtt)-1 =b- (! )-1_I]X/1,

on the unit circle w =e i. Now it is easily seen, by use of (45) and (21), that the
b-integrals of all functions 3-Jl xltkx-Jl vanish for k => 1. Thus (46) and (22) imply

(47)
2"n"

Xm,jXm, d) ./lX/1 d 277"A0(0).

As a result, the entries of X,.,i(e i, ei*)-x are square-integrable. From the fact that Xm,j-1
is analytic in [w[ =< 1 and from X.,a(e i, 0)-1 D,na(ei)-lMi_x(e i) L, this implies
that X.,a belongs to Lz(H). Note finally that application of the Poisson inequality to
(47) yields (29), with Xma substituted for X/. This concludes the proof of the assertions
concerning X.,a. The properties of Yma are established by similar arguments.

THEOREM 9. For all points (s, t) in the interval H.,,i the trigonometric moments
relative to the measure . coincide with the corresponding moments relative to the
Hermitian-valued weight function

(48) Wm,j(O )= .,m,j(e i, ei’t’)-lXmd(e i, ei6)-1,

which is equivalently given by Wmj -1 "-1Ym,iY..i (cf. (43)). In other words, the inner
products (1) relative to both measures dE and W.,,idO db coincide over the space
L2(H,n,i).
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Proof. This result appears as an immediate consequence of the following identity,
which is valid for all [0,/’]"

1 f:r e--it’bWm de m tt, ei(m+l)Nj(49)
2zr

._lQm,iDm,iMj_l,-1

--isOwhere Dm,i and Qm,i are as in Lemma 6. It is indeed clear that multiplying (49) by e
and integrating in 0 produces equality between the (s, t)-moments relative to

Wma dO de and to dE whenever (0, 0) <_- (s, t) <_- (m, j).
Let us now derive (49) by use of (46). Observe that the -integrals of the functions

e-it*f(l kx-__11 and e-it’t’PTl qkx]-l vanish for k _-> 1 and for k _-> 2, respectively.
Hence the left member of (49) is found to be equal to

(5O)
1 | imO,r 1 n-1e-’tX_IX-_I de + 6t, e 1,-1,m,, m,iM’-l

27r

Now Lemma 6 gives /ma e-imD.Dm,i-eiQm,. Thus, in view of (22), the right
member of (49) coincides with (50), which concludes the proof. [3

From (44) one deduces the following matrix inequalities, which are related to
stability properties (see Theorem 11 below)’

y(i) :(i) < (o).V(o) (i).V(i)" < y(o) ,(o)(51) ma- m, m,, m,,, m,, m,, m,-- ma

5.3. Three-term recurrence relations. From the matrix-valued functions
Am,i, Bin,i, Cm,i, Dm,i occurring in (39), define the p p constant matrix Em,i to be

(52) Em,i Bm,(0)Am,(0)-1 Dma(0)-1Cm,i(0).

In the sequel Ema is referred to as a Schur parameter. (See [7] for j> 1 and [5]
for j=0. By convention, Em,0=0 when m =<0.) It turns out that Em, is strictly
contractive, i.e., IIEm,ll < 1. Incidentally, we mention the square-summability property

I1  , 11= < o (cf. [5], [7]). From Em,i let us construct the 2p 2p matrix function
imO --1/2(I _,m,jEm,j)-1/2 -e Em,i(I Em,iEm,i)(53) Zm’j(ei)

-e .,-.,re,l(I ---’.--’m,j-"--’m,jl
-imO]2;’ ] IS;’ ]-1/2 (I Em j2-,m i)-1/2

It is readily verified that Zm,j is Hermitian and J-unitary. As shown in [7], the matrices
(39) obey the recurrence relation

(54) Um,j(e iO) Um-l,i(ei)Zm,i(ei).
As an immediate consequence of (40) and (54) one has the following important result,
which is very interesting from the application viewpoint (cf. Marzetta [16] and the
authors [6]).

THEOREM 10. The normalized minimizing polynomials Xm, and Ym, are deduced
from Xm-a and Ym-l,i by means of the three-term recurrence relation built on che Schur
parameter Em,i i.e.,

(55) ?m, X,] ?m-, X_,]Z,.

Remarks. Let us first briefly indicate how (55) can be directly obtained in terms of
the minimizing polynomials Fm,i(e i, w) and Gm,i(e, w). In fact, from the orthogonality
relations of Theorem 4 one readily deduces

imOt’r " Gm-l,j Gm,i + e iml- I(56) Fm 1,j Fm,i + e ""m,1 re,l, .’--’m,1"- re,l,
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for well-defined constant matrices K.,j and L,.,j. Applying then (56) in an inductive
manner, one obtains an identity of the type Fn,i=F.+k,i..,j,k+ei(n+l).+k.iB.,ik,
where An,j,k and B.,i,k are matrix polynomials of formal degree k- 1 in e i. A similar
identity holds for G.,i, involving polynomials C..i,k and D..i,k. For k --> m this leads to an
equation of the form (42), since F./k,i--> F and G.+k,i--> Gi, provided the sequences
A..i,k,’’’, D.,i,k are convergent in the space L. This argument provides a heuristic
explanation of the expressions (40) and (42) for the minimizing functions of interval
support.

From a computational viewpoint it is interesting to note that the matrices K.,j and
L,.,i occurring in (56) are determined in terms of the minimizing functions of support
H.-l,i via the formulas

(57) gm,] (eimwiZ, Fm-1,])r L., (ei’wI, G.-l,j)l.

As for the Schur parameters E,.,, they are given both by E,..= ]/,.,i/,.,,N -1,.,j and by
E,., M2,..,,,.,, where M,.,, and N,.,i are as in (36).

Let us now emphasize an important fact about the recurrence relations of Theorem
10" the stability properties of the minimizing functions with interval support are
hereditary (provided only the Schur parameters are strictly contractive). More pre-
cisely, one has the following result.

THEOREM 11. Let there be given two matrix functions X.-I, and Y,.-1.i of class
L2(H.,-1,), the inverses of which belong to L2(H). In addition, assume (43) and (51) to
hold with m replaced by m 1. Then, for any p x p matrix E., subfect to IIE.,II < 1, (55)
defines two functions X,.,j and Y.. in L2(H.,), with inverses in L2(H), satisfying (43)
and (51). Furthermore, for every point (s, t) H,.-1, the trigonometric moment of index
(s, t) relative to the weightfunction W., coincides with the corresponding moment relative
to

Proof. The argument is quite similar to that given in Theorems 8 and 9. The only
additional point is concerned with the inequalities (51). These clearly are hereditary
(from m- 1 to m) in view of

(58) -’, ,’/= ’-,
(). x()/ v(O) /

owing to the fact that Z..j is J-unitary. The role of (51) is to guarantee that X.,,j(e i, 0)-1

and Y.,,(e i, 0)-1 belong to L. Details are left to the reader.

6. Summability and strong convergence properties. This section has two main
objects" first, to obtain strong stability and convergence properties of the minimizing
polynomials F,.,i and G.,i, together with a computation method based on the Schur
parameters; and second, to establish convergence of the minimizing trigonometric
polynomials Fk,md and Gk,m,i tO the stable functions F,.,i and G.,j in a sense warranting
asymptotic stability of the approximants. In addition to their theoretical interest, these
topics have a definite significance from the application viewpoint [3], [6], [16].

Appropriate assumptions leading to the desired results turn out to be certain
summability properties of the Fourier series of Fj(0). We shall use the same Banach
algebra techniques as in [7]. (These are mainly borrowed from Baxter [2]; see also
Geronimo [9].) Let f be a real-valued function, defined over the integers, satisfying
[(’m)=f(m)>-I and [(m+n)<-_f(m)f(n) for all m,nZ. In addition, assume
limf(m)1/’’= 1 for m-->. (For example, [(m)=(l+[ml) with a given c_->O.) The
Banach algebra Br, with norm [. It, is defined to consist of all integrable p x p matrix
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functions K (e i) ’. Ks e is for which the numerical series

+oo

(59) IKle E f( )llK,

is convergent. Next, given a subset S of the plane 7/ 7/, with (0, 0) S, let us denote by
Br(S) the class of two-variable functions X(e, e)’-.,xt(e)et belonging to
L(S), with XtBr for all t, for which the series IXIr Y.t IXlr converges. Clearly,
Br(S) is a Banach space for the norm 1. [ thus defined. (Note that Br(S) is a Banach
algebra when $ is closed under addition.)

The following results sho that the theory of the minimizing functions with interval
support can be completely developed in the framework of the Banach algebras Br.

THEOREM 12. Assume that the trigonometric moments A0, A, , A belong to Br,

for a given f. Then the normalized minimizing functions X., Y., Xm.i, Y,,.i and their
inverses belong to the class Br(H). In addition, the Schur parameters E,,i satisfy

+oo

Proof. Since F is nonsingular, the Wiener-L6vy theorem shows that the blocks of

F- belong to Bf. Hence Ai,o, A,, , A,i Bf, by (7), and thus A, Bf (since Ai,o is
nonsingular). As a result, M. and M}- belong to Bf (see [10, p. 188]), so that (13) yields
X.B(/-/.). Similarly Y.B(/-/.). Next, writing (18) in the form
N-_ 1-1t=o Ai-tX-,, shows that 12 is of class Bf. This implies that the blocks of U.,,i in
(39) belong to Bf, for all rn e 7/(see [7]), so that Theorem 7 leads to the conclusion
X., , Y.., e Bf(H,,,,i) which yields -’X,,i, Y,,.,,ieBf(H) in view of Theorem 8 (by
application of the Wiener-L6vy theorem). Note that X[, Y-’ e Bf(H) follows
similarly from Theorem 2. Finally, the assertion concerning the Schur parameters
is taken from [7]. l-1

Remark. Note that X.(e, w) is nonsingular in all disks IwI <_-R < Ro, for some
Ro> 1. This yields a summability property of X-’ stronger than that quoted in
Theorem 12, namely X.(e, Re6)- e Bf(H). Similar properties hold for Y.,X.,.i
and Y,,...

THEOREM 13. If Ao, A1,’’’, AjBf, then the doubly infinite sequence of mini-
mizingfunctions F,,j is convergent in the space Bf(/-/.); i.e., IFm,-F.lf- 0 when m
and IFm,-F-l[f- 0 when m --oo. Similar results hold ]:or G,.

Proofi For a suitable normalization one has U, U. when m - +o and U,j -, I
when m -, in the sense of the norm I" If (see [7]). Hence the theorem follows from
(40) and (20).

+oo
THEOREM 14. Assume X___.f(m)llE.,ll<oo for t=0,1,...,]. Then the

functions Ao, A1,. , Ai belong to the Banach algebra
Proof. The matrix version of Baxter’s theorem [2] first yields Xo, Yoe Bf as a

consequence of=f(m)llE.oll< oo. Then it follows from Theorem 7 and the results
of [7] that X,,,, Y,,,1, X and Y belong to Bf(HI), with the convergence properties
Ix  -x lr-,o and Y.x-Ylr-o for moo, owing to the assumption
+bBY.=_oo/(m)llE,ll< oo. Using this argument in an inductive manner one obtains

X. Bf(H.), which yields X-[ Bf(H) in view of the Wiener-L6vy theorem. Hence the
desired result follows from (22). [-1

In fact, it is possible to construct the minimizing functions with interval support by
starting directly from the Schur parameters E,. This is really interesting because the
stability properties are then automatically satisfied (see Theorem 11). Let us briefly
describe the computation scheme. We assume Y.f(s)llE,.,ll<oo for O<-t <-] as in
Theorem 14. Define the J-unitary matrix Z,t from the given Schur parameter E.t as in
(49). In addition, let the 2px2p matrix Zoo,,=wI+.I. Then X,,,i(e, w) and
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Ymd(e i, w) are formally given by

(60) [?,,.i X,,.i]=[?o.o Xo.o]l-I{Z.t" (1, O)<=(s,t)<-(m,f)},

where the infinite product l-I is performed in accordance with the extended inverse
lexicographic ordering; i.e.,

(1, 0)<(2, 0)<... < (oo, 0)<... < (-2, 1)<(-1, 1)<(0, 1)<(1, 1)

<... < (o, 1) <... <... < (-2, ]- 1) < (-1,/’- 1) < (0,/’- 1)

< (1, j- 1)<... < (,/’- 1)<... < (m -2, j)< (m 1, j)< (m, j).

Note that when the product in (60) is stopped at the index (oo, t) one obtains the matrix
[w?t Xt]. The precise meaning of (60) is the following. For any integer a define
both infinite products,

K+
.,t lira Zo,,tZo, + 1,t Z,+ k,t,

koo
(61)

K2,t lim Zo,-k,tZo,-k+l,," Zo,,t.

(Note that K.t coincides with Uo,,t and K+.t with the inverse of Vo,-1,t defined as in (39)
and (41).) From the matrix version of Baxter’s theorem [2] it follows that the limits (61)
exist in the space Br. The product I-I occurring in (60) has to be interpreted as

(62) l-I K+ WK1Kf1WK,2K+
1,o 1,zW K_IK+

,j-1 WKmd,

with W wI +. I. The algorithm resulting from (60) and (62) is easily understandable:
truncating the sequence (Era,t) for m > k and m <-k, where k is a given positive
integer, amounts to replacing (61) by the finite products K/ =Zt Z,,/ andoz, k,

K.t Z-k.t Z.t. Then (60) and (62) produce the exact functions X.., Y..i in case
E.t. 0 for reEf-k, k] and approximate functions xk,, --v’k... in the general case’, these
approximants are stable and converge to the desired functions X.., Y,., in the sense of
the norm I. If, when k tends to infinity.

Let us conclude this section by studying another type of convergence, namely
Fk,m,i - F,a and Gk,md - Grad for k o (with fixed values of m and ]). Remember that
Fk..i and Gk,md are the minimizing trigonometric polynomials of support Hk.a relative
to the functionals and , respectively, and are thus easily computable from the
coefficients E.t by solving linear equations (see 2).

THEOREM 15. Assume A0, A1,"" ,ABr for a given function f such that
,sC__0 f(S)-2 < (. Let g be a positive even function satisfying

(63) sup g(s [(s)-2 < o.
0k<oo s=k

Then one has IFk,,,,j -F,.,,alg -’* 0 and IGk,,,,a G,,.lg 0.for k oo, where 1. I, is defined as
in (59).

Proof. Let Qk L(Hk.,,a) denote the truncation of F,,, to the support Hk,,.,,.j. The
first statement follows from juxtaposition of the following three inequalities"

(64) [F,,,,,,; O, I, <_- (] + 1)l/z ( g(s)z
s=-k

(65)
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1/2

(66) [IQk--Fm’ill2<--<-e(2f+2)l/2(s=k+1 f(s)-2)
First, (64) is a straightforward consequence of Cauchy’s inequality. As for (66), which is
valid whenever k >= ko(e), with e denoting an arbitrarily small positive real number, it
follows immediately from the property II--< or Isl--> ko and 0 -< -</" (see
Theorem 12). Let us now establish (65). By definition, dP(Fk..,.j)<=dP(Q) for any
trigonometric polynomial Q of support Hk,.,,j, hence (Fk,.,-F.,,Fk,,,-F.,d)<=
(Q-F.,,j, Q-F.,,) by Theorem 4. Taking the trace of both members one obtains

(67)

by use of (26) and (27), for a suitable constant a. On the other hand, Poisson’s inequality
together with Theorem 2 yields

(68) IIF,,(’, w)-F.,(., w)ll2 <-- b[IX-/ (F,.,i- F.,j)[12

for Iwl =< r < 1, where b is a constant (depending on r). Owing to the fact that Fk,.,,i and
F.,,. are polynomials of fixed degree in w, one readily deduces from (67) and (68) that
the desired inequality (65) is satisfied for an appropriate constant c.

The end of the proof is immediate. From (64)-(66) one has IFk,..d QkI 0 when
k--> m, hence [Fk,.,d-F.,d]g-+ 0 by definition of Qk, owing to both properties F.,,-e
Br(H.,,,) and g(m) <= dr(m) for a constant d. The second assertion of the theorem can be
proved by the same method. 71

COROLLARY 16. Besides the conditions of Theorem 15, assume that g satisfies
g(m +n) <-_g(m)g(n), for all m, n Z, so that Bg is a Banach algebra. Then the
minimizing trigonometric polynomials Fk,.,d(Z, W) are asymptotically stable, in the sense
that they are nonsingular in the regions Izl 1, wl <- 1 and Izl <= 1, w O, provided
k >= ko(m, ]). In fact, -1 -1Fk,.,.i converges to F.,,i when k-->, in the norm l" Ig. Similar
results hold for Gk,.,,i(z, w).

Proof. It follows directly from Theorem 15 that det F,..,i(z, w) converges uni-
formly to det F.,,i(z, w) in the regions Izl- Iwl--< and Izl--< 1, w --o. Since F.,.i is
nonsingular in these regions (by Theorem 8), so is Fk,..,j for all k >-ko(m, ]). As a
consequence, Theorem 15 implies convergence of Fk,..i to F..,i in the Banach algebra
Bg(H). i-]

Let us mention a simple application of Theorem 15 and Corollary 16. The
condition (63) is clearly satisfied by the functions f(m)=(l+lml) and g(m)-
(1 + Iml)-1 with c ->_- 1. In particular, for the choice c 1, Corollary 16 shows that Fk.,d

-1is asymptotically stable and admits an inverse converging to F,,d in the Wiener norm
I" I1, provided Ao, A1,’’ ", Aj Bf with f(m) 1 + Iml.

7. Half-plane spectral factorization. Consider the Lebesgue decomposition dE
WdO dab + ds for any nondecreasing p x p Hermitian-valued measure E(0, &). By
definition, W is the derivative of , so that the measures o W(a, 13)da dfl and
,s(O, 4) are the absolutely continuous part and the singular part of E(0, &), respec-
tively. Note that W(O, c) is a nonnegative definite Hermitian-valued integrable
function. Assume the logarithm of the determinant of W(O, 4) to be integrable. This is
known to be a criterion for IV to admit a half-plane spectral factor on the right, i.e., a
p p matrix-valued function M(e i, e i*) of class L2(H), with det M(0, 0) 0, satisfying

(69) W(O, t)--l(e i, ei4)M(e i, ei4").
Moreover, in this case there exists a canonical spectral factor, characterized by the
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additional property

(70) log Idet M(0, 0)1 --- log det W(O, 4))dOd4),

which uniquely determines M modulo premultiplication by a constant unitary matrix.
(Note, for example, that (48) actually is such a spectral factorization.) Let us indicate the
stability properties of the canonical spectral factor: M(e, w) is an outer function of w
(almost everywhere in 0) and M(z, 0) is an outer function of z. Under the same
condition log det W sLy, there also exists a canonical spectral factor N(e, e)
L(H) on the left, characterized by W(O, ) N(e, e)I(e, e), together with (70)
where N is substituted for M. The results above are due to Helson and Lowdenslager
[11]. In addition, these authors have established an implicit version of Theorem 17
below. Note that the assumption log det W L implies nondegeneracy of the inner
products (1) with respect to any finite set $.

TEOREM 17. Let So $ $ be an ascending chain onite subsets
of the upper hal[-plane H such that Uo$ H. Define P(e, e) L(S) to be the
minimizing trigonometric polynomial o[ support $, relative to the functional . Then,
under the condition log det W L, one has

(71) lim II!-r(0, 0)MPnI[2 0,

where M(e i, e i) stands for the canonical spectral factor of W(O, c) on the right. A
similar result holds for the minimizing trigonometric polynomials Qn L(Sn) relative to
cb; one has [1I- Q,NI(O, 0)11=- 0, where N is the canonical spectral factor of W on
the left.

Proof. We consider only the case M(0, 0) =/, which is a simple matter of normal-
ization. For any trigonometric polynomial Q of support H one has IIZ-MQII2-
p-tr Q(0, 0)-tr ((0, O)+[]MOll<-p+tr(Q), in view of (2) and (69). On the other
hand, it follows from [11, Thm. 12] that the infimum of tr (Q, Q) equals p when Q is
subject to both Q(0, 0) => 0 and det Q(0, 0) 1. As these conditions imply tr Q(0, 0) =>
p, one obtains inf tr *(Q) <- -p, by use of (2). Hence it appears that p + tr (I)(P) tends
monotonically to zero for n o, which yields the desired result.

A rough interpretation of Theorem 17 is that Pn tends to the inverse of AT/(0, 0)M
when n . We shall now give a precise meaning to this property under the assumption
of boundedness of both functions

(72) u(0) =-- logdet W(O,b)d, v(0) =--- tr W(O,c)dc.

LEMMA 18. LetMbe the canonical spectral factor of Won the right. If u L, then
the scalar ]’unction det M(e, O) and its inverse belong to the class L.+ If in addition
v L, then the matrix function M(e, w) and its inverse are essentially bounded in O,
uniformly on every disk [w[-<_ r < 1. The same results hold]’or the canonical spectralfactor
on the left.

Proof. By definition, IdetM(e, 0)12=exp u(O), so that both detM(e, 0) and
det M(e, 0)-a are bounded functions. Hence these functions belong to L+, in view of
the fact that det M(z, 0) is an outer Hardy function. To prove the second statement we
use the Poisson inequality, which yields

l+r 1 IoTM(73) Jl(e w)M(e w)<. W(O, ) dcb=l-r 2r
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in Iwl -< r, as a consequence of (69). For a matrix function X(e i) define the norm

Ilxll o ess sup IIX(e’)ll, with I1" denoting the spectral norm. Then (72) and (73) yield

l+r
(74) IIM(’, ]--57_r Ilvll o.

On the other hand, from the fact that det M(e, w) is an outer function of w, one easily
deduces the inequality

(75) log Idet M(e, w)]2 > 1 + r 1 f0
TM

1---r 2-- log- det W(O, b) dc,

with log-x =min (0, log x). Since log-x >-logx-px l/p, the property p(det W)lip <-_
tr W applied to (75) leads to

[(76) Idet M(e, w)[2 _>- exp
1 r

Combining (74) and (76) and observing that IIa[I-<_a and Idet A[->/3 imply IIA-ll<_-
/3-14 p-a, one obtains an inequality of the form IIM-a( w)ll o <= c(r). This concludes the
proof.

THEOREM 19. Assume that u and v belong to Loo. Then, in the situation of Theorem
17, the sequence of polynomials P,(’, w) converges in the mean to the inverse of
I(0, O)M(., w), uniformly on every disk [wl <- r < 1. In the same sense, Q, tends to
[N)(0, 0)]-1 for n oo.

Proof. Applying the Poisson inequality to (71), one obtains

IIi- r(0, 0)M(., w)P,(., 0

for n o, and hence the desired result by use of Lemma 18. El
Let us now restrict our attention to the situation (23) where (0, b) is absolutely

continuous with respect to the variable 0. Note that W(O, rk) occurs as the derivative of
the function A(0, b) with respect to 4. The condition log det FieL in (11) is always
satisfied, for all ], as a consequence of log det W e L. Indeed, one has (el. [4])

(77) exp [(] + 1) tr Ao(0)]_--> det Fi(0)_-> idet M(e io, 0)[:i/:,

so that log [det M(., 0)1 e L implies log det Fie L. Furthermore, in case u e Loo it
follows from (77) and Lemma 18 that the condition det F- e Loo in (24) is satisfied for
all ]. On the other hand, note that tr Ao e Loo implies v e Loo, since 0 _-< v(O) <= tr Ao(0) by
definition. It turns out that the results of Theorems 17 and 19 remain valid for arbitrary
sets $, of finite width (see Theorem 4).

THEOREM 20. Assume both functions tr Ao and u to be bounded. Let So
S, ... be an ascending chain of subsets of the upper half-plane H, such that

S, H.(, for all n (with H. denoting the horizontal strip (28)), satisfying U ,--o S, H.
Let P,(e, w)eL2(S,) denote the minimizing function of support S, relative to the

[u.nctional d. Then, for n o, one has both convergence properties 1.i.m. MP,
M(0,0)-1 in the sense of the two-variable L2-norm and 1.i.m.P,(.,w)=
[]lr(0, 0)M(., w)]-1 ]’or the one-variable norm (uniformly on Iwl <- r < 1). Similar results
hold ]’or the minimizing functions relative to the functional dot.

Proof. An argument similar to that given in Theorem 17 yields the first property.
Then, application of Lemma 18 leads to the second assertion.

From Theorems 19 and 20 one deduces, in pa.rticular, that the minimizing
functions Fk,,nd, F., and F. converge to the inverse of M(O, O)M when k and j tend to
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infinity. Note that these convergence properties hold true in the sense of the two-
variable L2-norm provided W-1 is a bounded function. The result Fk,m,j
[r(0, 0)M]-1 is especially interesting because, under rather weak explicit conditions, it
yields an inverse approximation of the canonical spectral factor of W by means of
trigonometric polynomials which are both asymptotically stable (Corollary 16) and
easily computable (Theorem 1). The idea of this approximation is due to Chang and
Aggarwal [3].

Let us make a final remark concerning the Schur parameters E,.j. It turns out that
the integrability of log det W is equivalent to the summability of the squared norms
IIE,II2 for (m, ]) varying over the half-plane H. (The proof is similar to that given in [4]
for the one-variable situation.) The interesting question of the (weighted) summability
of the norms IIE,II over H is more complicated and is left to further investigation.
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EQUILIBRIA ON A CONGESTED TRANSPORTATION NETWORK*

H. Z. AASHTIANI" AND T. L. MAGNANTIS"

Abstract. Network equilibrium models arise in applied contexts as varied as urban transportation,
energy distribution, spatially separated economic markets, electrical networks and water resource planning.
In this paper, we propose and study an equilibrium model for one of these applications, namely for predicting
traffic flow on a congested transportation network. The model is quite similar to those that arise in most
contexts of network equilibria, however, and the methods that we use are applicable in these other settings as
well.

Our transportation model includes such features as (i) multiple modes of transit, (ii) link interactions and
their effect on congestion, (iii) limited choices (or perceptions) of paths for flow between any origin-
destination pair, (iv) generalized cost or disutility for travel, and (v) demand relationships for travel between
origin-destination pairs that depend upon the travel time (cost) between all other origin-destination pairs.
Using Brouwer’s fixed-point theorem, we establish existence of an equilibrium solution to the model. By
imposing monotonicity conditions on the delay and demand functions, we also show that travel times (costs)
are unique and, in certain instances, that link flows are unique.

1. Introduction. Network analysis draws its origins from several sources. Prom-
inent among these is the study of passive electrical networks, particularly the prediction
of a network’s utilization when it is loaded with prescribed voltages and impedances.
With given voltages applied to an electrical network, what is the resulting flow? More
recently, similar types of predictive questions have been posed in social and economic
contexts. In transportation, travelers’ demands for transportation services function, like
voltages, as forces that generate network flow which, in this instance, are trips to be
made between origin and destination points in the network. In this setting, travel time,
travel cost, and other disutility measures replace electrical resistance as the impedance
to flow. In economics, price differentials between spatially separated markets act like
voltages as forces for generating commodity flow; transportation costs between the
markets act as resistance to commodity movement. In each of these applications,
the equilibration of forces and impedances has served as a model for predicting flow
on the network. The nature of the specific equilibrium model depends upon the
behavioral assumption, such as Ohm’s law, profit maximization or cost minimization,
that relate the forces, impedances and network flow.

The advent of robust theories for constrained optimization has precipitated an
attractive and common approach for studying network equilibrium problems, namely
to view the equilibrium model as the Lagrange multiplier conditions or, more generally,
the Karush-Kuhn-Tucker optimality conditions of well-conceived auxiliary optimiza-
tion problems. For example, one might minimize power loss instead of finding an
equilibrium on an electrical network directly. Making this association permits the
powerful and flexible solution techniques of constrained optimization to be used to
compute an equilibrium and, moreover, permits optimization theory to serve as the
methodology base to study questions such as existence and uniqueness of equilibrium
solutions. On the other hand, the equivalent optimization approach limits the richness
of equilibrium modeling by restricting the problem assumptions to those for which the

* Received by the editors April 1, 1980, and in final form January 7, 1981. The material in this paper was
presented at the TIMS XXIV International Meeting, Hawaii, June 1979. This research was supported by the
Transportation Advanced Research Program of the U.S. Department of Transportation under contract
DOT-TSC-1058 and by the National Science Foundation under grant 79-26625-ECS.

" Sloan School of Management and Operations Research Center, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts 02139.
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equilibrium conditions can be interpreted as optimality conditions for an associated
optimization problem.

In this paper, we study a class of network equilibrium problems with no known
equivalent optimization problem. Although the approach that we take might apply to a
variety of different network equilibrium applications, we restrict our discussion to
transportation planning. In the next section, we propose a general model for network
equilibrium of an urban transportation system. The model includes such features as (i)
multiple (and interacting) modes of transit, (ii) link interactions and their effect on
congestion, (iii) limited choices (or perceptions) of paths for flow between any origin-
destination pair, (iv) generalized cost or disutility for travel on any path that depends
upon the flow pattern on the entire transportation network and (v) demand relation-
ships for travel between origin-destination pairs that depend upon the travel time (cost)
between all other origin-destination pairs. With the exception of (iii), any one of these
modeling features invalidates the assumptions that are typically made when showing
that the transportation equilibrium problem can be converted to an equivalent opti-
mization model.

After stating this model and discussing some of its applications and specializations,
we show that only very mild restrictions need be imposed upon the problem data,
restrictions that we would expect to be met almost always in practice, to insure that an
equilibrium solution exists. We also establish conditions that will insure that an
equilibrium solution is unique. To establish these results, we formulate the equilibrium
model as an equivalent nonlinear complementarity problem. Then we use Brouwer’s
fixed-point theorem to establish existence and nonlinear complementarity results to
establish uniqueness.

2. Background. The genesis of transportation equilibrium modeling was a
behavioral assumption, known as Wardrop’s user traffic equilibrium law, first proposed
in 1952 by the traffic engineer J. G. Wardrop [52], namely:

At equilibrium, for each origin-destination pair the travel times on all the routes actually used are
equal, and less than the travel times on all nonused routes.

This principle has spawned a great deal of research by transportation engineers,
economists and operations researchers aimed at enhancing the scope and realism of
Wardrop’s model, at developing algorithms to compute an equilibrium, and at applying
the equilibrium model in practice to predict traffic flow patterns. Modeling efforts and
methodological advancements have evolved to the point that one version of the
equilibrium model now forms part of the Urban Mass Transit Authority’s trans-
portation planning system [51].

Since 1952, a large number of algorithms have been developed for the traffic
assignment problem. Most of the earlier techniques were heuristics and usually did not
consider congestion effects or any formal concept of an equilibrium [39], [40], [53],
[ 19]. The goal of these approaches was to assign flow between different paths so that the
paths have almost equal travel time. The next generation of heuristics, as embodied by
the "capacity restrained" technique [12], [28], [29], [48], attempted to account for
capacity of the system. Later techniques [30], [38], [39] loaded the system increment-
ally, attempting to approximate an equilibrium solution.

The mathematical programming approach to traffic equilibrium originated in 1956
when Beckman, McGuire and Winsten [7] formulated a version of the equilibrium
problem as the optimality conditions of an equivalent optimization problem, They

Samuelson had earlier proposed a similar transformation in the context of spatially separated economic
markets.
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assumed:
(1) a single mode of transit (private vehicle traffic has been the primary application

since then);
(2) that the demand function Di(ui) between every origin-destination pair

depends only upon the impedance or shortest travel time ui between that
origin-destination pair;

(3) that the delay functions for the links are separable; that is, the delay ta (Va) for
each link "a" depends only upon the total volume of traffic flow va on that link.

Since then several researchers have proposed algorithms for solving the equivalent
optimization problem (Bruynooghe, Gibert and Sakarovitch [11], Bertsekas [8],
Bertsekas and Gafni [9], Dafermos [13]-[16], Dembo and Klincewicz [ 18], Leventhal,
Nemhauser and Trotter [36], Leblanc [34], [35], Nguyen [41]-[45], Golden [26], and
Florian and Nguyen [23]-[25]).

There are a number of ways to enrich the modeling assumptions (1)-(3). Modeling
multi-modal (for example, private vehicle and a public transit mode) and multi-class
(for example, high vs. low income) traffic equilibrium would be extensions with great
practical relevance. Incorporating demand functions for an O-D pair that depend upon
impedance between other O-D pairs would permit destination choice to be modeled
more realistically than in models based upon (1)-(3). For example, the distribution of
trips from a residential district to two shopping centers depends, in part, upon the travel
time to both centers. Residential home selection might be modeled as an origin choice
version of this extension. Another extension would be to let delay on a link depend on
volume flow on other links. This latter extension permits modeling of traffic equilibrium
with two-way traffic in one link, traffic equilibrium with right and left turn penalties, and
the like.

Some attempts have been made to generalize the equivalent optimization
approach to traffic equilibrium to incorporate these modeling extensions. Dafermos
13], [15] has considered multiple classes of users, and Florian [22] and Abdulaal and
Leblanc [4] have considered the multi-modal problem. In addition, the equivalent
optimization problem has been used to prove existence and uniqueness of an equili-
brium for certain specializations of the general model (Dafermos [ 13], [ 15], Florian and
Nguyen [23] and Steenbrink [49]). Nevertheless, the optimization based approach is
limited since the assumptions required to insure an equivalent convex optimization
problem are generally too severe to be applicable in practice for modeling the type of
extensions to assumptions (1)-(3) suggested above. The approach adopted in this paper
originates with Aashtiani [1] who formulated an extended equilibrium model and
studied existence of a solution by viewing the model as a nonlinear complementarity
problem. In [2] he elaborates on this approach and proposes a computational scheme
for solving for an extended equilibrium. Independently, Kuhn [27] devised a fixed-
point method, equipped with a special pivoting scheme, to solve equilibrium problems
with fixed demands and with separable link delay functions. Asmuth [6] has proposed
an additive model similar to the one discussed in this paper that includes point-to-set
delay functions and demand functions. He has also studied existence and uniqueness,
existence being a consequence of a constructive fixed-point algorithm. The proof of
existence given in this paper, which is adopted from Aashtiani and Magnanti [3], is
shorter than these earlier proofs and relies on the classical fixed-point theorem of
Brouwer.

In related developments, Dafermos [14], [15], by assuming differentiability and
strong monotonicity of the link delay function, has recently used the theory of
variational equalities to establish the existence of a traffic equilibrium and to devise an
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algorithm for computing an equilibrium. Ahn [5] has used similar methods to study
equilibrium for spatially separated markets arising in energy planning. Recently, Braess
and Koch [10] and Smith [47] have used a proof different from that given in this
paper, but also based upon Brouwer’s fixed-point theorem, to establish existence of an
equilibrium for a special version of the model that we study here; they assume that the
demand is fixed independent of the network congestion and that the cost on any path is
the sum of costs on arcs in that path. Braess and Koch also impose a monotonicity
assumption on the arc costs.

3. Traffic equilibrium model. The equilibrium model is defined on a transporta-
tion network IN, A] with nodes N, directed arcs A, and with a given set I of
origin-destination (O-D) node pairs. Nodes represent centroids of population, business
districts, street intersections and the like, and arcs model streets and arteries or might be
introduced to model connections (and wait time) between legs of a trip, between modes,
or between streets at an intersection. The model is formulated as:

(a) (Tp (h) ui)hp 0 for all p Pi and /,

(b) Tp (h) u >- 0 for all p 6P and 6/,

(3.1) (c) hp Di (u) 0 for all /,
pP

(d) h _-> 0,

(e) u -> 0.

In this formulation:

I

Ui

U

Di(u)
Tp(h

is the set of O-D pairs.
is the set of "available" paths for flow for O-D pair (which might, but need
not, be all paths joining the O-D pair).
is the flow on path p.
is the vector of {hp } with dimension n iel IPil equal to the total number
of O-D pairs and path combinations.
is an accessibility variable, shortest travel time (or generalized cost) for
O-D pair i.
is the vector of {u} with dimension n2
is the demand function for O-D pair i" D"R"2+R
is the delay time, or general disutility, function for path p;
T(h)’R"’

We also let P {P :i I} denote the set of all "available" paths in the network and
assume that the network is strongly connected; i.e., for any O-D pair ! there is at
least one path joining the origin to the destination (i.e., IPil_-> 1).

The first two equations in (3.1) model Wardrop’s traffic equilibrium law requiring
that for any O-D pair i, the travel time (generalized travel time) for all paths p P, with
positive flow hp > 0, is the same and equal to u, which is less than or equal to the travel
time for any path with zero flow. Equation (3.1c) requires that the total flow among
different paths between any O-D pair equal the total demand D, (u), which in turn
depends upon the congestion in the network through the shortest path variable u.
Conditions (3.1d) and (3.1e) state that both flow on paths and minimum travel times
should be nonnegative.
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An important special case of the equilibrium problem (3.1) is an additive model in
which

(3.2)

where

Tp (h) apta (h) for all p Pi and /,
aA

1 if link a is in path p,
SaP= 0 otherwise,

and t (h) is the delay function for arc a and O-D pair i,

t/ "R/ /.

That is, the delay time on path p is the sum of the delays of the arcs in that path. More
compactly, Tp(h)= ATt (h), where A (Sap) is the arc-path incidence matrix for the
network and (h) (ta (h)) is the vector of arc delay functions for O-D pair i.

Several features of the equilibrium model are worth noting. In a large trans-
portation network, users generally will not perceive, or choose from, all possible paths
joining every origin-destination pair. If we identify the paths Pi available for flow
between O-D pair as the available set of routes from which the user chooses, the
equilibrium conditions model this type of limited route choice.2 In addition, since the
path disutility functions Tp (h) are arbitrary and depend upon the full vector h of path
flows, the model can account for path interactions, as at intersections, and the
generalized costs Tp (h) can, in principle, incorporate a variety of attributes that are
relevant to route selection such as travel time, travel costs, and route attractiveness. To
the best of our knowledge, no previous existence proof of traffic equilibrium
incorporates both of these modeling features.

The equilibrium model (2.1) is more general than first appearance might indicate.
A judicious choice of network structure permits the formulation to model a wide range
of equilibrium applications including multi-modal transit, multiple classes of users and
destination or origin choice. To model multi-modal situations, we might conceptualize
an extended network with a distinct component for each mode of transit. (Dafermos
[13] and Sheffi [46] adopt this approach as well.) The component networks might be
identical copies of the underlying physical transportation network, as when autos and
buses share a common street network. Since the delay Tp (h) for paths on the automo-
bile component network depends upon the full vector h of path flows, the delay function
can account for congestion added by buses sharing common links. Note, however, that
the networks for each mode need not be the same. Consequently, bus routes might be
fixed and subway links might be distinct from those of other modes.

The model also provides flexibility in modeling demand. Suppose, for instance,
that O-D pairs and ] in the extended network introduced above correspond to the
same physical origin and destination points but different modes of transit. If we
introduce a source node s and terminal node t connected, respectively, to the origin and
destination points of O-D pairs and j, then a demand function Dst (u) would model

Several authors (e.g., Asmuth [6], Dafermos 14], 16] and Smith [47]) formulate the traffic equilibrium
problem in terms of arc flows. The path flow formulation with limited path choice appears to be more general.
If Ai is the union of the arcs continued on the paths in Pi, then the arc formulation implies that any path with
arcs in Ai and joining O-D pair belongs to Pi. In formulation (3.1), Pi is an arbitrary collection of paths
joining O-D pair i, thereby permitting more flexibility in modeling user’s perception of "available" paths.
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total trips between the origin and destination points as a function of network conges-
tion. The equilibrium model would distribute these trips between the two modes to
equalize the disutility Tp (h) on all flow carrying paths by both modes. As an alternative,
the modeler could prescribe the nature of modal split by introducing demand functions
such as the well-known logit model:

e ou, +A
D, (u d ou, +a Ou, +a,, Dj (U d D, (u ),

e +e

which would distribute the total number of trips d between the two modes and j
depending upon delay times ui and uj by the two modes and the given negative constant
0 and nonnegative constants Ai and A.

As Dial [20] has noted, a generalized version of the logit model permits destination
choice and modal split to be made simultaneously. If =pqm denotes an origin
destination pair p-q distinguished by transit mode m, the model is of the form

rq e
D,q, u =dpE rq, eq’

where dp is the total number of trips generated at origin p to be sent to the destination
q’, and rq, is an index of attraction for destination q’.

4. Equivalent nonlinear complementarity problem. Let F(x) (F(x), ,
Fn (x)) be a vector-valued function from an n-dimensional space R into itself. The
well-known nonlinear complementarity problem of mathematical programming is to
find a vector x that satisfies the following system:

(4.1) x.F(x)=O, F(x)>--O, x>=O.

This problem has wide ranging applications. Karamardian [31], [32] illustrates several
examples. For instance, the primal-dual optimality conditions of linear and quadratic
programming and the Kuhn-Tucker conditions for certain other nonlinear program-
ming problems can be cast in this form.

In this section we show that the traffic equilibrium problem (3.1) can be formulated
as a complementarity problem. By definition, equations (3.1a), (3.1b), and (3.1d) are
complementary in nature. To show that the remaining equations can be expressed in a
complementarity form requires some mild assumptions that we would expect to be met
always in practice.

First some simplification in the formulation helps to clarify our discussion. Let
x (h, u) R n, where n n -[-/’/2, and furthermore, let

fp(X)= Tp(h)-ui for allp P, and//,

and

Also, let

g (x X hp D, (u for all I.
pP

F(x)= (fp(x) for allp Pi and/Lgi(x)foralli I)6R".

Then F is a vector-valued function from an n-dimensional space R" into itself. Now
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consider the following nonlinear complementarity system:

fp (x )hp =0 for all p Pi and//,

fp(X)>-_O for allpP and//,

(4.2) gi (x)ui 0 for all /,

g, (x) _>- 0 for all I,

x->0,

which is a specialization of (4.1).
Since any solution 2 (h, tT) to the traffic equilibrium problem satisfies gi (2) 0 for

all e/, the solution 2 solves the nonlinear complementarity problem (4.2) as well,
independent of the nature of the delay functions Tp (h) and the demand functions Di (u).
The following result establishes a partial converse.

PROPOSITION 4.1. Suppose, for all p P, that Tp" R / R + is a positive function.
Also, suppose, ]:or all L thatD R n2 R+ + is a nonnegative function. Then the traffic
equilibrium system (3.1) is equivalent to the nonlinear complementarity system (4.2).

Proof. In light of our comment preceding the proposition, it is sufficient to show
that any solution to (4.2) is a solution to (3.1). Suppose to the contrary that there is an
x=(h,u) satisfying (4.2), but that gi(x)=’.pep, hp-Di(u)>O for some eI. Then
gi(x)u 0 implies that ui 0. Also, since D is nonnegative ,pp, hp > D(u) >= O, which
implies that hp > 0 for some p P. But, for this particular p, the equation fp(x)hp 0
implies that

fp(x)= Tp(h)-u, =0 or Tp(h)=u,.

But since u 0, Tp (h)= 0, which contradicts the assumption Tp (h)> O. U
When the traffic equilibrium problem is additive, Tp (h ,a ca apta (h ), Tp (h is

positive whenever the arc delay functions are positive, or more generally, whenever the
arc delay functions are nonnegative and at least one is positive on an arc a in path p.3

nlPROPOSITION 4.2. Suppose, ]:or all a A, that ta" R / R / is a positive function.
Also, suppose, for all I, thatDi R / R / is a nonnegativefunction. Then the additive
traffic equilibrium system (3.1) and (3.2) is equivalent to the nonlinear complementarity
system (4.2).

Neither of the previous two propositions is valid if either the assumption that each
demand function D(u) is nonnegative or the assumption that each delay function T(h)
is positive is eliminated. See Aashtiani [2] for examples.

5. Existence. Rather extensive theory (see, for example, Karamardian [31] and
Kojima [33]) provides necessary conditions that assure the existence of a solution to the
nonlinear complementarity problem. Unfortunately, most of the conditions are too
strong to be applied directly to the traffic equilibrium problem. To illustrate this
situation and at the same time introduce concepts that will be useful in 6 when we
discuss uniqueness of solutions, we introduce a prototype of this theory by considering
results due to Karamardian. First, we require some definitions.

Notice that we have suppressed explicit dependence of the arc delay functions ta (h) on the origin-
destination pair since the generality of the equilibrium problem (3.1) permits us, at least conceptually, to
duplicate the network, as indicated in the previous section, so that each arc carries the flow for a single O-D
pair.



220 H. Z. AASHTIANI AND T. L. MAGNANTI

DEFINITION 5.1. Let F D -R", D cR". The function F is monotone onD if, for
every pair x eD and y e D,

(x y (F(x F(y >- O.

F is strictly monotone on D if, for every pair x e D, y eD with x y,

(x y (F(x F(y > O.

F is said to be strongly monotone on D if there is a scalar k > 0 such that, for every pair
x eD, y

(x y (F(x F(y >- k ]x -y]2,

where I" denotes the usual Euclidean norm.
THEOREM 5.1 (Karamardian [31]). If F:R+R is continuous and strongly

monotone on R, then the nonlinear complementarity system (4.1) has a unique solution.
THEOREM 5.2 (Karamardian [31]). IfF :R -R is strictly monotone on R, then

the nonlinear complementarity system (4.1) has at most one solution.
Notice that for traffic equilibrium problems, these theorems require that F(x)=

(’aea Zp(h)-ui for all p ePi and eL pc=Pi hp-Di(tt) for all el) and necessarily
Tp (h) be strictly or strongly monotone in terms of path flows. In most instances, this
condition is not applicable; usually, the delay functions Tp depend upon arc flows each
of which depends upon the sum of the flows on different paths. In these situations,
whenever x (h, u) and y (h ’, u) correspond to two path flows h and h’ that give rise
to identical arc flows, Tp (h Tp (h ’) and pePi hp pePi h for all e I. Consequently,
F(x) F(y) and (x y)[F(x) -F(y)] 0, so that neither strict nor strong monotonicity
applies.

Generally, however, for transportation applications the delay functions Tp (h) are
monotone, and frequently even strictly monotone, in terms of link volumes. Later we
use this property to show the uniqueness of the solution in terms of link flows. In
Theorem 5.3 to follow, though, we show that no monotonicity assumption is required
for the existence of the solution.

To establish this result we use a well-known [50] transformation that permits us to
convert the nonlinear complementarity problem and, in particular, the nonlinear
complementarity version (4.2) of the traffic equilibrium problem into a Brouwer
fixed-point problem. Let us define b :R _>R by defining its component functions
for 1, 2, ..., n as

6, (x)= Ix,- (x)]/,

where [y ]/ denotes max {0, y }. Then is a fixed point to b i.e., b () if and only if 3
solves the nonlinear complementarity problem x _-> 0, F(x) _-> 0, and xF(x) O.

This equivalence shows that we can, in principle, study any nonlinear complemen-
tarity problem by invoking fixed-point theory. Note that we cannot use Brouwer’s
fixed-point theorem directly, though, because the mapping b (x) defined on R. need
not map any compact set into itself. Consequently, we will restrict the domain of b to
some large cube C. To apply the theorem, we must be assured that tk maps C into itself,
which we accomplish by redefining b (x) for anyx e C if it lies outside of C by projecting
b (x) onto C. By Brouwer’s fixed-point theorem the modified map b’ has a fixed point.
We must show that it has no false fixed points, thoughthat is, no point $ contained on
the boundary of C with the property that b() C but the projection b’(:) of b(2) on C
satisfies b’()= . The essence of the following equilibrium proof is that b’ as derived
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from the complementarity version (4.2) of the traffic equilibrium problem admits no
false fixed points.

THEOREM 5.3. Suppose (N, A) is a strongly connected network. Suppose that
Tp R +1

_
R is a nonnegative continuous function for all p e P. Also suppose thatfor all

eL Di’R n2
+ -.R is a continuous function that is bounded from above. Then the

nonlinear complementarity system (4.2) has a solution.
Proof. Let F(h)= ,pp, hp denote the flow between O-D pair and let e and 8

denote vectors of ones with IPI and III components. We must show that the following
complementarity problem has a solution:

hp[Tp(h)-u,]=O
u, [Fi (h D, (u ] O

Tp(h)-ui >-0

F (h D, (u >- O
Ui _-->0, hp >-_0

Let K1 > 0 satisfy

for all e I and all p e P.

K1 >max max Di (u)
uO

and let K2 -K1 satisfy

KE>max max Tp(h).
peP 0=<h --<K le

K1 exists because of the hypothesis that each D(u) is bounded, and K2 exists because
each Tp (h) is continuous.

Define the continuous mapping th of the cube {0 <-h <=Kle, O<=u _-<K2} into itself
by

qb,(h,u) min {Kl, [hp + ui Tp(h )]/} for all p ePi andalli eI

and

tki(h, u)=min {K2, [u +D,(u)-F(h)]+} for all/

By Brouwer’s fixed-point theorem this mapping has a fixed point (/, fi); that is,
/p bp (/, a) and t -th (/, a) for all e I and all p e P. We show that this fixed point
solves the complementarity problem by showing that, for all p eP and e/,

(,) a, in, +D,(a)-F,(/)]/.

First note that ti <K2 for all eL for if some t K2 then, for any p e Pi,
+ ai Tp (i) > lip by the definition of K2, which implies from /p bp (/, a) that=K1. But then the definition of K implies that D (a) <F (/), so that [a +D (a)

F(/)] <a therefore a must equal 0 in order that a thi (/, a), contradicting a K2.
Next note that if hp K for some e I and p e Pi, thenD (t) <F (/) by definition

ofK, which implies as above that a 0. By the nonnegativity of Tp, [lp + Tp (/)] -<

/p, with a strict inequality if Tp ()> 0. Consequently, in order that/ K>0 equal
dpp (fi, a), Tp (fg must equal 0 and thus fp [flp -- .1 Tp (f )]+.

We have now established the expressions (.) which imply, if we consider the cases
/p > 0 or/p 0 and t, > 0 or t, 0, that (/, t) solves the complementarity problem
(4.2).

As a consequence of Theorem 5.3 and Proposition 4.1 we have the following
result.
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THEOREM 5.4. (Existence). Suppose (N,A) is a strongly connected network.
Suppose that Tp"R + -R 1+ is a positive continuous function for all p P. Also suppose
thatfor all I, Di R2+ R + is a nonnegative continuous function that is bounded from
above. Then the traffic-equilibrium system (3.1) has a solution.

An important version of this theorem is its specialization for additive traffic
equilibrium.

THEOREM 5.5. (Existence). Suppose (N,A) is a strongly connected network.
Suppose that ta R + -R + is a positive continuous function for all a A. Also suppose
that]:or all L Di R + R + is a nonnegative continuous function that is bounded from
above. Then the additive traffic equilibrium system (3.1) and (3.2) has a solution.

Proof. Since every ta is positive and continuous, so is Tp (h)= ,aA apta (h) and,
consequently, Theorem 5.4 applies.

Asmuth [6] has suggested what appears to be a stronger version of Theorem 5.5 by
not requiring that the demand functions Di (u) be bounded. To see the relevance of this
result, suppose that Di (u) denotes the number of trips to be made between a particular
origin-destination pair by automobiles. One possibility for modeling this situation is a
Cobb-Douglas product form demand model given by

(u)D, (u) A
(u,)’

whereA is a given constant, a 0 is a "direct elasticity" and/3 _>- 0 is a "cross elasticity".
In this model, u denotes the travel time between the O-D pair by auto and ui denotes
the travel time by an alternate mode such as bus. Note thatD (u) is not bounded unless
we require u -> e for some, possibly small, number e > 0.

The next result shows that Theorem 5.4 can be modified easily to include settings of
this nature.

THEOREM 5.6. (Existence). Suppose (N,A) is a strongly connected network.
nlSuppose thatfor all p P, Tp" R + R + is a continuous function and that, for all h R +,

Tp (h > for some e >= O. Also suppose that for all L D R + -R + is a nonnegative
continuous function that is boundedfrom above on the set {u R u >= e for all }. Then
the traffic equilibrium system (3.1) has a solution.

Proof. Let be a vector of ones with III components, and define

T (h) Tp (h) e > 0, D; (u) D, (u + e).

These functions satisfy the hypothesis of Theorem 5.4, and so they are guaranteed to
have a complementarity (or equilibrium) solution (h ’, u ’). But then (/, tl) (h ’, u’ + e)
is a complementarity (equilibrium) solution for Tp and D.

6. Uniqueness. In situations in which the traffic equilibrium problem can be
formulated as an equivalent convex optimization problem, the Kuhn-Tucker vector
associated with the flow constraints Ypp, hp D (u) can be identified with the vector u
of shortest travel times (generalized costs). Since the gradients of these constraints as
varies are linearly independent, the theory of convex optimization implies that in
equilibrium the shortest travel times are unique even if the flow vector h is not unique.
This situation reflects practice as well. Generally, flow patterns in urban transportation
networks vary, sometimes considerably, from day to day though travel times remain
essentially constant.

In this section, we show that these observations apply to the additive version (3.1)
and (3.2) of the general traffic equilibrium model as well. We first recall conditions due
to Asmuth [6] that insure that link flows and shortest travel times are both unique. We
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then show that imposing weaker conditions will still imply that shortest travel times are
unique.

To facilitate our discussion in this section, we represent the traffic equilibrium
problem in a matrix form. Let Va denote the total flow on arc a, that is, va
EiI EpPi ap hp, and let v with dimension IAI denote the vector of arc flows. Since we
are assuming an additive model, Tp (h) ATt(h) ,

cA 6apta (h) for every path p P. In
fact, we will assume that the arc delay term t (h) can be expressed as a function of link
flows v and write t (v).

Also, let (v) be the vector of arc delay functions andD (u) be the vector of demand
functions. Recall that A (ap) is the arc-path incidence matrix with dimension IAI n.
Let F (ypi) be the path O-D pair incidence matrix with dimension n n.; i.e., /pi 1
when path p joins O-D pair and yp 0 otherwise.

Then the traffic-equilibrium problem can be written as

(6.1)

(Ar t(Ah)-F, u). h =0,

Ar t(Ah)-F.u >-0,

Fr h-D(u)=0,

h_->0, u__>0.

Now let x (h, u)T and let F(x) R ]_ R be defined as in 4 as F(x)
(ATt(Ah)- Fu, FTh -D(u)). Then (4.1) is the nonlinear complementarity version (4.2)
o (6.1).

Whenever F(x) is strictly monotone, the solution to the general nonlinear
complementarity problem (4.1) is unique (see Theorem 5.2). Asmuth [6] has extended
this result to establish the following uniqueness result, which we state without proof.

TEOREM 6.1. (Uniqueness). For a strongly connected network (N, A) suppose that
t, the vector of the volume delay functions, and -D, the vector of the negative of the
demand functions, are strictly monotone. Then the arc volumes v and the accessibility
vector u for the additive traffic equilibrium problem (3.1) and (3.2) are unique, and the set

of equilibrium path flows is convex.
Observe the distinction between the hypothesis of this theorem and the assumption

that F(x) is strictly monotone. The theorem requires that the vector of volume delay
functions be strictly monotone in terms of arc volumes v whereas the latter assumption
requires strict monotonicity in terms of path flows h. As we have noted earlier, the path
flows need not be unique since two collections of path flows might correspond to the
same arc flows.

Note that to insure the uniqueness of (v, u), Theorem 6.1 requires that both of the
functions and -D are strictly monotone. Our next result shows that the strict
monotonicity of -D can be relaxed and, moreover, that uniqueness of u is maintained if
either or -D is strictly monotone.

THEOREM 6.2. For a complete network (N, A) suppose that and -D in the additive
traffic equilibrium problems (3.1) and (3.2) are both monotone functions. If either of or
-D is strictly monotone, then u is unique. Also, if is strictly monotone andD is a positive
function, then (v, u) is unique.

Proof. Suppose that x (h , u ) and x (h 2, u 2), x x 2, are two solutions to the
equilibrium problem. Nonnegativity of x , x 2, F(x ), and F(x 2) and the complemen-
tarity conditions x 1F(x ) 0 and xEF(x 2) 0 imply that

(x a-xZ)[F(x )-F(x 2)] =< 0
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or, substituting (h, u)7" for x and using the definition of F,

(h 1_ h 2)7- (AT-t(Ah 1) rlgl AT-t(Ah 2) + ru 2)
+(u 1-u 9)7" (FT"h 1-D(u 1)- FT"h 2 +D(u2)) =< 0

or
(6.2) (Ah-Ah)r(t(Ah)-t(Ah2))+(u-u)r(-D(ua)+D(uZ))<=O.
But both and -D are monotone functions, and thus each term in (6.2) is zero; that is,

(6.3) (Ah- Ah2) (t(Ah a)- t(Ah 2)) 0

and

(6.4) -(u 1- u 2)T (D (u 1)-D(u 2)) 0.

If -D is strictly monotone, then (6.4) implies that u U 2, Or U is unique.
Now, suppose that is strictly monotone. Then (6.3) implies that v Ah Ahe

2v or that the are volume vector v is unique. But then the travel time, t(v), on each are
is unique, which implies from (3.1a) and (3.2) that u is unique, since D being positive
implies that some path flow is positive for each O-D pair i.

Whenever t is a function only of the total volume in the are, as when all the traffic
from different origins has the same effect on the travel time of each are, and there is no
interaction between opposing lanes of two-way traffic or right or left turn penalties, then
the strictly monotone condition on can be relaxed for the uniqueness results.

COROLLARY 6.1. (Special case). For a strongly connected network (N, A), suppose
that each ta ofthe additive traffic equilibrium problems (3.1) and (3.2) is a function only of
va, and that it is monotone. Also, suppose that -D is monotone and negative. Then u is
unique.

Proof. By definition t, the vector of the volume delay function, is monotone
because each of its components is monotone. Thus (6.3) in the proof of Theorem 6.2 is
valid. But since each component of is monotone, (6.3) can be separated into a single
term for each arc"

(v-v)(t(v)-t(v))=O for all a A.

This equation implies that t (v) t (v 2), or that the travel time on each arc is unique
and, consequently, that u, the minimum path travel time, is unique. [3
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GRAPH THEORETIC METHODS FOR THE QUALITATIVE ANALYSIS
OF RECTANGULAR MATRICES*

HARVEY J. GREENBERG, J. RICHARD LUNDGREN AND JOHN S. MAYBEE

Abstract. In the past few years, many large models including several energy models have been
represented by rectangular matrices, and graphs appear to be valuable in investigating connectivity and other
properties of these models. It is the purpose of this paper to establish some of the basic foundations for the use
of graphs and digraphs to investigate properties of rectangular matrices. A variety of graphs and digraphs
associated with rectangular matrices are introduced, and several theorems related to connectivity and tearing
are proved. There are also a few applications to the area of computer-assisted analysis.

Introduction. In the past 25 years considerable use has been made of the relation-
ships between graphs and square matrices. The theory of the use of square matrices to
analyze digraphs is developed in Harary, Norman and Cartwright [14]. More recently
graphs and digraphs have been used in research on square matrices in sparse matrix
theory (see [3], [20], [21], [22], [23], [24]) and qualitative matrix theory (see Maybee
and Quirk 16]). It is the purpose of this paper to establish some of the basic foundations
for the use of graphs and digraphs to investigate properties of rectangular matrices.
Although some use has been made of some of these graphs in the past (see Dulmage and
Mendelsohn [4], Tewarson [17] and Weil and Kettler [19]), it is the development of
computer-assisted analysis (CAA) for matricial forms (see Greenberg [6], [7], [8]) that
has created a need for a comprehensive study of these graphs.

In these papers, Greenberg develops the basic concepts associated with CAA and
matricial forms and describes their use in model simplification. He demonstrates that
graphs are valuable in investigating connectivity and other properties of matricial
forms, which for our purposes will be treated simply as rectangular matrices. For some
models, we know each matrix entry, for others, only the sign of each entry, and for
others, only the locations of the nonzeros. So, we are using some graphs where only the
locations of the nonzeros is needed and others where the sign of the entries is needed.

Our general approach is to develop the theory of graphs associated with rectan-
gular matrices. However, we have included some applications to CAA. For further
applications, see Greenberg, Lundgren and Maybee [9], where we presented in an
expository paper several applications of this theory to CAA, and [10], where appli-
cations are presented in an operations research context. In the first section we define the
basic graphs and digraphs associated with rectangular matrices. Then in the next two
sections we present several theorems related to connectivity and tearing.

1. Graphs of rectangular matrices. Given a rectangular matrix M, we define two
sets of vertices, R {rl, , r,} and C {Cl, , cn}, to represent the row and column
variables, respectively. The three basic undirected graphs are:

Fundamental bigraph. B is a bipartite graph on R, C. The edges E correspond to
the nonzeros in M: [ri, cj] is in E if and only if M(i, j) O.

Row graph. RG is defined on R. Its edges are defined by: ri and rk are adjacent if
there exists cj in C such that [ri, ci] and Irk, ci] are in E. In other words, two rows are
adjacent if they have a common column intersection in M.
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Column graph. CG is defined on C. Its edges are defined by" cj and ck are adjacent
if there exists r in R such that [c, r] and [ck, ri] are in E. In other words, two columns are
adjacent if they have a common row intersection in M.

The row and column graphs are the "2-step" graphs recently studied by Exoo and
Harary [5]. Their extension to "n-step" graphs, induced by the fundamental graph by
paths of length n, may also prove valuable. For some applications it is useful to sign B,
and if possible to sign RG or CG. This possibility is investigated in a related paper (see
[11]).

To capture the information contained in the signs of the nonzeros, three basic
digraphs are defined:

Fundamental digraph. D has the same points as B and the orientation of the arcs,
A, is defined by the signs of the nonzeros:

[ri, c.] in E and M(i, j) < 0 iff (5, c) in A,

[r, ci] in E and M(i,/’) > 0 iff (ci, r) in A.

Note that B is the undirected graph formed from D by deleting the directions of the
arcs.

Row digraph. RD is defined on R. Its arcs are defined by: (ri, r) is an arc if and only
if there exists c. in C such that (ri, c) and (cj, r) are in A. (The arcs of RD may not be
isomorphic to the edges of RG.)

Column digraph. CD is defined on C. Its arcs are defined by: (ci, c) is an arc if and
only if there exists rg in R such that (c., rg) and (ri, c) are in A. (The arcs of CD may not
be isomorphic to the edges of CG.)

If we want to refer to the matrix M that a graph or digraph is associated with, we
will use the notation B (M).

The fundamental digraph is the signal flow graph, familiar in engineering science
(see Henley and Williams [15]). It represents a flow concept, such as the "physical
flows" matricial form (see Greenberg [6]). These graphs and digraphs are also useful in
working with sparse matrices (see Duff [3]).

One additional concept is relevant to our study, namely "combivalence". This
grew out of linear programming and was formalized as an algebra by Tucker 18]. Two
matrices are combivalent if one is reachable from the other by a sequence of pivot
operations. This relation is denoted M’ comb. M, and associated graphs are also
indicated by primes. It is not difficult to show that combivalence is reflexive, symmetric
and transitive (see [18] where the proofs are given). We note that the pivot operation
used in linear programming is similar to the total pivoting strategy used in Gauss
elimination, except that the choice of a pivot is based upon somewhat different criteria.
However, once a pivot is chosen, say ai, elements of the ]th column are converted to
zero except for ai, which is changed to 1, by exactly the same operations as those used in
Gaussian elimination. For some examples see [6].

Our interest in combivalence stems from the changing topology of the basic graphs
when reconfiguring the matrix form--that is, redefining which variables are in the row
set and which are in the column set.

2. General connectivity. In this section we investigate connectivity relations
among the basic graphs and digraphs. An understanding of connectivity helps to
provide computer-assisted analysis (see Greenberg [6], [7], [8]). One associated CAA
function is model verification.

Throughout this section we assume that M is an m n matrix such that each
column and row of M has a nonzero element.
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The following lemma will be used throughout the paper.
LEMMA 2.1. Suppose M1 PMQ, where P and Q are permutation matrices. Then

each of the graphs for M1 is isomorphic to the corresponding graph ]’or M.
The above result is clear since by permuting the rows and columns ofM we relabel

the graph but do not change its structure. Therefore, when we rearrange the rows and
columns of M we will still refer to the matrix as M for simplicity of notation.

The next theorem establishes an important relationship between the three graphs;
that is, if one is connected, then they all are. Combined with its corollary this tells us that
each of the basic graphs have the same reachability.

THEOREM 2.2. LetMbe an m n matrix such that each column and row ofMhas a
nonzero element. The following are equivalent:

1) CG is connected.
2) RG is connected.
3) B is connected.
Proof. First we will prove the equivalence of 1) and 2). Suppose CG is dis-

connected. Then there are column variables k and/1 that are not connected in CG.
Suppose there are p column variables k 1, , kp connected to k 1, then interchange the
columns of M so that kl,’", kp form the first p columns of M. Hence, kl ki,

1, , p. Now, for each row, 1, , m, if mil, mi, are all zero, interchange it
with the row closest to the bottom that has a term m, 0 for some ,/" 1, , p. Also
interchange columns so that/1 is the p + 1 column of M. We now have the following
block form for M"

k’" G

where 0 is a zero-matrix and each row of Mll has a nonzero entry. Now suppose some
entry ofM2 is nonzero, say in row q. Then row q has a nonzero entry in some column kj
of MI, and also in some column Cr of M2. But then cr is adjacent to ki, so cr is connected
to kl, a contradiction. Our matrix now has the form

k"" k,

where MI is s x p andM is (m s) x (n -p). Since column k has a nonzero entry, it
must be in M, say in row of M. Then > s and row is not connected to any row of
M, so RG is disconnected.

Now suppose RG is disconnected. Then there are now variables r and that are
not connected, and then we can rearrange the columns and rows ofM so it has the form

0

where {rl, rs} are all the rows connected to rl and each column of Mll has a nonzero
entry. Then we see that each row of M21 must have only zeros, so that our rearranged
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matrix has the form

ml

where Max is s x p and M22 is (m -s) x (n -p). Since 1 has a nonzero entry in M22, we
see that for any column ct with > p, ct is not connected to any columns of Mll, so CG is
disconnected.

We complete the proof by showing the equivalence of 3) and 1). Suppose CG is
disconnected. Then it is easy to see that B is disconnected by examining the rearranged
matrix above. Now suppose B is disconnected. Then there are points x l, x2 such that
there is no path between x and x2. There are three possibilities to consider: they are
both row points, both column points, or one is a row point and one is a column point.

Suppose row points rl and r2 are not connected in B. If rl and r2 are connected in
RG, then there exists a path and hence a shortest path {ril ra, ri2, , rip r2} from rl
to r2 in RG. Then since ria is adjacent to ri2, there exists a column Cil such that Cil has a
nonzero entry in both ra and r2. Similarly, rik adjacent to rgk+l implies there is a column
ci such that c. has nonzero entries in ri and r+1. Hence, we get a sequence of rows and
columns {ril, cil, ri_, cg2, , cip_, rip} which determines a path in B between rl and r2, a
contradiction. Hence, RG is disconnected and so CG is disconnected.

Similarly, if column points Cl and c2 are not connected in B we get that CG is
disconnected.

Finally, to complete the proof, we only have to consider the case where all rows of
M are connected in B, all columns are connected in B, but some row r and column c are
not connected. If there is only one column, then since each row has a nonzero entry, we
would have B connected, so we may assume there is more than one column. Since c is
connected to every column, then c and some other column Cl must intersect a row ra, so
c is adjacent to r. But rl is connected to r, so c is connected to r, a contradiction.

Hence, if B is disconnected then CG is disconnected. The proof is complete.
Theorem 2.2 has the following important corollary.
COROLLARY 2.3. LetM be an m x n matrix such that each column and row ofM

has a nonzero element. The following hold:
1) Each of the graphs B, RG and CG has the same number of components.
2) The rows and columns ofMcan be rearranged so thatMis in block diagonalform

with each diagonal block corresponding to a component.

Proof. The proof is by induction on the number of components N. If N 1, the
result holds by Theorem 2.2. So assume the result holds for all matrices M where CG
has less than N components.

Suppose CG has N components, N > 1. Then there are column variables k and k
that are not connected, so we can rearrange the rows and columns of M as in the proof
of Theorem 2.2 so that M has the following form:

In the above matrix E corresponds to the component of CG containing k, and
since CG(E) is connected, so is B(E) and RG(E). Since CG(M) has N components,
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CG(F) has N-1 components, so by induction B(F) and RG(F) have N-1
components. Since the number of components of B(M) and RG(M) is just the sum of
the components of E and F, we have that 2) holds. Finally, since F has N-1
components, by induction it can be put in block diagonal form with each block
corresponding to a component, and so we then have M in block diagonal form.

By the above theorem and corollary it is reasonable to say that M has N
components if CG(M) has N components and that M is connected if N 1. Now we
turn our attention to combivalence. It turns out that the component structure is
unaffected by pivoting, and two columns (rows) in the same component of M must be
adjacent in some M’ combivalent to M.

THEOREM 2.4. LetMbe an m n matrix such that each column and row ofMhas a
nonzero element. Given and f in C(R), the following are equivalent"

1) and f are in the same component of B.
2) and f are in the same component of CG(RG).
3) and f are in the same component of B’ for all M’ comb. M.
4) There exists M’ comb. Mfor which and f are adfacent in CG’(RG’).
Proof. First note that 1) and 2) are equivalent by the previous theorem and

corollary. Also, since 3) implies 1), we have that 3) implies 2). Now suppose and f are in
the same component of CG. If and/" are in different components of B’ for some
M’ comb. M, then they are also in different components of CG’. By the argument used
in Theorem 2.2 we can rearrange M’ into a block diagonal form

which separates and f by having as a column of A’ and f as a column of B’. Every pivot
retains the block diagonal form, so no configuration can connect the two variables.
However, since combivalence is reflexive, M comb. M’, and and f are connected in M,
a contradiction. A similar argument works if we assume and /" are in the same
component of RG.

Next we establish the equivalence of 2) and 4), again working with CG. First note
that if 4) holds, then and f are in the same component of CG’, and sinceM comb. M’,
and ] are in the same component of CG. Hence, 4) implies 2).

Suppose and f are in the same component of CG; then and f are connected by a
path, and hence a shortest path u 1, i2, ’, it/ =/" of length r. We can then rearrange
the columns of M so that these r + 1 columns are the first r + 1 columns of M, and so
without loss of generality we may assume that 1 and f r + 1. Furthermore, we can
rearrange the rows of M so that the adjacencies occur in the first r rows of M. We now
have a shortest path submatrix for the path from 1 to r + 1 in the upper left-hand corner
of M as illustrated in Fig. 1.

Observe that the r (r + 1) shortest path submatrix has nonzeros on the main
diagonal and superdiagonal and zeros elsewhere.

Now we want to show that 1 is adjacent to r + 1 for some matrix M’ comb. M. If
r 1 we are done, since 1 is adjacent to r + 1 in M. So suppose r > 1. Let A be the
r (r + 1) matrix in the upper left-hand corner ofM representing the shortest path. We
will just consider the effects of pivoting on A. Since r > 1, a22 0 and a23 # 0, so we will
pivot on a22, thus changing the configuration by pivoting the second column into the
row set. If we let B=A’, then b11=a11-(a12/a22).O=a11O and b13--
a13-(a12/a22)’a23 (-a12/a2)’a23 O. Hence in B we have that 1 is adjacent to 3,
and the nonzeros in the other rows and columns of B remain as in A, so in B we have a
path from 1 to r + 1 of length r 1. Repeated application of this pivoting strategy results
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r+l

FIG. 1. Shortest path connecting two column variables.

in a path of length 1. Hence, we can find M’ comb. M for which 1 is adjacent to r + 1 in
CG’, so we have shown that 2) implies 4).

The following result follows immediately from Theorem 2.4.
COROLLARY 2.5. LetM be an m n matrix such that each column and row ofM

has a nonzero element. Then B hasNcomponents if and only ifB’ has Ncomponents for
all M’ comb. M.

While eventual reachability, in the sense of component structure, is the same in all
three basic graphs, and is invariant under pivoting, other connectivity properties are
not. In particular, the density of only one row (column) may dilute certain structures
contained in the fundamental bigraph when we consider the column (row) graph. The
following theorem, for example, shows that the presence of one dense row, such as a
constraint on the aggregate activity level which might occur in certain models represen-
ted by our matrix, renders the column graph complete; block structures, associated with
regions in the model, become hidden when we examine the column graph.

THEOREM 2.6. If a column (row) has k nonzeros, then RG(CG) has a complete
subgraph with k vertices.

Proof. Suppose column/" has k nonzeros in rows l," , ik. Then in RG, the rows
ril," , rik are adjacent and hence RG has a complete subgraph with k vertices. The
proof is similar if a row has k nonzeros.

One criterion that helps to decide on the choice of graphs to use in investigating
such questions as the possible block diagonal form of A (see Corollary 2.3), is the
complexity of the graphs. A measure of this is the number of edges in each of the graphs.
Even if we cannot actually compute these numbers, it may prove useful to have some
estimates for them. Our results are far from complete, but they go in the proper
direction because they estimate these numbers for CG and RG in terms of the number
of edges in B, a number which is easy to compute. We hope that a more thorough
investigation of this problem will produce sharper results, especially for the case where
B has 4-cycles.

Next we find relationships between IEcl, IERI and lEvi, the number of edges in CR,
RG and B respectively. First note that IEnl z, the number of nonzeros in M. We make
the following definitions:

c(]) number of nonzeros in column j,
r(i) number of nonzeros in row i,
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Mc maxl__<j__<, c(]),
MR max__<i_< r(i).
THEOREM 2.7. IfB has no 4-cycles, then

[Ecl , r(i)(r(i)- l)
and [ER[ , c(])(c(])-- l).

r(i)__>2 2 c(j)__>2 2

Proof. First we determine [Ec[. Suppose columns ci and ci have nonzeros in rows rp
and rq. Then rp, ci, rq, ci, rp is a 4-cycle in B, a contradiction. Hence, each pair of columns
has common nonzeros in at most one row. From this it follows that each pair of nonzeros
in any row determines a unique edge.

If r(i)_-< 1, then there are no edges in CG determined by row rg.
If r(i) _>- 2, the number of pairs of nonzeros in row r and hence the number of edges

in CG determined by row ri is

r(i)(r(i)-l)
2

We get [Ec[ by summing over those rows with more than one nonzero.
The formula for IER[ is derived in a similar way.
One implication of Theorem 2.7 is that we can get lower bounds for [Ec[ and IER in

terms of [EB I.
COROLLARY 2.8. 1) Suppose B has no 4-cycles, r(i)->2 for every row, and

zr average row degree in B. Then

Itc >-- 1/21EB I(z 1 => 1/21EB I.
2) Suppose B has no 4-cycles, c(f)>= 2 for every column, and z average column

degree in B. Then

I,1 --> &l I(Zc 1 >-_

Proof. 1) Observe that since r(i)=> 2 for every row, by Theorem 2.7 we have

iEcl y. r(i)(r(i)-l)
i=1 2

where Y.= r(i)= z. We get a lower bound for IEcl by solving the following problem:

1
min ,Y..= xi(xi- 1) subject to

i=x" xi z.

The solution is x/* z/rn for all i. Hence, we have

,S,
r(i)(r(i)- 1)

_>- 1Il 2 -2z=lm

1 z
=-’m’(Zr--1)
2 m

=l[EBl(Zr-1
2

since zr => 2 by our assumption, we have

1IEc >- - IE, I.



234 H. J. GREENBERG, J. R. LUNDGREN AND J. S. MAYBEE

2) The proof for 2) is similar to the proof for 1). The lower bound can be attained,
as illustrated for IEcl in Fig. 2.

B_ CG

1.1 1"2 C

Cl 2 3 C2

FIG. 2

An implication of Corollary 2.8 is that, if the number of edges dominate the storage
requirements, the fundamental bigraph uses less space than the column graph. To see
this note that IEcl > ]EBI when the average row degree, Zr, is greater than 3, which is
generally the case. The row graph, however, may be sparser because many problems
have an average column degree less than 3. One class of examples is the network
problems, wherein every column has two nonzeros.

The next theorem provides general upper bounds on the number of edges in RG
and CG, respectively.

THEOREM 2.9.

(Mn 1)
) IE -<- levi.

(Mc 1)
2) levi--< lEvi.2

1) [Ec[ . r(i)(r(i)-l)< r(i)--
i=1 2 i=1

(Mn 1)
2

(Mn 1)

The proof for 2) is similar.
Again Fig. 2 illustrates that the upper bounds can be attained. In fact, if B has no

4-cycles and every row has the same degreemthat is, r(i) z/n for all/--then Zr MR
SO we have

lEs I(Zr 1) <= [Ec <= lEs I(Zr 1),

so equality holds throughout. Moreover, Zc Mc 2, as when M is an incidence
matrix, implies

IE,I- 1/2lEvi.
Now let us consider the basic digraphs.
THEOREM 2.10. The following are equivalent:
1) D is strongly connected.
2) RD and CD are strongly connected.
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Proof. That 1) implies 2) follows from the definitions of D, RD, and CD. So
suppose 2) holds. If we pick two rows ri and rj, then we can find a path from ri to r. and
one from r. to ri in D by using the definition of RD and that RD is strongly connected.
Similarly for two columns ci and ci we can find a path from ci to ci and from ci to ci since
CD is strongly connected.

Now we need to show that given a column c and a row r there exists a path from c to
r and a path from r to c in D. First observe that there must be at least 2 columns for RD
to be strong and at least 2 rows for CD to be strong. Since there is a path from c to every
other column in CD, there must be a column cj that c is adjacent to in CD, hence there is
a row r such that the arcs (c, r) and (r, ci) are in D. Since there is a path from r to r in D
and c is adjacent to ri, we now have a path from c to r. A similar argument shows that
there is a path from r to c. Hence D is strongly connected.

This provides directed reachability information analogous to Theorem 2.2, except
that there is no equivalence with combivalent matrices. This is because, in general, signs
change. Qualitative determinacy addresses the basic issues (see Greenberg [6]).
However the following corollary to Theorem 2.10 is an analogy to part of Theorem 2.4.

COROLLARY 2.11. The following are equivalent:
1) and are in the same strong component of CD(RD).
2) and are in C(R) and in the same strong component ofD.
Proof. The same ideas used in Theorem 2.10 establish the equivalence of 1) and 2).
We conclude this section by observing that the graph or digraph which is most

useful depends on the application. For example, in [9] we show that in using a theorem
of Bondy [2] to estimate the number of components of M, one generally gets a much
better estimate using RG or CG than in using B. In [12] we show that B can be used to
determine the singularity of certain square matrices and either RG or CG can be used
to find the block diagonal form of M.

3. Tearing. The notion of tearing is to separate a model such that one portion
satisfies a specified structure. One structure of interest is the block diagonal--that is,
distinguish a set of vertices whose removal disconnects the graph. Such a set of vertices
V is called an articulation set. A cutset of a graph is a set of edges whose removal
disconnects the graph. In investigating the relationships among articulation sets in the
basic graphs we find that articulation sets in B determine cutsets in RG or CG, and
cutsets in RG or CG determine articulation sets in B.

The following lemma will be useful for proving the theorems that follow.
LEMMA 3.1. Two column (row) vertices are connected by a path in B if, and only if,

they are connected in CG(RG) by a path containing the same column (row) vertices.
Proof. We shall prove the lemma for column vertices. Suppose columns c1 and cp

are connected by the path c1, rl, c2, rg2, , rig, cp in B.
Since there is a path cj, ril, C2 in B, then c1 and ci2 are adjacent in CG. Similarly,

c2 and cj3 are adjacent in CG, and continuing this process, we get the path
{c1, c2, , Ck, Cp} from Cil to Cp in CG.

Clearly this process can be reversed if we start with a path in CG.
THEOREM 3.2. Any articulation set for RG or CG is an articulation set for B.
Proof. We shall prove the theorem for the case that Ro is an articulation set for RG.

Then there are vertices rg and rj that are not connected by any path in RG Ro. Suppose
that r and r are connected by a path in B-R0. Then, by Lemma 3.1, they must be
connected by a path in RG containing the same row vertices, and hence a path in
RG-R0, a contradiction. Hence, R0 must contain an articulation set for B.

Let V be an articulation set for B. Are V f3 R and V U C articulation sets for RG
and CG, respectively? Fig. 3 illustrates that the answer to this question may be no!
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B_ CG
rl r2 r3

ClCCl c2 c3 c4 4 c3

R.._.G
rl r2

FIG. 3

V--{r3} is an articulation set for B, but V f’)R {r3} is not an articulation set for
RG.

When an articulation set is a singleton, its member is an articulation vertex. Let
be the number of articulation vertices for a graph G. By Theorem 3.2 we see that any
articulation vertex for RG or CG is an articulation vertex for B, but Fig. 3 illustrates
that an articulation vertex for B may not be an articulation vertex for either RG or CG.
So we have the following result.

COROLLARY 3.3. sn --> SRa + Sco.
The next few theorems, which relate cutsets in the column or row graphs to

articulation sets in the fundamental bigraph, may exploit Beineke and Harary’s [1]
integrated approach to separation. First, define C(i, k) as the set of columns that
intersect rows and k. This is nonempty if and only if [ri, rk] is an edge in RG. Similarly,
define R(], k) for cj, Ck in C. If F is any set of edges in RG or CG, then let C(F) and
R(F) denote the unions of C(i, k) or R(], k), respectively, for [ri, rk] or [cj, Ck] in F.

THEOREM 3.4. I]F is a cutsetl’or RG(CG), then C(F)(R (F)) is an articulation set
]or B.

Proof. Suppose F is a cutset for CG. Then there are column points co and Cq such
that every path from co to cq contains an edge from F. Suppose
[cp, ril, c2, ri2,"" ,rit, Cq] is a path from cp to Cq in B. Then, by Lemma 3.1,
[Cp, C2, Cjt) Cq] is a path from cp to Cq in CG. Hence, an edge in this path, [C]k) C](k+l)])
F. But then Fig R (F) by the definition of R (F), so every path from cp to cq in B
contains a point from R (F). Hence R (F) is an articulation set for B.

The proof is similar if F is a cutset for RG.
The next three theorems reverse the process in Theorem 3.4 by starting with

articulation sets in B and getting cutsets in RG or CG.
THEOREM 3.5. LetRo be an articulation setforB contained in R. LetE(ro) be the set

of edges [Ci, C]] in CG that satisfy ECi) r, cj] is a path in B only if r Ro. Then E(Ro) is a
cutset of CG. Furthermore Ro is an articulation setfor RG if and only if the set R -Ro is
disconnected in B.

Proof. First observe that if Ro is an articulation set for RG, then R-Ro is
disconnected by Theorem 3.2. Also, if R Ro is disconnected, then an easy application
of Lemma 3.1 shows that Ro is an articulation set for RG.

Now suppose that R0 is an articulation set for B contained in R. We claim that C
points are disconnected in B Ro. If not, then removal of Ro disconnects the R set into
at least 2 nonempty subsets, say R and RE. Then every path in B joining a point in R
and a point in RE must pass through a point ro Ro. Let C1 be the set of points in C
connected to RI in B- Ro, and C2 the set of points in C connected to RE. Since B was
originally connected, C and C2 are nonempty. Furthermore, every path in B joining a
point in C to a point in Ca must pass through a point r0 Ro. Hence, the C points are
disconnected in B by removal of Ro, and so removal of the edges E(Ro) from CG will
disconnect CG. Hence E(Ro) is a cutset for CG.
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Similar reasoning leads to a proof of the following theorem.
THEOREM 3.6. Let Co be an articulation setfor B contained in C. Let E(Co) be the

set ofedges [ri, rj] in RG that satisfy [ri, c, rj] is a path in B only if c Co. Then E(Co) is a
cutset ofRG. Furthermore, Co is an articulation setfor CG if, and only if, the set C Co is
disconnected in B.

THEOREM 3.7. Suppose Ao is an articulation set ]’or B, Ao Ro Co, Ro # f,
Co , and Ro and Co are not articulation sets for B. Then the set of edges E(Ro)
(CG-(Co)) is a cutset for the subgraph CG-(Co) of CG. Similarly, the set of edges
E(Co) f3 (RG-(Ro)) is a cutset for RG-(Ro). Moreover, Ro is not an articulation set of
RG and Co is not an articulation set of CG.

Proof. We claim that removal of Ao disconnects C- Co and R-Ro in B. One
possibility is that B -A0 is disconnected into R and C1. This means that any path in B
from C1 to R must go through Ro and Co. But then both Ro and Co are articulation sets.
Suppose Ao disconnects R but not C. Then in B-Ao we would have R disconnected
into R and R2, and one of these, say R 1, connected to C1 C Co. But then in B, any
path from C to R2 must go through Ro and Co and so again both Ro and Co are
articulation sets.

Hence removal of Ao from B disconnects C Co and R Ro. Therefore, removal
of the edges E(Ro)f3 (CG-(Co)) will disconnect CG-(Co), and removal of the edges
E(Co) f3 (RG-(Ro)) will disconnect RG-(Ro).

Finally, the last statement in the theorem is an immediate consequence of
Theorem 3.2.

Let us now examine tearing and show why we need more than just any articulation
set to capture computer assisted analysis functions. Define K(G) as the connectivity of a
graph, Gmthat is, the minimum number of vertices whose removal increases the
number of components of G. Our interest is primarily when the fundamental bigraph is
connected, so K(B)_-> 1. Equality holds if and only if there is an articulation vertex.

Harary [13] showed that when G is connected, K(G) cannot exceed the minimum
degree: K(G)<=d. His proof, however, reveals a difficulty. Choose a vertex of
minimum degree; its adjacent vertices comprise an articulation set because their
removal isolates the vertex. For the fundamental bigraph an isolated vertex cor-
responds to a null row or column, and this does not capture our intent. We would be
more interested in finding an articulation set where the disconnected graph contains no
isolated vertices.

Harary also proved that for any graph (possibly not connected), its connectivity is
bounded by the average degree. This does not overcome our difficulty, but the result
bears further analysis because of its ability to explain some "empirical facts". Let the
matrix have m rows, n columns and z nonzeros. Thus B has rn + n vertices and z edges.
Harary’s bound is"

K(B)<=
2z

re+n"

A "reasonable rule" for large matrices is that the average number of nonzeros per
column is bounded by a constant. That is,

z<-cn.

In practice, a realistic value of c is 4 (c 2 for network linear programs), and c greater
than 7 is unrealistic. Thus, Harary’s bound implies"

K(B)<=2c,
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and generally only about 8 (c 4) rows and columns need to be removed to disconnect
B. This agrees remarkably with empirical evidence, so another proof may reveal
properties such as that no isolated vertices exist in the disconnected graph.

The following theorem gives the relationships between the connectivities of the
various graphs.

THEOREM 3.8. 1) If CG is not complete, then K(CG)>-_K(B).
2) IfRG is not complete, then K(RG >=K(B).
3) K(B)<-_ min (K(CG)+ 1, K(RG)+ 1).
4) IfB is h-connected, then CG and RG are either h-connected or complete.

Proof. 1) and 2) follow from Theorem 3.2 since any articulation set for RG or CG is
an articulation set for B.

If CG is complete, then K(CG) n 1. However, removing all n column points
from B disconnects B, so K(B) <- n K(CG) + 1. Similarly, if RG is complete, K(B) _-<
m K(RG)+ 1. Combining this with 1) and 2) completes the proof of 3).

Finally, recall that B is h-connected if K(B) _-> h. Hence, 4) follows from 1) and 2).

4. Conclusions. The main results we have obtained are Theorem 2.2, our estimate
on the number of edges in CG and RG, Theorem 2.10, and our various results on
articulation sets. Theorem 2.2 shows that, under mild restrictions, CG, RG and B have
the same connectivity. This is only one of a number of basic properties these graphs
have in common. In subsequent publications we shall derive other common properties.
Theorem 2.10 establishes the basic relationships between the digraphs. Our estimates
on the number of edges in CG and RG point the way to problems requiring further
study whose solution will, hopefully, lead to criteria for deciding which of the graphs
should be used to generate efficient algorithms for solving matrix structure problems.
Finally, as we shall show in a subsequent publication, the results on articulation sets can
be used to determine various possible structural forms of the rectangular matrix M.

These results can be used in computer assisted analysis and linear programming to
shed light on the following problems. First we can establish a framework to render
computer assistance to analysts in tracing the cause of infeasibility in LP problems so
that they may debug their models. Second, we can use our results to investigate the
problem of model reduction and simplification. Third, it appears that our results may be
useful in helping to identify embedded structures such as networks or physical flows.
Finally, we expect that we can use some of our results to help investigate sensitivity
problems in linear programs.
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COVERING REGIONS WITH SQUARES*

MICHAEL O. ALBERTSONt AND CLAIRE J. O’KEEFE"

Abstract. A unit square in R2 whose corners are integer lattice points is called a block. A board consists
of a finite set of blocks. Given a board B, its graph G(B) has vertices corresponding with the blocks of B, and
two vertices of G(B) are joined by an edge provided the corresponding blocks are contained in a square subset
of B. If B is simply connected, then G(B) is perfect.

A unit square in R 2 whose corners are integer lattice points is called a block. A
finite set of blocks is called a board. A board B is said to be linearly convex if whenever
two blocks of B are in the same row or column then every block between them is also in
B. We reserve rectangle (square) to mean a rectangular (square) subset of the blocks of a
given board. Dually we reserve anti-rectangle (anti-square) to mean a subset of the
blocks of a board no two of which are contained in the same rectangle (square).
Chaiken, Kleitman, Saks and Shearer [4] proved the following duality theorem about
boards. If B is a linearly convex board, then the minimum number of rectangles whose
union contains all the blocks of B equals the maximum number of blocks in an
anti-rectangle. They also exhibit a board according to Chung which demonstrates the
necessity of the convexity hypothesis. Somewhat surprisingly the dual of the above
theorem is false. Specifically, Boucher has constructed a linearly convex board whose
largest rectangle contains 144 blocks yet the board is not the union of 144 anti-
rectangles [2].

The purpose of this paper is to establish the two dual assertions that follow.
THEOREM 1. IfB is a simply connected board, then
(i) The maximum number ofblocks in any square orb equals the minimum number

of anti-squares whose union is B; and
(ii) -The maximum number of blocks in any anti-square of B equals the minimum

number of squares whose union is B.
For convenience, we define the graph of a board G G(B). The vertices of G
correspond with the blocks of B while two vertices of G are joined by an edge if the
corresponding blocks of B are contained in a square. We adopt the notation x(G) for
the chromatic number, to(G) for the cardinality of the maximum clique, a(G) for the
independence number, and O(G) for the clique covering number (for definitions see
[1]). It is an immediate consequence of the definitions that x(G)>-_to(G) and O(G)>-
a(G) for any graph. The investigation of the conditions which force equality in either of
the above inequalities has been a major interest of combinatorists [1], [5]. The most
important result is the perfect graph theorem [6].

PERFECT GRAPH THEOREM. Iffor each induced subgraph H of G, x(H) to(H),
then for each such H, O(H)= a (H), and conversely.

The proof of Theorem 1 will be accomplished by showing that the graph of a simply
connected board is perfect, i.e., that it satisfies the hypotheses of the perfect graph
theorem. We begin with a closer look at our board B. A block of B is said to be a
boundary block if it intersects the boundary of B in at least one edge. If S is a square in
B, the block b in $ is said to be a border block of S if either b shares an edge with a block
of B $ or b is a boundary block. A knob of B is a 1 p rectangle three sides of which
are contained in the boundary of B. A square S is said to be disconnecting if the interior
of B- $ is not connected.

* Received by the editors September 26, 1980, and in revised form November 20, 1980.
Smith College, Northampton, Massachusetts, 01063.
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LEMMA 1. Let S be a maximal square in a simply connected board B. If S is not
disconnecting, then there exists a pair ofopposite border lines ofS each of which contains a
boundary block.

Proof. By contradiction. If S contains no pair of opposite border lines such that
each line of the pair contains a boundary block of B, then there exists a pair of adjacent
border lines in S each of which consists of non-boundary blocks of B. See Fig. 1. The

b

FIG.

[ blocks in B

maximality of $ implies that b is not in B. If b is not in B, S is not disconnecting, and B is
simply connected, then every other block which meets the boundary of S (even at a
single point) must be in B. Hence S is not maximal. 71

LEMMA 2. Let S be a maximal square in a simply connected board B. If S is not a
disconnecting square ofB then S contains a knob of B.

Proof. By Lemma 1 we may assume that b and bE are boundary blocks contained
in opposite border lines of S. See Fig. 2. It is clear that either S is disconnecting or one of
the paths of border blocks from bl to bE contains a knob.

s

FIG. 2

blocks not in B

As previously stated, we will show that if H is an induced subgraph of G(B) then
x(H) to(H). Let B’ be the subset of B whose blocks correspond with the vertices of H.
If S is a square of B then we will consider S’= $ B’ a "square" of B’ and call B’ an
induced subboard of B.

Proofof Theorem 1. The proof of Theorem 1 will be by induction on the number of
blocks in B. We assume the theorem holds for all simply connected boards of no more
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than (rn- 1) blocks. Let B be a simply connected board with rn blocks and B’ an
induced subboard of B. Suppose $ is a maximum square in B. By Lemma 2 there are two
cases to consider.

Case (i) S is a disconnecting square of B. Let C1, ’, C denote the components
of B S. Two blocks are in a square of B if and only if they are in a square of Ci [_J $ for
some (1 -< -< f). Hence the induced subgraph with vertex set B’ (Ci t.J S) is the same
independent of whether the original graph is G(B) or G(Ci [_JS). Call this induced
subgraph Hi (1-<i-<f). If o(H) =N, then o(Hi) <- N(l <= <- f). Since Cit.JS is simply
connected and smaller than B, x(Hi) -<N(1 -< -<_/’). Thus the blocks of B’ (Ci LI S) can
be N-colored, no color appearing more than once in any square of B (1 -< -</’). For
(2-<i-<_/’) permute the colors in (Ci t_JS)f’IB’ so that there is agreement with the
coloring of (C1LI S) B’. Since blocks in different C’i s cannot be in the same "square"
in B’, we can produce a coloring of B’ from the coloring of the components.

Case (ii) S contains a knob K. Assume K is a row. Since S is a square there exist at
least (IKI- 1) blocks in the column below each block of K. If at least Igl bocks o B lie
in the column below each block of K, then two blocks, neither in K, are in a square of B
if and only if they are in a square of B K. If this occurs set L K. On the other hand if
exactly (Igl- 1) blocks of B lie under bl, a block of K, there exists a boundary block b2
in the (IKI- 1)st row under b. See Fig. 3. Since $ is not disconnecting, one of the paths

FIG. 3

blocks not in B

of border blocks of S from b to b2 must consist entirely of boundary blocks. Thus there
exist two adjacent border lines of S, say K and K*, both of which are knobs. Set
L K t.J K*. As before two blocks, neither in L, are in a square of B if and only if they
are in a square of B-K. Let L’=LB’, o(G(B’-L’))=N and o(G(B’))=
N + h (0 <- h <--[L’I). By induction the blocks of B’- L’ can be N-colored. This coloring
can be transferred to B’. By the choice of L no two blocks in a square of B are colored
the same. Only the blocks of L’ remain uncolored. The blocks of L’ are in a square with

Is’I-It’l colored blocks. The number of available colors is N + h -(Is’l-It’)while the
number of blocks needing colors is IZ’l. As IS’l--< N / there are enough colors.

The above argument shows that if B is any simply connected board then G(B) is
perfect. Assertion (i) of Theorem 1 is immediate. By the perfect graph theorem,
a(G(B))= O(G(B)). An independent set of vertices in G(B) corresponds with an
anti-square. A clique in G(B) corresponds with a set of blocks in B, each pair contained
in a square. In order to prove Assertion (ii) of Theorem 1, it is necessary to show that
such a set of blocks is entirely contained in a single square. Given a set of blocks in B
which corresponds with a clique in G(B), it suffices to show that there is a single square
in B containing a leftmost, a rightmost, a topmost, and a bottommost block in the set. It
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is straightforward to check that the union of the squares which contain pairs of these
extreme blocks contains a square containing all of the extreme blocks.

The above argument is the only proof we know that a(G(B))= O(G(B)). In
contrast, there are a number of alternative proofs which show x(G(B)) to(G(B)). The
slickest, due to Boucher [3], places no restrictions on B and proceeds as follows. Fix any
coloring of any maximum square and tile the plane. Any two blocks receiving the same
color in such a tiling are too far apart to be in the same square. One nice feature of this
argument is that it generalizes to higher dimensions. Jim Shearer reports that both the
rectangle and square 3-dimensional versions of Assertion (ii) are false. He also supplies
the board in Fig. 4, which demonstrates the necessity of our hypothesis of simple
connectivity [7].

a(G(B)) 15

O(G(B)) 16
blocks not in B

FIG. 4. Shearer’s board.
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SOME RESULTS ON POLYHEDRA OF SEMIGROUP PROBLEMS*

JULIAN AROZ AND ELLIS L. JOHNSON’:

Abstract. For general additive systems we study the convex hull of solutions and its properties such as its
recession cone, vertices and facets and whether it is closed. These properties depend upon various
assumptions on the additive system, such as associativity (semigroups), commutativity, solvability, and
generation of infeasible elements. Examples are given to illustrate the subadditive characterization of facets
and to illustrate the variety of polyhedra which can arise depending upon the properties of the additive
system.

1. Introduction.
Problem 1.1. Integer programming. The motivating problem for this work is the

pure integer program problem:

x. => 0 and integer, j 1,..., n,

aijxj bi, 1," , rn,
.i=l

minimize z cixi.
j=l

This problem is referred to as "pure" because all of the xi are required to take on integer
values.

The practical importance of solving this problem has long been recognized. The
idea of converting the problem to a linear program has also had appeal for some time. In
principle, there are inequalities

OlkjXl k k 1,". K
j=l

whose solution set is the convex hull of nonnegative integer solutions to the original
system: xi >= 0 and aux b. However, finding these inequalities is a difficult, if not
impossible, task in practice.

In this work, we look at the convex hull of solutions to a class of problems which
includes (properly) the pure integer problem, provided bounds can be placed on the
variables. In particular, pure 0-1 problems are included. However, our approach is via
what is called master problems. We return to explain the general approach after
discussing some special cases and prior work.

Problem 1.2. Gomory’s group problem. There are several ways to derive the group
problem (see [2, 1.A]), but the simplest is to relax the equalities in the integer problem
to congruences modulo 1. For rational entries aii, there are only a finite number of
column vectors Y. aiixi which can be generated by integer x.. An upper bound is the
product of the least common denominators for each row.

A master group problem is a group problem where every column aix which can
be generated by integer x is already a column Ak (alk, a2k, ", a,k)Tof A for some
k. These group problems have columns corresponding to nonzero elements of finite
Abelian groups. Such groups are well known to be isomorphic to direct products of

* Received by the editors June 9, 1980, and in final form November 12, 1980.
t Universidad Simon Bolivar, Caracas, Venezuela.
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cyclic groups, and the convex hulls of solutions have been generated [2] for groups up to
size 11 (see also [3] for some corrections). These convex hulls of solutions x to group
problems are what Gomory calls corner polyhedra.

One of Gomory’s main contributions is a subadditive characterization of facets [2,
Thm. 18] of corner polyhedra. That theorem has been carried over to our more general
problem [4].

Gomory also shows [2, Thm. 9] that the recession cone (see 7.1) of the convex
hull of solutions is the nonnegative orthant. In addition, he shows that the vertices
satisfy an irreducibility condition [2, Thm. 2], and that they are, therefore, bounded;
specifically, the product I-I(1 + x.) -< IGI, where is the order of the group involved. He
does not mention that the convex hull is closed, but that result easily follows. These
three questions, asked about more general problems, are the main topic of this paper.

Problem 1.3. Ardoz’s semigroup problems. Arfioz [1] considered semigroup prob-
lems. A special case is the covering problem, the integer program where all aij are
nonnegative integers, bi is a positive integer, and the restrictions are

as

xj _--> 0 and integer, f 1,..., n,

=1

This can be viewed as a semigroup problem by defining addition on two columns

/lali+a if aj+a <=b, \

(.al/) (alk) [!.bl otherwise,

am! a,,k I! a,j + ak if a,, + ak <---- b,
1b otherwise. /

Master problems are, here, problems with all integer column vectors (a,..., a)T

having 0 ai bi, 1,..., m, present as columns of A.
For this problem, the convex hull of solutions is closed, and Arfioz 1] showed that

the recession cone is R"+.
He also considered packing problems:

xi 0 and integer, ] 1,. ., n,

ax N b.
]=1

In this case, the convex hull of solutions is a bounded polyhedron (i.e., a polytope), so
the recession cone is ust theorigin. We consider this problem to be a semigoup
problem by defining addition + by

if all aii + ai N bi,

otherwise,

where is a symbol used here to denote the infeasible element (see Assumption 4.3).
For Abelian semigroup problems, without , Aroz showed when the recession

cone is R. Our Theorem 7.4 is an extension of that result.
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For these problems, we unify the packing and covering problems (see also [4]) by
allowing an infeasible element c. For Abelian semigroups, we answer completely the
recession cone and closure questions. We also extend Gomory’s notion of irreducible
solution vectors in order to bound the vertices.

Problem 1.4. Additive systems. We generalize the semigroup problems by
considering nonAbelian groups and semigroups. In addition, we consider non-
associative systems. When there is no , we can still answer all three questions" is the
convex hull closed? (yes); what is the recession cone? (R); and what bound can be
placed on the number of vertices? ( 6). When c is present, we sometimes answer the
question and sometimes give counterexamples.

Problem 1.5. Master problems. By a master problem, we mean that there is a
variable t(g) for every element g S, g 0 and g . A particular problem with only a
subset T of S present has a convex hull which is the intersection of the convex hull of
solutions to its master problem with bounding faces t(g)-0, if g T. We get its
vertices by taking all vertices for the master problem having t(g) 0 for g T. Its facets
are among the inequalities one gets by deleting t(g), g T, from the facets of the master
problem convex hull (see Gomory [2, Thms. 12 and 13]).

2. Expressions in additive systems. We follow here the development in [4].
DEFINITION 2.1. The pair (S, -) is an additive system if

g- h S for all g, h S, (closure).

Thus, we allow very general addition but consider various restrictions which will be
placed on (S, ). The most commonly used restriction is associativity"

g (h - k) (g- h) k for all g, h, k S, (associativity).

If (S, ) is associative, then it is called a semigroup. Another property is commutativity"

g- h h g for all g, h S (commutativity).

If commutativity holds, we refer to (S, -) as being Abelian.
DEFINITION 2.2 (Expressions). For an additive system (S, -), an expression E of

(S, ) is defined recursively by:
(i) (g) is an expression, for all g S;
(ii) (El -E2) is an expression, whenever E1 and E2 are expressions.

An expression (g) is called a primitive expression. When an expression E (El - E2), as
in (ii), we call Ex and E2 subexpressions of E, and any subexpression ofE or E2 is also a
subexpression of E. Primitive subexpressions of E are those subexpressions of E which
are primitive expressions of the form (g), g $.

DEFINITION 2.3 (Evaluation). An expression is to be thought of as simply a string
of symbols, (., .), and g for g S. The evaluation of an expression E is a function y
from expressions to S defined recursively by"

(i) y(E)=g, ifE=(g), gS;
(ii) v(E) v(E)-y(E2) if E E - E2.

To evaluate E means to find y(E), which can be done recursively by the definition.
LEMMA 2.4 (Substitution lemma). If El is a subexpression ofF with y(E) g, then

(g) can be put in place ofE in E without changing the evaluation of E.
The proof of this lemma is more or less clear from the inductive definitions of

expressions and evaluations. However, it is a frequently used fact which is convenient to
explicitly state.
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DEFINITION 2.5 (Incidence vector). A vector (t(g), g $) is the incidence vector of
an expression E if t(g) is equal to the number of times (g) appears as a primitive
expression of E.

DEFINITION 2.6 (t represents g). For an incidence vector t, define represents g to
mean that there is some expression E for which is the incidence vector of E, and
T(E) g.

3. The convex hull act’ (S, b)o
DEFINITION 3.1 (Solution vector). Fix some element b $, for (S, ) an additive

set, and call .b the right-hand side. An expression E is a solution expression if y(E) b.
The incidence vector of an expression E is a solution vector if E is a solution
expression. That is, is a solution vector if it represents b (see Definition 2.6).

DEFINITION 3.2 (Convex hull Yt(S, b)). Define the convex hull of solutions to be

(S, b) conv {(t(g), g S)lt is a solution vector}.

Our problem is to determine properties of (S, b) such as its vertices, facets and
recession cone.

DEFINITION 3.3 (Master problem). We only consider here what are called master
problems in that Y’(S, b) is taken over all g S. A subproblem would be given if we
restricted the primitive expressions (g) to have g $’ for some subset S’

_
S. However,

as in 1] and [2], one can get polyhedra for subproblems from those of master problems
by projecting onto a face (t(g)- 0 for g S’). See also our discussion in.Problem 1.5.

4. Simplifications and reductions. The arguments given here will lead to assumptions
on (S, $), without loss of generality. These assumptions are important in order to avoid
confusion in subsequent sections.

Assumption 4.1 (Zero ). We assume an element t S such that t- g g- ( g
for all g S. If such an element were not in $, we could adjoin it to S without changing,
for our purposes, the additive set (S, -). There can, clearly, be only one zero in (S, -).

Assumption 4.2 (The empty expression). It is convenient to assume that the empty
string is also an expression whose evaluation is O.

Assumption 4.3 (Infinity c). Every element gS such that t(g)-0 in every
solution vector can be collapsed to a single element called infinity and denoted by . It
satisfies h c - h c for all h s S. We do not assume that there is always an S;
it is only present if g/ h for some g and h in S, such that s(g) > 0 in some solution s
and t(h)> 0 in some solution t.

Assumption 4.4 (Feasibility assumption). Introduction of c leads to the assump-
tion that for g S, g # or , there is some solution vector having t(g) > O.

Assumption 4.5 (Nonzero b). We assume that b and b
Assumption 4.6 (Nonzero subexpressions). In any solution expression E, we

delete any primitive subexpression (0)without changing T(E).
Assumption 4.7 (Deletion of t(0) and t(c)). With Assumptions 4.3 and 4.6,

t(O) 0 and t(c) 0 in any solution vector, and we delete both t(O) and t(c) from so
that solution vectors have the form (t(g), g s $-{, o}).

DEFINITION 4.8. The finite elements of S are denoted by St; that is,

sr=s-{oo}.
The proper elements of S are g Sp, where

s, s-{O,
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Then our incidence vectors are of the form

t=(t(g),gSp).

5. Generators and loops.
DEFINITION 5.1 (Subsystem). Define a subsystem (T, ) of (S, -) to be a subset" T

of $ with the same addition as in (S, ) and such that g+ h T for all g, h T.
For G_ S, define the system generated by G to be the set

{hlh y(E) all expressions E made from primitive expressions (g), g G},

together with the from (S, ). The fact that the system generated by G is a subsystem
of (S, ) follows from the inductive definition of expressions and evaluations"

If hi y(E1) and hE T(E2), then hi - hE y((EI E2)).

Remark 5.2 (Loops in semigroups). An especially interesting case is the subsystem
generated by a single element. When (S, ) is a semigroup, i.e., associativityholds, then
for g S, and k a nonnegative integer, kg S is well defined as 7(g+ g+. + g) where g
is taken k times and parentheses are not needed because of associativity. Consider the
sequence

0, g, 2g, 3g, ..., kg, ....
Since S is a finite set, there can only be a finite number of different elements. Let

ho =mg

be the first occurrence of any element appearing for the second time in the sequence.
Define the order ofg to be m. Since h0 appears earlier in the sequence, ho kg for some
k < m. The sequence of distinct semigroup elements

ho= kg, h (k + l)g, "’’, h,-k- (m -1)g

is the same as

rag, (m + l)g, ..., (2m-k-1)g,

and, in fact, repeats itself indefinitely in the sequence O, g, 2g,.... The sequence

ho, h, "’’, hm-k-1
is called the loop of g and m k is called the loop order of g. Define g to be a loop
element of (S, -) if g belongs to its loop, i.e., k is either 0 or 1.

DEFINITION 5.3 (g o3). If o3 is equal to any kg then the loop of g must be the
sequence of one element, namely o3. Thus, the loop order is 1. In this case, we say g goes
to o3 and write g o3. If g does not go to o3, then we write g- o3.

LEMMA 5.4 (Abelian subsemigroup lemma). If (S, +) is a semigroup, then the
subsemigroup

G {kglk integer and k >- 0),

is an Abelian subsemigroup of (S, ) for all g S.
Proof. What we need to show is that

(kg) - (Ig) (lg) - (kg)

for all integers k, _>- 0. This follows from (kg) (lg) (k + 1)g, since associativity allows
us to remove the parentheses. As a corollary, we have the following fact.
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COROLLARY 5.5. For any two elements ha and h2 in the loop ofg, h h h2 hx,
provided (S, is a semigroup.

DEFINITION 5.6 (Loops in non-associative systems). We must now define

kg {h[h y(E) over all expressions E
having k primitive expressions each of which is (g)}.

Let 0g {t} and lg {g}. Because there are only a finite number of subsets of $, the
sequence of sets

0g, lg, 2g, 3g, ’’’, kg,...

must eventually have a first set which appeared earlier. We can now define the loop of g,
the order of g, and the loop order of g as before but in terms of sets of elements rather
than single elements.

DEFINITION 5.7 (g-> 00). If in the loop of g there is only one set, and if it is the
singleton {}, then we define g goes to and write g--> . Otherwise, there is some
finite element in every set in the loop of g and g does not go to c. g-.

6. Extreme points of Yg(S, b). In the case of Abelian groups, Gomory [2] defined
the notion of irreducible vector in order to prove that

1-I (t(g) + x) lsI

for any vertex of (S, b). We try to follow a parallel development here.
DEFINITION 6.1 (Irreducible solution vectors). A solution vector is reducible if

among all of the solution expressions for which is the incidence vector, there are two
expressions Ex and E2 with subexpressions E3 and E4, respectively, such that

T(E3) T(E4)

and

r#s,

where r is the incidence vector of E and s is the incidence vector of E,. If a solution
vector is not reducible, it is called an irreducible solution vector.

DEFINITION 6.2 (Extreme points or vertices). Define an extreme point, or a vertex,
of a convex set C to be a point C such that there do not exist and 2 C, # 2, such
that

It is equivalent so say that is an extreme point of C if there exists an objective
function

z(x)= E c(g)x(g),

such that the minimum value of z(x) over x C is given uniquely by x t.
THEOREM 6.3. All extreme points of Yg(S, b) are irreducible.
Proof. The proof follows Gomory [2]. Let be reducible. We must show it cannot be

an extreme point of (S, b).
By Definition 6.1, there exist solution expressions E1 and E2, with subexpressions

E3 and E4 respectively, such that 3/(E3)--T(E4) and r s, where r and s are the
incidence vectors of E3 and E4 respectively.
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Form expressions E andE from E1 and E2, as follows: in E1 replace E3 by E4 to
give E and in E2 replace E4 by Ea to give E. By Lemma 2.4,

T(E) y(E) T(E)= T(E2)= b.

Thus, E and E are solution expressions. Their incidence vectors are

t=t-r+s, and t2=t-s+r,
respectively. Clearly,

t=t+t2,
proving that is not a vertex of ’(S, b).

THEOREM 6.4. If is a vertex o]: (S, b), then

s t(g) <- 2Isl

Proof. If is a vertex of (S, b), then by Theorem 6.3, is an irreducible solution
vector. In particular, is the incidence vector of a solution expression E such that any
two subexpressions E and Ez having different incident vectors r and s, respectively,
must have different evaluations. Even weaker, if r(g) # s(g), then y(E1) # y(Ez).
This statement is, in fact, all that we use about being a vertex.

Consider how E is formed. Definition 2.1 says that E can be decomposed into

E (E + E2),

and each of E, E2 can be similiarly decomposed unless it is primitive. Thus, E can be
thought of as a binary tree with each node being a subexpression with the root being E
and each end of the tree being a primitive node. Along any path from the root to an end,
the subexpressions have different lengths so must have different evaluations. Hence, no
such path can be longer than [S[. The value of Y. t(g) is, in fact, the number of ends of the
tree and is maximized by a complete binary tree, i.e., one have 2a ends where d is the
length of every path from the root to an end. Thus, the inequality

gs t(g) <- 2Isl

follows.
THEOREM 6.5. // ($, ) is a semigroup, then every vertex of 7(S, b) satisfies

st(g)lSl.
Proof. Let be a vertex and the incidence vector of the solution expression E. By

associativity, the parentheses in E can be rearranged, without changing its evaluation,
so that

E (... ((((gl) (g2)) (g3)) (g4)) ’" ").

Now, E has subexpressions

(g), ((gl) (g2)), (((g) - (g2)) (g3)), ",

of increasing length. Since is a vertex, E must be irreducible, so each of these
subexpressions must have different evaluations because they clearly have different
incidence vectors, being of increasing length. Therefore, the number of primitive
subexpressions in E is at most [S[, and the result follows.
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THEOREM 6.6 ff (S, $) is an Abelian semigroup, then every vertex of (S, b)
satisfies

,Os (1 + t(g)) <--Isl,

The proof of Gomory [2] for Abelian groups carries over directly to prove this
theorem where group is replaced by semigroup.

7. Extreme rays of t* (S, b).
DEFINITION 7.1 (Recession cone). The recession cone of a convex set C is all of the

vectors r such that x + yr C for some x C and all y _-> 0. When C is closed as well as
convex, then for any r in the recession cone (x + yr) C for all x s C. That is, the choice
of x s C is irrelevant. Section 8 addresses the closure question.

THEOREM 7.2. The recession cone of 7f(S, b) is the nonnegative orthant R+
whenever g7 ’or all g S.

Here d ISpl, where Sp is the set of proper elements of S as defined in Definition
4.8.

Proof. It should be clear that the recession cone of W(S, b) must be contained in the
nonnegative orthant Ra+ because W(S, b) is contained in it. Hence, we need only show
the reverse inclusion.

Let g s S. There is an h Sp in the loop of g because, first of all, we can find an
h in the loop of g by g . Further, if O is in the loop of g, then so is g and g So.

In the Abelian semigroup case, we can just say that h $ ilg h for all positive
integers i, where is the loop order of g. In general, we can say that there is some
expression Ei containing (h) once and (g) il times as primitive subexpressions, and such
that y(Ei)"- h.

Because h # o, there is some solution E containing (h) as a primitive subex-
pression. By Lemma 2.4, we can form solution expressions E by putting Ei in place of
(h). Let be the solution vector which is the incidence vector of E. Then t, which is the
solution vector which is the incidence vector of El, satisfies

where

+ ilg,

if f =g,(f)=
iff g, fsSo."

We have, thus, proven that g is in the recession cone of (S, b) for all g Sp.
COROLLARY 7.3. In the case when (S, is a group, even a nonAbelian group, the

recession cone of 7(S, b) is all of the nonnegative orthant R a+.
Proof. In the group case, there can be no because o has no inverse.
We have established the recession cone in the case, in particular, when there is no

o, even if (S, ) is not associative.
THEOREM 7.4. For an Abelian semigroup (S, ), the recession cone of(S, b) is the

cone

s(g)=0, gSp, and g-->oo,

s(g >--_ O, g Sp, and gToO.

Proof. The proof of Theorem 7.2 suffices to show that 8g is in the recession cone if
g- o. It remains to show that any other rays in the recession cone have s(g)=0, if
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g o. In order to show that fact, it suffices to show that t(g)<-_ k for every solution
vector t, where k is the order of g and g o. Thus, (k + 1)g o. If t is a solution vector,
then it is the incidence vector of some solution expression E. Because (S, -) is an
Abelian semigroup, we can rearrange E to get another expression E’ having the same
incidence vector and such that all occurrences of g are together. If there were more
than k occurrences of g and (k + 1)g oo, then y(E’) oo, because (k + 1)g is already oo
and adding other elements will not change the evaluation. Thus, a contradiction is
reached.

LEMMA 7.5. For a sernigroup (S, ) with oo, there exists an h Sp such that h
Proof. In the case where (S, +) is Abelian, the proof is easy, and an even stronger

result (Lemma 8.2) is shown in the next section. Thus, we think of as being non-
commutative.

Suppose hg oo. If any a Sp has gah o, then

(gah)(gah)= (ga)(hg)(a h)=oo.

That is, the element (g a h) oo. Suppose, then, that for all a Sp, g a h
Now, there exist elements ht, hr, gt, gr such that

hl2r-h-h=b and ggg=b.
Therefore,

since

b b g(ggr- hl h)+ hr

gght h oo.

Thus, in this case b o. Therefore, there must be some element a in Sp such that a
completing the proof.

THEOREM 7.6. Let (S, ) be a semigroup With oo. Then the recession cone cannot be
equal to the nonnegative orthant R a

+o

Proof. By Lemma 7.5, there exists h c, h So. We will show that 8h is not a
recession direction.

Since h oo and h oo, there is some positive integer k such that kh oo and
(k + 1)h o. There cannot be more than k consecutive h’s in any solution expression.
Hence, any solution vector t satisfies

gh t(g) > 1
k

and hence

gh kt(g) t(h >- k,

is a valid inequality for (S, b). For any x e (S, b), x +ASh would violate this
inequality for h large enough. Hence, Ih is not a recession direction of (S, b).

We do not characterize the recession cone for non-Abelian semigroups with
except that it is not R e

/, or for nonassociative systems with oo. In those cases, we only
give examples showing what might happen. See Table 1, where the notation (A1), for
example, refers to Example 1 of the Appendix.

8. Closure. In this section, we address the question of when (S, b) is closed. If it
is closed, then it is polyhedral because it has only a finite number of facets [5].
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TABLE
Summary of recession cone results.

Groups

R d

(Cor 7.3)

Abelian
nooo ,/
R+

(Thm 7.2)

Semigroups

with

n d

(Thm 7.2)
Rk+,k<d
(Thm 7.4)

Non-Abelian
no oo with oo

not R a

(Thm 7.6)

could be
R+A

could have
other rays

(A2)

no oo

R d

(Thm 7.2)

Nonassociative

with

could be
Rd+(A3, A4)

could be
R+(A5)

could have
other rays

(A6)

LEMMA 8.1. /f (’, +) is a semigroup such that, [or each g Sp there exists an h S
such that

g+h =b or h+g=b,

then b if and only if b is not a loop element.
Proof. If b- o, then clearly b is not a loop element.
Let b- c. Suppose b is not a loop element. Since b , there is some g in the

loop of b. Thus,

g=kbilb for alli>_-0,

where is the loop order of b. We can use this notation without parentheses because
(S, ) is a semigroup. The order does not matter by Lemma 5.4. Thus,

g=glb=lb-g.
By assumption there is some h S such that g- h b, or h - g b. Assume h g b.
Then, b h+ g h-g Ib b- Ib (l + 1)b, contradicting the assumption that b is not
a loop element.

LEMMA 8.2. If (S, is an Abelian semigroup, then
b- c then b is a loop element.

Proofi The last part follows from Lemma 8.1 and commutativity. One half of the
first part is easy" if b- o then clearly S has an

Let b-. Su_ppose g+ h c for some g, h Sp. There are some , h S such that
g+ , b and h + h b.
Then,

b b g h/=gh/=oo /= oo,

contradicting b- oo. Hence, no two g, h in Sp can add to , and oo S.
LEMMA 8.3. If (S, ) is a semigroup and if g4, oo and g has loop order l, then

b b ilg, or b ilg b for all >-_ O,

provided some element h in the loop of g has an h Sp such that

b=h or b=hh-.
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Proof. Let g- o and let h be in the loop of g such that b h + h. By Lemma 5.4,
the subsemigroup generated by g is Abelian. Thus, h ilg h for all => 0, where is the
loop order of g. Hence, b h+/ ilg h + ilg+ b, and the lemma is proven.

LEMMA 8.4. To show that Y((S, b) is closed, it suffices to show thatfor any extreme
ray d of the recession cone, 6b + kd is a solution vectorfor k which can be made arbitrarily
large.

Proof. Clearly, Yg(S, b) is closed if + kd can be shown to be in (S, b) for all
(S, b). It suffices to show that fact for all vertices of Yg(S, b). We propose to show

even more; namely that + kd is a solution vector for all vertices t. If is a vertex, then it
is a solution vector and, thus, the incidence vector of a solution expression E. If 6b + kd is
a solution vector, then it is the incidence vector of some solution expression E’. If we
substitute E in place of (b) in E’, then Lemma 2.4 says that the resulting expression is a
solution expression, and it does have incidence vector + kd, completing the proof.

THEOREM 8.5. If (,, -) is an Abelian semigroup with S, then the recession
cone of (S, b) is R d+, and (S, b) is closed.

Proof. The recession cone result was shown in Theorem 7.4. Since (S, /) is
Abelian, Lemma 8.3 shows that b b / ilg, >= O. Hence, b / ihe, is a solution vector for
> 0, and Lemma 8.4 completes the proof of the theorem since the extreme rays of R d

are just 6g, g Sp.
THEOREM 8.6. /f (S, ) is an Abelian semigroup with , then b o and ’(S, b) is

closed, but the recession cone has extreme rays equal to 6gfor all g c. Thus, the recession
cone is equal to some R+,m<d.

Proof. Lemma 8.2 shows that b -. Theorem 7.4 shows the recession cone result.
As in the proof of Theorem 8.5, Lemmas 8.3 and 8.4 suffice to complete the proof.

THEOREM 8.7. Let (S, ) be a non-Abelian semigroup without c and such thatfor
each g Sp there exists an h S such that g h b, or h / g b. Then, 7(S, b) is closed
and the recession cone of 7(S, b) is R d

+o

Proof. The proof is virtually the same as that of Theorem 8.5 except that Theorem
7.2 is used in place of Theorem 7.4.

Appendix. Several examples are given in the figures below. Some are special cases
used to illustrate various points in the paper.

In the addition tables accompanying the figures, and c are not included. The
elements are considered to be numbered go, gl, g2, gk b. We leave out the g
and use only the subscript.

A1. Non-Abelian semigroup with o and recession cone Rk+, k < d.

Vertices Rays Facets
1 0 0 0 t3-<_l
0 0 0 0 tl+t3_->l

t2 + t3 -->

FIG.
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A2. Non-Abelian semigroup with oo and ray not equal to a coordinate-direction
and (S, b) not closed.

2 2 Vertices Rays Facets
2 000 1 000 t2+t4>=l

3 4 3 4 0 0 0 0 0 -t2+t3=>O
c 34 0001

0 0

FIG. 2

A3. Non-associative system with oo and recession cone R d+.

Vertices Rays Facets
0 0 0 0 t3_->l

0 0
0 0

FIG. 3

A4. Non-associative system with g --> oo and recession cone R+a.
Vertices Rays Facets
0 0 t2->l

01

F:G. 4
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A5. Non-associative system with and recession cone R k+, k < d.

Vertices Rays Facets
0 0 0 0 -tl>-i

0 0 0 -tl+t2_->O
tl +t3_>-

FIG. 5

A6. Non-associative system with o and extreme ray not a coordinate direction.

Vertices Ray
0 0 0

FIG. 6

Facets

q--t2 =0

A7. Non-Abelian semigroup with (S, b) not closed.

2 2 Vertices Rays Facets
2 1 2 0 0 0 0 0 t2 + t4 >--

3 4 3 4 0 0 0 0 0 0 t3+t4=>l
3 4 3 4 0 0 0

0 0 0

FIG. 7
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A8. Non-associative system without and such that (S, B) is not closed.

0 Vertices Rays Facets
0 0 0 0 t2>-_l

0 1

FIG. 8

A9. Non-associative system with and such that (S, b) is not closed.

Vertices Rays Facets
0 1 0 t2=>l

tl-t2>= -1

FIG. 9

A10. Non-associative system with element having no left or right complementor,
but (S, b) closed.

2 2 2 Vertices Rays
2 3 3 4 O0 O0
2 3 3 0 2 0 0 0

0 0 0 0

Facets
tl + 2t2 + 4t3 -> 4

-----I

FIG. 10
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M-MATRICES WHOSE INVERSES ARE STOCHASTIC*

RONALD L. SMITH"

Abstract. This paper characterizes M-matrices whose inverses are stochastic. Such matrices can be used
to model physical systems which return to equilibrium after minor disturbances. All solutions to linear
systems defined by these models return to equilibrium as oo at a common uniform rate.

1. Introduction. The discussion in the following paragraph is taken from Bellman
[1, pp. 240-242].

Matrices whose characteristic roots have negative real parts arise in stability
theory. In particular, suppose that one is interested in the behavior of a physical system
in the neighborhood of an equilibrium state. A system is said to be stable if it returns to
the equilibrium state after being subjected to small disturbances. A linear system of the
form

(1) --dx
dt

Ax, x (0) c

can often be used to study the behavior of such a system in the vicinity of the equilibrium
position, which in this case is x 0. A necessary and sufficient condition that the
solution of (1) approach zero as oo is given by the following theorem.

THEOREM A [1, p. 241]. A necessary and sufficient condition that the solution of
(1) regardless of the value of c, approach zero as o, is that all characteristic roots ofA
have negative real parts. Consequently, we say that a matrix A is stable if all of its
characteristic roots have negative real parts.

Proceeding along these lines, one may be interested in how fast the system returns
to equilibrium. To solve this problem we appeal to the characteristic roots of A. For
example, suppose that A is diagonalizable with all characteristic roots negative, say

(2) A T- diag (A, A2," , A,)T.

Then, the solution of (1) is

(3) e

Now, if A is the smallest characteristic root of A in absolute value, we see that the
system returns to equilibrium at the rate O(ext) as t--> oo. Theorem A is proved for
general matrices in [1] by first triangularizing the matrix; using this same approach, one
can show that the system (1) defined by a general matrix whose characteristic roots have
negative real part also returns to equilibrium at the rate O(ext) as --> , where h is the
characteristic root which is smallest in absolute value.

Next, one may ask, "Does there exist a class of matrices such that each solution to
(1) defined by this class converges "uniformly" to equilibrium?" By "uniformly", we
mean that all the components of the solution approach equilibrium at a particular rate
or faster. In answer to this question, let A be an M-matrix whose inverse is stochastic. It
is well known that if A is an M-matrix, then -A is stable. By Theorem I in 3 below all
the characteristic roots of -A satisfy

(4) Re h -<_-1.

* Received by the editors December 18, 1978, and in revised form September 30, 1979.
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Hence the linear system

(5) u=dx -Ax, x (0) c
dt

returns to equilibrium at the rate of O(e-’), since 1 is the smallest characteristic root of
-A in absolute value. Thus we see that the class of M-matrices whose inverses are
stochastic is an answer to our question.

This paper examines those M-matrices whose inverses are stochastic. Charac-
terizations are given for such matrices, and properties of this class of matrices are
determined.. Preliminaries. Throughout this paper, all matrices considered are n n and
real. Ar will denote the transpose of the matrix A, sp A will denote the spectrum of A,
and det A will denote the determinant of A. We state the following definitions"

DEFINITION 1 (Ostrowski). A is an M-matrix if aj <- O, , andA possesses one of
the following equivalent properties:

(a) A is nonsingular and the elements of A-1 are nonnegative.
(b) All principal minors of A are positive.
(c) There exist n positive numbers xj such that

aqxl>O, 1,’’’, n.
=1

DEFINITION 2. A is a singular M-matrix [3] if A is singular, a <- 0 for # f and A
has all principal minors nonnegative.

DEFINITION 3. Let A be an arbitrary m n matrix. The Moore-Penrose inverse [2]
of A is the unique n m matrix A/

satisfying AA/A A, A/AA/ A/, (AA/)T
AA/ and (A/A)T A/A.

DEFINITION 4. A square matrix S is called stochastic [4] if S is nonnegative and if
the sum of the elements of each row of S is 1.

DEFINITION 5. Let A be an n n complex matrix and let sp A {Z 1, A2, An.
The spectral radius ofA, denoted p (A), is defined by

p(A)= max
l_in

DEFINITION 6. Let A and B be n n real matrices. A _-> B means that A-B is
nonnegative.

3. Results. The first theorem characterizes those M-matrices whose inverses are
stochastic.

THEOREM 1. Suppose A is an M-matrix. Then the following statements are
equivalent"

(1) A-1 is stochastic.
(2) Ae =e where e =(1, 1,..., 1) T.
(3) A AoI-(A0- 1)S, for some A0> 1 and some stochastic matrix S.
(4) Re A-> 1 for all A sp A, and 1 is a root of minimum modulus with cor-

responding eigenvector e.
(5) A LUwhereL is a lower triangularM-matrix with a stochastic inverse and Uis

an upper triangular M-matrix with a stochastic inverse.
Proof. We will prove the implications as follows. First we will prove (i), () for i,

/" <-4. Then we will show (2)(5).
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(1) ::> (2). If A-1 is stochastic, then A-le e. Hence Ae A(A-le)= (AA-1)e e.
(2)=>(3). It is well known that if A is an M-matrix, A =AoI-B for some

nonnegative matrix B and some Ao>p(B). Note that we may choose Ao> 1. Hence

Be (AoI A)e Aoe e (Ao 1)e.

Thus S (ko- 1)-1B is stochastic and A AoI- (ho- 1)S.
(3)::>(4). Suppose that A AoI-(ho-1)S for some ho> 1 and some stochastic

matrix S. Then, if sp S {h 1, h 2, , An },

sp A {ho- (ho- 1) 1, ho- (Ao- 1)h2, .., o- (o-

It is well known that if A sp S, then IAI-< 1. This implies that Re A -< 1 for all h sp S.
Thus Re[ho-(Ao-1)hi]_>-Re[ho-(ho-1)]->l, l<-i<-_n. Therefore, if hspA,
Re A _-> 1. Further, 1 is a root of A with corresponding eigenvector e, since Ae-
[hol -(ho- 1)S]e e. Hence 1 is a root of minimum modulus.

(4)=),(1). Since 1 is a root of A with corresponding eigenvector e, Ae -e. Hence
e A-le so that A-1 is stochastic.

(5)::>(2). Suppose A-LU, where L is a lower triangular M-matrix with a
stochastic inverse and U is an upper triangular M-matrix with a stochastic inverse.
Then Ae LUe Le e.

(2):ff (5). Suppose Ae e. Fiedler and Ptak [3, Thm. 4.3] have shown that each
M-matrix A has a factorization A-L1U1, where L1 =(/ij) is a lower triangular
M-matrix and Ul-(Uj) is an upper triangular M-matrix. Let D-
diag (dl, dE," dn), where di i=lui>0, l_--<i-<_n, and let U=D-1U1. Then,
Ue e and U is an upper triangular M-matrix with a stochastic inverse. Further,
e Ae -L1DUe L1De, which implies that L L1D is a lower triangular M-matrix
with a stochastic inverse.

Remark. Kuo [6, Thm. 3.9] has shown that if A is a singular M-matrix, then there
exists a permutation matrix P such that

where A is an M-matrix. Hence

Thus, we see that a singular M-matrix cannot have a stochastic Moore-Penrose inverse.
If A is an M-matrix, det A > 0. In the following corollary, we are able to make a

stronger statement provided that A has a stochastic inverse.
COROLLARY 1. IfA is an M-matrix with a stochastic inverse, then det A _>- 1.
Proof. Since A-1 is stochastic, the spectrum of A-1 lies in the unit circle, which in

turn implies that [det A-l[ II-I, xl--< 1. Hence ]det a[-> 1. Also, det a > 0, since a is
an M-matrix. Thus, det A => 1.

Remark. It is to be noted that we only needed the hypotheses that A-1 is stochastic
and det A > 0. Also, the condition that det A-> 1 is not sufficient; for example, the
matrix A 21 is an M-matrix such that detA => 1, but obviously A-1 =1/2I is not
stochastic.

Let A (aki) be a square matrix of order n with real or complex elements. Let

(6) Pk Y ]al, k 1, 2,..., n.
i=1
ik

PA+pT
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It is well known that each characteristic root of A lies in the interior or on the boundary
of at least one of the circles

(7) Ct," Iz a,t,I -< Pt,, k 1, 2,. ., n.

We apply this result to prove the following corollary.
COROLLARY 2. Suppose A is an M-matrix whose inverse is stochastic. Then the

spectrum ofA is contained in the circular region with center a and radius a- 1, where
a max/aii.

Proof. Note that Pk akk 1 for k 1, 2," ’, n. Thus (7) reduces to

(8) C" [z al-<-a- 1, k 1, 2,..., n.

Now (8) is a set of circles satisfying Ck
_
C or C/_ Ck for 1 --< ], k -< n, and each circle

contains 1 as a boundary point. The largest of these circles is

Ct" ]z aul--< au- 1, where all a max au.

Thus the spectrum of A is contained in the circular region with center a and radius
a-1.

It is well known that the principal minors of an M-matrix are positive and that the
real part of each eigenvalue of an M-matrix is positive. We now obtain sharper results
for M-matrices whose inverses are stochastic.

LEMMA 1. Suppose thatA is an M-matrix whose inverse is stochastic andB (bii) is
a matrix with nonpositive offdiagonal elements. Then, ifB >-_ A, Re A _-> 1 ]’or all A sp B.

Proof. Let A spB, say Bx=Ax, where x#0. Further, let M-Ixl=
maxli_,, Ix, > 0, Now (n-XI)x- 0 implies that (bkk--A)Xk Y’ (--bkjXj), where the
prime means we sum over ] # k. Hence

MIRe (bkk h )]--< Mlb X I= Ix Ilb A

E’
<-M E’ (-b,j).

Thus bkk Re A <- Y.’ (-bkj). Since A has a stochastic inverse and B >- A, Be >-_ Ae e.
Thus

1_-< bk-<Reh.
]=1

THEOREM 2. LetA (aq) be an M-matrix with a stochastic inverse. Then, irA’ is a
principal submatrix ofA,

i) Re h -> 1 ]’or all A sp A’ and
ii) det A’>= 1.
Proof. i) Let A’ be a principal k k submatrix of A. Without loss of generality, we

may assume that
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Now let

B’= dk+l,k+l ->A.
a

By Lemma 1, Re h -> 1 for all h sp B’ which implies Re h -> 1 for all h sp A’.
ii) If hi is real, hi -> 1 by i). If hi is imaginary, hi hj for some #/’, since A’ is a real

matrix. This implies that hlj_-> 1 by i). Hence, det A’ l-Ik=l hi -> 1.
Remark. In Corollary 1 we noted that the conclusion followed without the

assumption that A is an M-matrix. In Theorem 2 this is not the case. For example,
consider

Note that det A -> 1, and

6 -4
0 2

A_
1

1 2 3
1 4
2 2

is stochastic. However, it is obvious that det A’ 1 for all principal submatrices A’ of A.
Further, consider

9
B -12 4

6 -2

Then

is stochastic and the roots of B are I and the double root 6. On the other hand, it is easily
seen that Re h 1 for all h sp B’ where B’ is a principal submatrix of B.

Next we will show that if an M-matrixA has a stochastic inverse, then A +Ar is an
M-matrix.

THEOREM 3. LetA be a positive diagonally dominantM-matrix. Then, A +A is a
positive definite M-matrix.

Proof. We shall prove the theorem by induction on the size n of A. If n 1, then
obviously the theorem is true. So assume the theorem is true for all positive diagonally
dominant M-matrices of size r, where 1 _-< r < k. Let A be a k x k positive diagonally
dominant M-matrix, E A +A, and E’ be a principal submatrix of E. If E’ E, then
det E’ det E > 0, since it is well known that a positive diagonally dominant matrix has
a positive determinant. So we assume that E’ is a proper submatrix of E, and without
loss of generality we may assume that

E
E3 E4 [ C +BT D +DT
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where A=]’IA B/’ A’ is a positive diagonally dominant M-matrix since A is, andD’_
A’+(A’)T is positive definite by the induction hypothesis. Hence, detE’=
det (A’ + (A’)T) > 0. Thus, A +AT is an M-matrix, since it obviously has the required
sign pattern. Immediately we have

COROLLARY 3. IfA is an M-matrix whose inverse is stochastic, then A +AT is a
positive definite M-matrix.

Our final results pertain to factorizations with M-matrices whose inverses are
stochastic.

THEOREM 4. The M-matrixA is positive diagonally dominant ifand only irA DS
where D is a positive diagonal matrix and S is an M-matrix with a stochastic inverse.

Proof. First, assume that A DS, where D is a positive diagonal matrix and S is an
M-matrix with a stochastic inverse. By Theorem 1 and Definition 1, Ae DSe De >
0, which implies that A is a positive diagonally dominant M-matrix. Conversely,
suppose A is a positive diagonally dominant M-matrix. Then, aii> Y.j"-- 1.ii (-agi). Let
Y.j aii= dg > 0, 1 _-< <_- n. Then

ai=l, l<=i<=n.

So A DS, where D diag (dl, d2," , dn), and S (si), where si ai/di, 1 <- i, <- n.
Note that Se e, which implies that S is an M-matrix with a stochastic inverse.

COROLLARY 4. LetA be an M-matrix. Then there exist positive diagonal matrices

D1 and D2 and an M-matrix S with a stochastic inverse such that A DlSD2.
Proof. It is well known that there exists a positive diagonal matrix D2 such that

A WD2, where W is an M-matrix with dominant positive principle diagonal. The
corollary follows with Theorem 4 applied to W.

Note that the above corollary implies that the inverse of each M-matrix is
diagonally equivalent to a stochastic matrix.

THEOREM 5. Suppose that A is an M-matrix with q(A) > 0 a root of minimum
modulus. Then, there exists a positive diagonal matrix D such that A Dq(A)SD-1,
where S is an M-matrix with a stochastic inverse provided that A is irreducible.

Proof. Suppose that A is an M-matrix with q (A) > 0 a root of minimum modulus.
Then A-1 (ali) is a nonnegative matrix with 1/q(A) a root of maximum modulus. By
the Perron-Frobenius theorem, there exists x > 0 such that A-ix (1/q(A))x since A
is irreducible. If x (x l, x2,’’’, xn), this implies that

(*) 1 ,-
Xi 2., aiixiq(A) j=l

Let D =diag (xl, X2, Xn)
q(A)x la ixi _->0, and

and let SI=q(A)D-1A-1D=(si). Then si=

sit q (A)x a lixi 1
i=1

by (*). Thus Sl is stochastic, which implies that S-1 (1/q(A))D-1AD is an M-matrix
with a stochastic inverse, since S-;1D-lx >0 and S]-1 has the required sign pattern.
Therefore, A -Dq(A)S-(1D-1 and the theorem holds.

THEOREM 6. Suppose that A is a symmetric M-matrix whose inverse is stochastic.
Then, there exists an upper triangularM-matrix $ with a stochastic inverse and a diagonal
matrix D with positive diagonal entries such that A STDS. Further, STD is a lower
triangular M-matrix with a stochastic inverse.
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Proof. Jacobson [5, Thm. 1] has shown that each symmetric M-matrix A has a
factorization A GG, where G is a lower triangular M-matrix. Let GT (gj) D S,
where D1 diag (dl, dE," ,dn) and di 1=1 gij > 0, 1 - n. Then S is an M-matrix
with a stochastic inverse by (2) of Theorem 1. Therefore A GG (SD1)(D1S)
SDS, where D D2. It is easily shown that $D is an M-matrix with a stochastic
inverse.
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THE v x v (0, 1, -1)-CIRCULANT EQUATION AAT = vl-*

JAMES H. McKAY" AND STUART SUI-SHENG WANG"

Abstract. An electromechanical pulse generator has been proposed (J. P. Craig and R. Saeks, An
electromechanical pulse generator, Proc. 1st IEEE International Pulsed Power Conference, Institute of
Electrical and Electronics Engineers, 1976, pp. IIB 7-1-IIB 7-4) which is equivalent to finding a v x v
circulant matrix A with entries from (0, 1, 1} such that AAr vI J. In this earlier work it is reported that if
v is an odd prime and the entries in the first row of A are the Legendre symbols (/7 v), 0 =< j =< v 1, then A is a
solution. It was conjectured that A exists only if v is an odd prime and that the solution is unique up to cyclic
permutation of the columns-and multiplication of A by 1. In this paper, using convolution products, Fourier
transforms and number theory, we settle these two conjectures affirmatively.

1. Introduction. The usual techniques for generating high power electrical pulses
of short pulse duration and high recurrence frequency depend upon the storage of
electrical energy either in an electrostatic field or in a magnetostatic field, and the
subsequent discharge of a fraction or all of this stored energy into the load [8]. Another
approach is to employ an electromechanical energy converter to convert mechanically
stored energy into the desired electrical pulses. A report concerning a feasibility study
of some possible schemes and problems associated with them was made in [6]. A new
scheme was proposed by Craig and Saeks [7], which gives a lower pulse repetition rate
than a conventional electromechanical pulse generator (where the north and south
poles are in alternating positions) with a comparable number of poles. Such a generator
is designed with a prime number of poles, p. The poles are numbered 0 through p- 1.
The zeroth pole carries zero flux, and the remaining poles are divided equally between
north and south poles, each carrying an equal amount of flux. The positions of the
(p 1)/2 north poles are determined from a Legendre sequence of modulo p. The north
poles correspond to the perfect squares of modulo p, and the remaining nonzero poles
are the south poles. It was proven that such a generator will produce one positive pulse
per revolution that is (p 1) times as large as (p 1) negative pulses which are produced
[4]. The actual design and construction of an eleven-pole pulser were carried out and its
output was measured [3].

However, it was not known whether (1) only prime p will work; and (2) the
arrangements of north and south poles will be unique.

If a north pole is symbolized by "+1", a south pole by "-1", and a neutral one by
"0", then the desired physical properties can be described mathematically as follows.
The purpose is to get a sequence [ao, al, , ao-1] of v terms, each at either +1 or -1
or 0, such that

2a2o +a +a +. .+ao_l =v-l,

av-tao + aoa + axa2 + + av_2av_ =-1,

(1.1) av-2ao + av-la + aoa2 +" + av-3av- -1,

alao + a2a + a3a2 +" + aoav- -1.

Henceforth, the problem of finding a sequence satisfying the properties above will be
referred to as the binary codedpulserproblem of order v. It was known that if v is an odd

* Received by the editors May 5, 1980, and in final form January 29, 1981.

" Department of Mathematical Sciences, Oakland University, Rochester, Michigan 48063.
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prime, then the sequence formed by the Legendre symbols is a solution to the binary
coded pulser problem [7]. Saeks made the following two conjectures"

CONJECTURE 1. Ifthe binary codedpulserproblem oforder v has a solution, then v is
a prime.

CONJEeTUIE 2. ffthe binary codedpulserproblem oforder v has a solution, then the
solution is essentially unique.

These two conjectures have been verified up to v =41 by computer [4]. The
purpose of this paper is to settle these two conjectures affirmatively.

2. Preliminaries. The matrices in this paper are either v v or 1 x v over C, the
field of complex numbers, and their entries are indexed by residues modulo
v, 0, 1, 2,..., v-1. For any sequence a= [a0, al,’’’, av-1], a-= [a, a-,..., aS_l]
denotes the complex conjugate of a, a-=[ao, av-l,a-2," .,a 1], P(a,X) is
the polynomial ao+aX+" .+a_Xv-l, D(a) is the diagonal matrix
diag (a0, ax,..., a_), and M(a) is the circulant matrix

ao a a2 ao-]
av-1 ao al av-2/

av-1 ao av-3]
kal a2 a3 ao _1

Evidently M(a-) M(a)- and M(a-) M(a)r, where M(a)7- is the transpose of M(a).
Furthermore, if we let C denote the permutation (also circulant) matrix with l’s in
positions (0, 1), (1, 2),..., (v -2, v 1), (v 1, 0) and O’s elsewhere, then M(a)=
P(a, C).

It can be easily verified that the system of equations (1.1) in the binary coded pulser
problem is equivalent to a single circulant matrix equation

(2.1) M(a)M(a)T= vI-J,

where ! is the identity matrix and J is the matrix with l’s in all positions. Equation (2.1)
can be written in a more concise way once we introduce the concept of convolution
between sequences.

The convolution of a and b, denoted by a. b, is defined by the following formula. If
c a, b, then

c. , ab, 3’=0,1,2,"’,v-1.
+13

Then sequences together with term-by-term addition and convolution form a com-
mutative ring with identity. A moment’s reflection will convince one that this com-
mutative ring with identity is isomorphic to each one of the following:

(i) the subring of the matrix ring, consisting of circulant matrices;
(ii) the quotient ring C[x C[X]/(X 1), where X is an indeterminate over C,

(Xv- 1) is the principal ideal generated by Xv- 1 and x is the coset of X;
(iii) the group ring C[G] of a cyclic group G {1, g, g2, g-} of order v.

(The correspondence is a--> P(a, C) M(a) -> P(a, x) --> P(a, g).)
On the other hand, sequences together with term-by-term addition and term-by-

term multiplication (denoted by "o") form a commutative ring with identity which is
isomorphic to each one of the following:

(i)’ the subring of the matrix ring consisting of diagonal matrices;
(ii)’ the direct product of v copies of C.
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(The correspondence is a--D(a)-- (a0, ax,’’’, ao-x).)
Then it follows from the isomorphisms among (i), (ii) and (iii) that (2.1) is

equivalent to

(2.2) P(a, x)e(a, x

which is also equivalent to

(2.3) P(a, g)P(a, g-a) v -(1 + g + g2 +... + gV-a).

In other words, one can use either (2.1) or (2.2) or (2.3) to study the binary coded pulser
problem. In the past, these three approaches have been taken to attack other problems:
Hall and Ryser [11], [12] used polynomials in the indeterminates X, X-a and double
modulus arguments; Bruck [2] used elements in the group ring of a cyclic group;
Newman [16] used circulant matrices to study multipliers of cyclic difference sets.

When viewing the solution as an element in the ring Q[X]/(X 1), it is natural to
use the Chinese remainder theorem to decompose the ring into a direct product of
fields,

[X] o [X]
1-I [,o/],(2.4)

(X

where denotes the field of rational numbers, a(X) denotes the dth cyclotomic
e2ri/polynomial and to Ring theoretically, we can recover the global information,

i.e., an element in [X]/(Xo- 1), from the local information in each of the fields
[too/d]. When viewing the solution as a sequence, it is natural to utilize the properties
of the Fourier transform because of the cyclic nature of the solution. The process of
recovering from the local information to the global information is easier in the Fourier
transform approach than in the ring theoretic approach. For example, in the case v 6,
an element (f(1), f(to 3), f(to2), f(to)) of Q[1]x (l[to 3] X ([[to2] X ([[to] corresponds to an
element of Q[X]/(X6-1) by the Chinese remainder theorem. However, f(tos) and
f(to4) are easily found from f(to) and f(to 2), respectively, by appropriate automorphisms
and then the element f(x) ao + aax + a2x

2 + a3x
3 + a4x

4 + asx 5 in Q[X]/(X6- 1) is
recovered by applying the Fourier transform to (1/x/g)[f(1), f(to), f(to2), f(to3), f(to4),
f(to5)]. Consequently, the principal approach used in this paper is sequences, con-
volution and Fourier transform.

The result of this paper can provide a simple alternative proof of theorems of Kelly
13], which extended results of Perron 17].

3. Binary coded pulser problem. Equations (1.1) or (2.1) can be reformulated in
terms of the convolution product:

DEFINITION 3.1. A binary coded pulser of order v is a sequence a=
[ao, a, a.,..., ao-a] of v terms composed entirely of O’s, +l’s and -l’s such that
a.a-=[v-1,-1,-1,...,-1].

Our first observation is
LEMMA 3.2. (i) If a is a binary coded pulser of order v, then v is odd, exactly one of

the at is zero and the other ai’s are equally divided between + 1 and -1.
(ii) If, furthermore ao O, then a (-1)(v-a)/2a; i.e., a-i (-1)(-1)/2a for all j.
Proof. (i) The zeroth term of a .a- is i=o a v 1, which shows that exactly one

of the at is zero. If s denotes the sum of the terms in a, then the sum of the terms in a. a-
is s2= (v-1)-l- 1 1=0 and s =0.

v--1
(ii) The jth term of a a-, with j # 0, is Y=o aai+ -1.
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Two of aoaj, alaj/x, a2ai+2, , av-xai/v-x are equal to zero They are aoai and av-iao.
The remaining are +1 and, since they total -1, there must be exactly (v 1)/2 of them
equal to -1 and the product of these is (-1)(v-x)/2. The proof is completed by noting that

v-1 2 -11 I-I=x a aav-(
DEFINITION 3.3. A binary coded pulser a=[ao, a l, a2,’", av-x] is called a

special (resp. normalized) binary coded pulser if a0 0 (resp. a0 0 and a 1).
Thus a special binary coded pulser of order v is a sequence a=

[ao, al, a2, av-x] such that aoa= [0, 1, 1,. ., 1] and a.a-=
[v-1,-1,-1,...,-1].

Clearly, if there is a binary coded pulser a of order v, then there is a normalized
binary coded pulser of order v which is formed from a by a cyclic permutation and
multiplication by -1, if necessary.

A sequence a [a0, ax, a2, av-x] is called even if a a-, and is called odd if
a =-a-’. Note that a is even if and only if the corresponding circulant matrix M(a) is
symmetric; a is odd if and only if M(a) is skew-symmetric. Thus, Lemma 3.2 (ii) says
that if a is a special (in particular, normalized) binary coded pulser of order v, then M(a)
is either symmetric or skew-symmetric depending on v 1 or 3 (mod 4), respectively.

Recall that the Jacobi symbol (a/b) is defined for all odd a, b by the following: (i) if
(a,b)=l and b=plp2.. .pr is the prime factorization of b, then (a/b)=
l-Ij=x (a/Pi)’ where (a/pi)is the Legendre symbol; (ii)if (a, b)> 1, then (a/b)=O. It is
then easily verified that the Jacobi symbol is bimultiplicative in the sense that

and

and furthermore (-l/b)= (-1)(b-x)/2 [10, pp. 76-77].
There are a few special matrices which we use"

W=(to), a =0, 1,..., v-l, /3 =0, 1,..., v-l, whereto =e2i/v,
2 v-1D =diag (1, to, to ,..., to ),

Note that W is the character table of a cyclic group of order v. Also aE a-, so that
right multiplication of sequences by E corresponds to the involution of the group ring
C[G] induced by g-- g-X. It follows from the orthogonality relations among characters
that

(3.1) WW-= W-W vI

(which can also be easily verified using the summation formula for geometric series). It
is also easily verified that W2 rE, W EW-= W-E, ECE C7" Co-x C-x,
ED(a)E D(a-), CW WD and WC D-W. As a consequence of W-xCW D and
M(a) e(a, C),

2)(3.2) W-M(a)W=diag(P(a, 1),e(a,o),P(a,o ...,e(a,o -)),
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which gives the eigenvalues of a circulant matrix and the classical result that
2) P(a, o Similarly, we havedet (M(a))= P(a, 1)P(a, o,)P(a, o,

-), -o-)).(3.3) WM(a)W-1 diag (P(a, 1), P(a, o 1), P(a, ., P(a,

We define the Fourier transform a of a by

a aW- 1 _) -v-))],

and the inverse Fourier transform a of a by

aV 1 1 ) v-1aW [P(a, 1), P(a, o,), e(a, o ,..., e(a, o )].

(Note that our definition of Fourier transform is slightly different from the one defined
in [5], where aW-1 is called the Fourier transform of a.) It is immediate that
a =a=a a =a =a a =a =a a =a =a a =a=a a
a and a-v= a^-. The terms of a (resp. av) are precisely the eigenvalues of
M(a). Equations (3.2) and (3.3) can be rewritten as

(3.4)

(3.5)

WM(a)W-1 /D(a^),
W-lM(a)W /-D(aV).

Therefore, taking M(a.b)=M(a)M(b) and D(aob)=D(a)D(b)into account
gives that

(3.6) (a ,b) 4 a^ob^,

(3.7) (a,b) =,v aVobv,

la^ b(3.8) (ab)^=vv *

1
(3.9) (aob) -= a * bv.

Vv

LEMMA 3.4. Let a [ao, al, a2," av-1] be a special binary coded pulser and let
(-I/v) (-1)v-1)/2 be the Jacobi symbol. Then

(i) P(a, o
v otherwise.

and /(--) a are special binary coded pulsers.

Proof. (i) From Lemma 3.2 (ii) and (3.7) it follows that

aVoav= aVoa"-v= (a,a-)v= [v-l,-1,-1,...,-1]
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(ii) From Lemma 3.2 (ii) and (3.8) it follows that

[0, 1, 1,..., 1]

This together with the proof of (i) shows that x/(-1/v) is a special binary coded
pulser. The proof for x/(-1/v) ^ is similar and hence will be omitted.

Remark. Hence, for a special binary coded pulser of order p( an odd prime),
)P(, to behaves like the square of the Gauss sum [15, pp. 207-208] (cf. [1, Thin. 7, pp.

349-353; Problems 13-16, p. 355] and [14, pp. 197-218]).
THOREN 3.5. Ifv an oddprime p, then there is a unique normalized binary coded

pulser of order p and its terms are given by the Legendre symbols (O/p), (l/p),
(2/p), , (p- l/p).

Proof. Let sr e 2,"/p.
(i) Uniqueness. Suppose a= [0, 1, a2,’’ ", ap_] and I= [0, 1, bE,’’’, bp-1] are

normalized binary coded pulsers. Then Lemma 3.4 (i) implies that P(a, st)- eP(l, ),
e + 1. However, the set {’, .2,..., .p-x} is a basis for the field (sr) over the field of
rational numbers t). So we have

1-e =0, aE-eb2=O, ", ap-l-ebp-1 =0.

Consequently e 1 and a b.
(ii) Existence. Let c= [Co, c, c2, , cp_] be given bythe Legendre symbols; i.e.,

ci (ffp) for all/’. It is well known that (P(c, srt))2, the square of the Gauss sum, has the
value 0 if t-=0 (mod p) and the value (-1/p)p otherwise [15, pp. 207-208]. This result
is equivalent to c c (- 1/p) [0, 1, 1,.. , 1 ]. Then, since c- (- 1/p)c and c- c^,
it follows that e^oe [0, 1, 1,. , 1]. Applying v to the last equation and using (3.8)
and e =e", we have e.e"=[p- 1, -1,-1,...,-1].

For any odd prime p, by Theorem 3.5, there is a unique normalized binary coded
pulser e of order p which is given by the Legendre sequence. We denote the corre-

p--1
sponding polynomial P(e, X) by Fp(X), so that Fp(X)= Yq=o (!"/P)X. As a result of
Lemma 3.4 and Theorem 3.5, for sr e2/p,

and

for t=0, 1, 2,.

Now we define, for each odd integer v, a polynomial Fo (X) with similar properties.
Let v pXp p be the prime factorization of v and let qi v/pi. The definition of
Fo(X) is

(3.10) Fo(X)= fi [Fo,(Xq,)],.
The standard properties of the Jacobi symbol imply that Fo (X) has integral coefficients
and

(3.11) F (to t) () Fo (to) for t=0, 1,2,. .,
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(3.12) Fo (to) +/- v,

where to e 2ri/Vo
PROPOSITION 3.6. If V is not a square and v has at least two distinct prime divisors,

then there is no binary coded pulser of order v.
Proof. Assume that there is a special binary coded pulser a of order v. By

hypothesis we have v =d.q, where d> 1, (d,q)= 1, and q=pEm+ for an odd
e2.n.i/v 2"a’i/q e 2.a.i/dprime p. We use the notation" to rq =e ’a and q(X)=

o<t<q.(t.q)=l (X-(tq) is the cyclotomic polynomial of order q (hence of degree q(q)).
The.polynomials Fd(X) and Fq(X) are defined by (3.10), and so Fd((d)= +/-x/(-1/d)d
and Fa(rq)= +4(-/q)q by (3.12). The polynomial P(a, x) is E__-o aX, and so, by
Lemma 3.4 (i), P(a, Srd)= P(a, too)=+/-x/(-1/v)v since d> 1. Both P(a, X) and Fa(X)
have integral coefficients, hence P(a, ra) and Fa((a) are in Q(’a), and hence their

quotient x/(-1/q)q= Fq(()is in Q(’a).
Now we use q to define a new polynomial f(X) by f(X)= 1-I0<,<,(,/)=1 (X-r),

so that degree (f(X))= 1/2q(q) because (t/q)= (t/p)2"+1= (t/p). Moreover,

/(X) g.c.d. ((X), Fq(X)-F(o)) (sra)[X]

if we take (3.11) and the result that F(rq) E Q(ra) into account.
Thus

[(,o). ()] [(,o). (,o)] [(o)(,o)
[Q(’d)(sr,)" (Srd)] ----< degree (f(X))

1/2(q),

since (d, q)= 1. But then

,(d),(q) (v) [(to)" ] [(to)" (Srd)][(Srd) ] <-- }o(q)o(d),

a contradiction. Thus there is no special binary coded pulser of order v.
PROPOSrnON 3.7. If v is a square, then there is no binary coded pulser of order v.

Proof. Assume that there is a special binary coded pulser a [ao, a 1, a2, , av-1]
of order v. By hypothesis we have v b2 for some odd integer b. We claim that

at aa whenever (t, v)= d. To see this, we first note that (-I/v)= (-l/b)2= 1, and
hence, by Lemma 3.4: (i), P(a, to’)=+/-b or 0; (ii) a=(1/b)[P(a, 1), P(a, to),
P(a, toE),..., P(a, toy-l)] is also a special binary coded pulser. If, for each dlv, we
define gd(X) P(a, X) P(a, tod), then gd(X) 7/IX], and d/a(X)lgd(X) as gd(to d) 0
and do/d(X) is the minimal polynomial of tod over . But dP/d(X)lgd(X) means

,) dgd(to ) 0 whenever (t, v) d; i.e., P(a, to P(a, to whenever (t, v) d, whence

at aa whenever (t, v) d

as a a. This proves our claim.
Consequently,

+/-b P(a, o) E aitoi 2 aa 2 to
1=1 dlv 0<t<v

dv (t,v)=d

Now, the Ramanu]an sum Y.0<t<o,.v--ato =sum of the primitive (v/d)th roots of

unity is known to have the value tz(v/d) [10, Thm. 19, p. 99; Problem 18, p. 109]
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where/. is the M6bius function. Therefore, +/-b ,alv.av aatz(v/d). Taking absolute
values we have b <=Y.alv.al Iz(d)l. Now, if b =pp2:...pa, is the prime factoriza-
tion of b, we have b3 and alo.a](d)l=number of nonempty subsets of
{pl, p2, , p} 2- 1. The inequality 3 2- 1 is a contradiction. Thus there is no
special binary coded pulser of order v.

THEOREM 3.8. If there is a binary coded pulser a of order v, then v is a prime.
Proof. Without loss of generality, we may assume that a is special. Then by

Proposition 3.6 and Proposition 3.7, v must be an odd power of a prime p, say
v p2+ We shall show that m 0

Let P(a,X), Fp(X) be defined as before and let o,(X) be the cyclotomic
polynomial of order p (and hence of degree (p)) so that p(X)=p(X’-) for

1. We claim that for each ] 1, 2, , 2m + 1, there exists e 1 such that

P(a, X) epFo(X’-) (mod p,(X)).

To see this, we use the facts that P(a, p)2 (_ 1/v)v pEru (_ 1/p)p for all p such that
p 1 and p 1 (Lemma 3.4(i)), that Fp(O)2= (-1/p)p for all 0 such that 0 1 and
0 1 (square of Gauss sum), and thus any zero of o(X) is a zero of

P(a, X)2 pEFo(XO’-)2 (P(a, X) pFp(XO’-))(P(a, X) +pFp(XP’-)).
But each of these has integral coecients, and so p(X), which is irreducible over ,
must divide one or the other of the factors. This establishes our claim.

By the Chinese remainder theorem,

EX] 2m+ EX]
(Xp2m+l- 1) j (pi(X))’

and hence there exists a unique P(X) [X] such that
1) degree (P(X)) <p2m+l"
2) P(X) eiFp(XP’-)p (mod e,(X)) for j 1, 2,. ., 2m + 1;
3) P(X) 0 (mod ,(X)).

Therefore P(X) P(a, X).
On the other hand, there is another explicit (global) expression for P(X) available.

In fact, the polynomial defined by

Q(X)= Z eiFp(X’-) +e(Xp,- p + e2m+Fp(XP)p
i=1 l=j+

has rational coecients and satisfies all three requirements 1), 2) and 3) as well. This can
be seen by using

1
Fp(Xp’-) 0 (modCPe,(X)) and=- -gpp,(X)=- I (mod

P
whenever 2m + 1 _-> -> j + 1 _-> 2.

As a result, Q(X)= P(X)= P(a, X). The only term in Q(X) with X to the first
power occurs when Fp(X) is used, and its coefficient is el(1/p)2mp elp -m. The only
way that this coefficient can be equal to a +/- 1 is for m 0.
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EQUILIBRIUM AND STABILITY IN A PERIODIC MARKETING RING*

A. H. ZEMANIAN

Abstract. A dynamic economic model for a periodic marketing network of the following sort is
constructed herein. Traders operating out of urban centers pass among rural markets during the marketing
week buying up a commodity, which they transport back to their respective urban centers and sell to
wholesalers. The traders follow fixed and in general different, rings of markets, which they repeat from week
to week. A set of nonlinear difference equations is devised that determines the time-dependent prices and
commodity flows throughout the network. When the traders’ rings are all the same, we prove that the system
has a unique equilibrium state. This is established for two cases, one where the traders do not store goods
and the second where they are allowed to do so. In the former case, we also establish conditions under which
the equilibrium state is locally asymptotically stable. We finally show that, in the two-ring case, a peculiar
price variation can occur, a result that may explain some of the reported "unpredictable" price swings in
periodic markets.

Introfluetion. A common marketing system in the developing countries is the
periodic marketing network [5]. It usually occurs in conjunction with other kinds of
marketing and is just one part of the overall marketing system. Nonetheless, it is often
the major part, especially in those third-world countries whose economies can be
characterized as primarily rural, based on subsistence agriculture and having low
effective demand for marketed goods.

Periodic markets can be described as follows. In a geographic region there appear
many marketplaces, but only some of them are open as active markets on any single
day. That is, most marketplaces become active markets on only one or perhaps
severalmbut not on all--days of the week. Thus, on Monday a certain subset of the
marketplaces open as markets, on Tuesday another subset of marketplaces open and
so forth throughout the market week. This shifting pattern of active markets repeats
itself from market week to market week.

There have been many anthropological, economic, geographic, historical and
sociological studies of periodic markets [1], [2], but almost all of them have been
nonmathematical, except perhaps for the statistical manipulation of field data. The
comparatively few papers that do take a mathematical approach discuss either the
graph-theoretic structure of periodic marketing networks including spatial and tem-
poral patterns of trading, or aspects of central-place theory or static optimization ideas
from economics [1], [2]. In a recent series of papers, we have undertaken the study of
the dynamic economic behavior of periodic marketing systems [6], [7], [8], [9]. The
present work is a continuation of that effort. Such a study is of interest because
periodic marketing systems appear to react sluggishly to market disturbances and
therefore are often in disequilibrium. Even when each market in the network achieves
an equilibrium on each of its market days, it may well be that the overall marketing
network remains in disequilibrium because it cannot react fast enough to the changing
supply and demand conditions under which it operates.

A problem concerning the study of periodic markets is the fact that they appear
in many different forms; that is, there are a variety of temporal and spatial patterns of
market trading. Moreover, a particular marketing system may exhibit a combination
of several such patterns. For the purposes of mathematical modeling, the only tractable
approach appears to be the separate analysis of each form, uncombined with any other

* Received by the editors December 8, 1980. This work was supported by the National Science
Foundation under grant MCS 78-01992.

" Department of Electrical Engineering, State University of New York, Stony Brook, New York 11794.
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variety. Once each form is understood, it is hoped that a comprehension of combined
systems may then be synthesized.

This work is an economic analysis of the following form of periodic marketing
network, one that has not been so studied before. We assume that itinerant traders
pass among many rural markets during the marketing week buying up a particular
commodity. At the beginning of the next week, the traders converge upon a few urban
centers where they either sell their accumulated goods to wholesalers or, if prices in
the wholesale markets are unfavorable, store all or part of those goods. Each trader
follows his own trading route, which we refer to as his "ring".

We analyze each trader as a firm that supplies the service of transferring ownership
of the commodity over space and time. From this we obtain a characterization of each
trader by means of an excess-supply function for the commodity (rather than the said
service) in each market in which he trades. Upon aggregating these functions over all
traders in every market and equating the result to the aggregate excess-demand
function of all the other agents in the market, we obtain a set of simultaneous nonlinear
difference equations as our model for the overall periodic marketing system. These
equations determine the dynamic variations of all the prices and commodity flows. In
particular, they explicate how price disturbances propagate from market to market in
a step-by-step fashion, as was pointed out by W. O. Jones [3].

Once a dynamic economic model is at hand, a natural question to ask is whether
it has an equilibrium state. We prove that a single-ring system whose traders do not
store goods has a unique equilibrium state. Moreover, that state is asymptotically stable
when certain conditions on the elasticities of the supply and demand functions are
satisfied. For a perishable staple food, these elasticity conditions are not likely to be
satisfied, which leads to the conclusion that periodic marketing networks that are
adequately represented by our model tend toward instability. We also establish the
existence of a unique equilibrium state for the more general case where traders may
store goods; the asymptotic stability of that state is presently an open question. Finally,
we examine a two-ring system and show, by example, that a sudden rise in demand in
a wholesale market can lead to a subsequent fall in price in a rural market two days
later. This may be one possible explanation of certain price variations observed in
periodic markets that have been labeled as erratic and unpredictable [4, p. 22].

2. The behavior o a trader in a rural market. Throughout this work we shall use
the same notation as that of our prior papers [6], [7], [8], [9]. Our first task is to assume
a reasonable behavior for the traders when buying goods in a rural market. We shall
assume that each trader is a profit maximizing firm that supplies the service of
transferring ownership of a commodity over space and time. He does so by buying the
commodity in a sequence of rural markets and selling it in an urban wholesale market.
This cycle lasts for one market week, and the trader repeats his ring during each new
market week. These ideas lead to an excess-supply function for each trader in each
rural market. Its derivation was presented in our prior works. To avoid repetition, we
shall merely state the result here and refer the reader to those works for its derivation;
see especially [8, 2].

We assume that every market week has n days, not counting the rest days on which
all markets are closed. The days of any week are indexed consecutively by s
1, 2, ., n. When s n, we set s + 1 1, and when s 1 we set s- 1 n. The integer

The reason we have chosen to represent the behavior of the trader in a rural market by an excess-supply
function instead of an excess-demand function is that we wish to maintain notational conformity with our
prior works on periodic markets.
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denotes the market day, and the integer v is the index for the market week, also
numbered consecutively. Thus, vn + s. Furthermore, we assume that every trader
is in an urban center, on the first day of every week, where he sells or stores all of the
goods he has accumulated during the preceding week. During the remaining n 1 days
of the week, he proceeds through a fixed route of rural markets, spending one day in
each market.2

Let bsi represent the ]th market that meets on the sth day of the marketing week.
Thus bli denotes an urban market, and bs, where 2 =< s-< n, denotes a rural market.
Furthermore, we number all the traders in the entire marketing network by
1, 2, , n, and we attach as a superscript to any symbol that pertains exclusively to
the ith trader.

Figure 1 shows the excess-supply curve S(p, t) that characterizes the ith trader,
while he operates on day vn + s, in a rural market b, 2 -< s -< n. As usual, p denotes
the price of the commodity and q its quantity. E(t) is the price the trader expects the

Es(t)

S
Ei(’)-Ti

(p,t)

sj (t)

cis+l (t +I)

0Oslt) Cslt)

FIG. 1. An excess-supply function for the ith trader in a rural market

commodity will command when he returns to his urban market at the beginning of the
next marketing week. It is determined by the trader’s memory of past prices and his
experience with price variations. Although we have been assuming in prior works that
there is no market news, we could encompass a certain amount of news by specifying
E(t) as a function of prior prices, in not only the markets of his ring, but also in markets
outside his ring. We do however maintain our assumption that no trader ever alters his
ring.
C (t) is the amount of goods the trader brings into b, from the preceding market

in his ring. Since he sells or stores all the goods he has on hand whenever he is in his
urban market, we have Ci2 (t)= 0. The value T is a measure of the cost to the trader

2 Actually, we allow a trader to visit the same marketplace on two or more days of a single week’ we
simply denote markets that meet in the same marketplace on different week days as being different markets.
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in transferring one unit of the commodity from a seller in bsj to a buyer in his urban
market at the beginning of the next market week. When the market price Psj(t) is larger
than E(t) T, the trader sells inb all of the amount C (t), hence the vertical segment
at the upper end of his excess-supply curve. When P(t) is considerably less than
E(t)-T, the trader buys enough goods to fill or perhaps somewhat overfill his
transporting capacity, hence the almost vertical portion of the lower end of his
excess-supply curve. In between these two parts there is a transition region where the
trader buys or sells some goods, but not enough to either fill or empty his transporting
equipment. As was mentioned above, the reasons for this shape of a trader’s excess-
supply function are given in [8, 2]. We merely add at this point that, by the conditions
assumed later on, the traders of our model will normally buy--not sell--the commodity
in any rural market. That is, the price P(t) will almost always remain below each
trader’s cross-over price R(t). Moreover, except possibly for the rural markets that
meet on the last day of the market week, Pj(t) will ordinarily lie only slightly below
R(t), so that the quantity ]Qis(t) bought by the trader adds to the amount he has
already acquired but does not fill up his transporting capacity. This is the situation
illustrated in Fig. 1.

3. The behavior of a trader in an urban market. We have yet to specify the
economic behavior of the traders in the urban markets. We shall discuss two cases. In

(t) he brought into histhe first one, we assume that every trader sells all the goods C1
urban market on the first day of each marketing week. Thus, on the axes of Fig. 1, his
supply function is simply a vertical line that intersects the abscissa at q C (t) _-> 0. We
shall refer to this case as the no-storage model.

The second case, which we refer to as the storage model, allows each trader to store
goods in his urban center. The amount A i(t) he stores depends upon the current price
Plj(t) in the urban market and the price E (t) he expects therein one week hence. The
trader’s supply schedule S (p, t) for this case was also derived in a prior work [7, 4].
Again, we will not repeat those arguments but will merely describe their conclusion.

S (p, t) is illustrated in Fig. 2. It lies in the first quadrant and terminates at the
point where it meets the abscissa. When P(t) >-E (t), the trader sells all of the goods
Gi(t) he has on hand; Gi(t) consists of the goods C (t) he has just brought in from his
last trip and the goods Ag(t-n) in storage during the past week. This yields the upper
vertical portion of SI(p, t). As Pj(t) begins decreasing below E (t), he begins storing
goods for the coming week. Assume that the per-unit cost Z(A(t)) to the trader of
storing goods increases continuously and strictly monotonically as the total amount
Ai(t) he stores increases up to his storage capacity B i. As a consequence, he stores just
that amount A(t), where the per-unit cost of storing equals E (t)-P(t), so long as
he does not exceed his storage capacity B i. This gives the curved portion of S (p, t).
If he does fill B g, he sells any goods on hand in excess of B for whatever price he can
get. This accounts for the lower vertical portion of the supply curve of Fig. 2.

The illustration in Fig. 2 assumes that E (t)- I, where I Z (B i) and G (t)- B
are both positive, so that the lower corner point lies within the first quadrant. There
are two other possibilities. One is that S (p, t) may meet the ordinate on its curved
portion. At this point, Gi(t) A(t) <-B , and the trader stores all his goods. For still
lower prices, the trader continues to store all of G (t), and S (p, t) coincides with the
ordinate down to the origin. As the second possibility, S (p, t) may meet (and terminate
at) the abscissa on its curved portion. At this point, P(t) 0, and the cost Z (Ai(t)) of
storing goods equals the traders expected price E (t)’, thus, the trader stores A (t) and
gives or throws away any additional goods he may have.
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Ei(t}

Plj(t)

Eil(t)-Ii

Zi(Ai(t)) /

Gi(t) q

Ci (t) + Ai(t-n)

FIG. 2. A supply function for the ith trader in an urban market blj in the case of the storage model

We should point out that the storage behavior assumed herein is different from
that of [7] in one respect. The price corresponding to the upper corner point in Fig. 2
is the trader’s expected priceE (t), whereas in [7] it was his cost of buying and bringing
one unit of the commodity into the urban market. Our present model allows storage
for speculative purposes, whereas in the prior model the trader stored goods only to
cut losses. It turns out that the present storage model has a simpler equilibrium state,
for, as we shall see, no trader perpetually stores goods under equilibrium. In the prior
model the latter could happen.

4. The dynamic models. We wish to formulate equations that determine all the
dynamic price and commodity-flow variations throughout our periodic marketing
network. To do so, we must specify the supply and demand schedules in functional
form.

For 2_-<s _-< n, we formulate the ith trader’s excess-supply function on day
s+vn by

(4.1) S(p, t)= C(t)- V[E(t)- T -p],

where

-O (t- s + 2)- Oa(t- s + 3) 0-1 (t- 1) for s 3, 4,. ., n,
(4.2) C(t)=

0 fors=2.

As is indicated in Fig. 1, -Q(t) denotes the amount of goods the ith trader buys in his
rural market 4sj on day t. Furthermore, the function V is assumed to satisfy the
following conditions.

Conditions I. For each and each s, V is a continuous nonnegative function on
the real line such that V (x)=O for x<O,= V(x) is strictly increasing for O<x= <oo,
and V, (x) tends to a finite limit V (oo) as x -->
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For the purposes of this paper we need not specify anything more about Vis, even
though the arguments of our prior works dictate a steplike shape for V. Also, (4.1)
allows the shape of V to vary as s varies, but it seems likely that such shape changes
will be minor. With respect to the axes of Fig. 1, the major variations will be horizontal
shifts of S as C (t) changes and vertical shifts of $ as E(t) and T change.

For s 1, every trader is in an urban market bi. For the no-storage model, his
supply function in bi is perfectly inelastic

(4.3) S (p, t)= C (t);

C (t) is the amount of goods he has acquired on his last trip through the rural markets,
namely

(4.4) C (t) -Q (t- n + 1) Qn (t- 1).

For the storage model, however, a rather more complicated expression is needed to
represent the three sections of S (p, t) shown in Fig. 2.

G’ (t) for p >E (t)

(4 5) S’l(p,t)= max{0, G’(t)-Wi[E(t)-p]} forE(t)-Ii<p<E(t),
!

(t) I,[max {0, G (t)- B} for p -< Ex
where G(t) C (t),+A(t-n). All the symbols herein have been defined in the
preceding section except for W, which is the inverse mapping of the ith trader’s
storage-cost schedule Z. Z is assumed to satisfy the following conditions.

Conditions II. For each i,Z is a continuous, strictly increasing function on
0 <- q <_- B . Moreover, Z (0) 0 and Z (B) I.

The aggregate supply or excess-supply function of all the traders in a given market
is

(4.6) Ssj(p, t) Y.sj S (p, t), 1 <- s <- n,

where Y,i denotes the sum over all indices for those traders that operate in bsi on
weekday s. The agents in Ssi other than the traders are represented by an aggregate
demand or excess-demand function D,i(p, t), which we take to be exogenously given.
We also assume that in each urban market $j those other agents only buy goods so
that Di(p, t) is positive for all p > 0. However, in any rural market &i, where 2 -< s <- n,
we assume that there are both suppliers and local consumers, in addition to the traders.
In view of this, we take Di(p, t) to be negative for the usual values of p, but possibly
positive for sufficiently small p > 0. An aggregate demand curve for s 1 is shown in
Fig. 3, and an aggregate excess-demand curve for 2-< s-< n is shown in Fig. 4. To be
more precise, we impose the following conditions.

Conditions III. For every un + 1, where u 0, 1, 2,. ., and for every ] in the
index set of the urban markets $1i, Dj(p, t) is a positive, continuous, strictly decreasing
function ofp for0 < p <, such that Dl(p, t)
For every un + s, where u 0, 1, 2, and s 2,. , n, and for every ] in the index
set of the rural markets Ssi, D,i(p, t) is a continuous, strictly decreasing function of p
for 0<p <, such that Dj(p, t) Q. >=0 as p 0+ and D,i(p, t)- -oo as peo. Also,
for p=0, D,i(0, t) denotes the semiaxis Q <= q <

The market-clearance conditions are obtained by equating supply to demand in
each urban market and excess supply to excess demand in each rural market. That is,
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Plj(t)

Qlj(t) q

FIG. 3. Aggregate supply Sxi(P, t) and aggregate demand Dxi( p, t) in an urban market

p

Qsj(t) 0

Ssj(p,t)

FIG. 4. Aggregate excess supply Ssi(P, t) and aggregate excess demand Dsi(p, t) in a rural market

for every j and t,

(4.7) Sli(p, t)= Dj(p, t)

and, for every s _-> 2, ] and t,

(4.8) Ssj(p, t) Dsi(p, t), s 2,..., n.

To complete our models, we have to specify every trader’s E(t), the price he
expects to find the next time he returns to his urban market--this expectation being
held while he operates in his rural market bi on day t. This can be done by specifying
E](t) through a memory function M] of the prior prices in the marketing network. For
the purposes of this paper, there is no need to be explicit at this point, but two
reasonable conditions that we do impose on the M, are the following.

Conditions IV. The range value of eachM increases or stays constant as any one
or more of the arguments of M are increased, the remaining arguments being held
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fixed. Also, if all prior prices in the trader’s urban market are held constant at P0, then
M yields the same value P0 once again for the next expected price.

We shall assume henceforth that Conditions I through IV are satisfied.

$. Recursive computations. With either the no-storage model or the storage
model, we can recursively compute time series in every price and every commodity
flow in the marketing system, once an appropriate set of initial conditions are assumed.
For the storage model, assume that the amount stored Ai(1) by the ith trader at 1
for the forthcoming week is given for every i. Moreover, for both models, assume as
given those prices prior to 1 required in the arguments of all the memory functions
M for the recursive computation of the E(t) for 1, 2, 3,.... Finally, recall that
for both models each trader’s ring is taken to be known and fixed, that all the T are
given, that all the aggregate demand and excess-demand functions Dsj(p, t) are given
exogenously for all _-> 1, and that C (vn + 2) 0 for all and v.

We can now compute, at 2, all the E (2) from the memory functions M. Since
C (2) 0, S2 (p, t) is thereby determined with its upper vertical portion (see Fig. 1)
lying on the ordinate. Upon aggregating over all the traders in a given market b2j, we
obtain S2i(p, 2) for that market. The clearance equation (4.8) then yields the price
p P2i(2), in $2i at 2, as indicated in Fig. 3. Referring back to Fig. 1, we obtain
Q(2)=S’2 (P2i(2), 2) and C (3) -Q (2).

Next, for 3, we compute E (3) from the memory functions m. Since C (3) is
known, we can repeat the computation of the preceding paragraph to get P3j(3),
Os(3) Ss(Psi(3), 3) and C (4) =-O3(3)-O:(2). Continuing in this fashion along
the days of the first marketing week (i.e., for v 0), we obtain all the prices for that
week, as well as C (n + 1), from (4.4).

Now, for the no-storage model, we can aggregate over all the traders in to
obtain the perfectly inelastic supply function

Sxi(p, n + 1) Y. ai C (n + 1).

By (4.7), we now get the price p Pxi(n + 1). Of course, the amount Qia (n + 1) sold by
the ith trader in his $i is equal to C] (n + 1) in this case.

(n+l)For the storage model, the memory functions serve again to give us E
Also, the Ai(1) are given as initial conditions, and this determines G(n+l)
C (n + 1) +A (1). Thus, we have fixed S (p, n + 1) for every i; see Fig. 2. Upon
aggregating over the traders in any given urban market blj to get Sxi(p, n + 1) and then
using (4.7) as indicated in Fig. 3, we obtain the price Pxi(n + 1). Next, we refer again
to Fig. 2 to obtain in addition Ai(n + 1) and Qi (n + 1)

We can now repeat the computations of the second and third paragraphs of this
section to get all the prices for the second week (i.e., for v 1), as well as C (2n + 1).
This yields in turn Pxi(2n + 1) and Q (2n + 1) and, in the case of the storage model,
A (2n + 1) as well.

This procedure can be continued to get as many prices or commodity flows as one
may wish. We have in short constructed a no-storage model and also a storage model
for our periodic marketing network, either of which completely determines a dynamic
behavior.

6. The equilibrium state. Assume that all the exogenously given demand func-
tions do not vary with t. An equilibrium state or an equilibrium point is a set of constant
prices, one for each market, and also, in the case of the storage model, a set of constant
stored amounts, one for each trader, such that the recursive analysis yields those prices



EQUILIBRIUM, STABILITY IN A PERIODIC MARKETING RING 283

again and thereby constant time series in all prices and quantity flows. In other words,
in an equilibrium state the dynamic response does not vary with time. (We shall show
that the stored amounts are all zero in an equilibrium state of the storage model.)

Do our two dynamic models possess one or more equilibrium states? We have not
been able to resolve this question for the general multi-ring models of the preceding
section. However, when the marketing system consists of only one ring, the answer is
"yes". More specifically, when there is one urban market and n 1 rural markets and
when exactly one market opens on any given market day so that all traders follow the
same ring, then each of our two models possesses a unique equilibrium state.

Since everything is constant with respect to in an equilibrium state, we shall
denote the time-invariant quantities by dropping their arguments in t.3 Moreover, when
there is only one ring, we drop the subscript thatmin the multi-ring casemnumbers
the markets open on a given market day. Thus, for example, for a single-ring system
in an equilibrium state Psi(t) is replaced by Ps and Dj(p, t) is replaced by D(p).
Moreover, we let 4s, where s 1,..., n, be the one and only market that opens on
the sth weekday. Thus, 41 is the single urban market, and 42, , 4, are rural markets.

Our first theorem concerns the no-storage model.
THEOREM 1. Assume that the no-storage model ofa single-ring periodic marketing

system satisfies the conditions of 4. Assume furthermore that its demand functions do
not vary with t. Then that model has a unique equilibrium state.

Proof. We use a constructive proof. Our argument is illustrated in Fig. 5 for the
case where n 4. Since in an equilibrium state every price is constant with respect to

(C =-Q2-Qs-Q4)

(0) MARKET

Q41 C4 q

(C5= -Q2) (C4= -Q2-Q5

(b) MARKET 2 (c) MARKET 5 (d) MARKET 4

FIG. 5. Illustration for the proof of Theorem 1. Ss and Ds are aggregate curves.

t, we have E P1 for every s 2,..., n and every i, according to Conditions IV. If
we can find a value for P E for which the amount Q sold by the traders, as
determined by clearance in b, is equal to the amount C brought into bl by the traders,
as determined by clearance in b2, , b,, then we will have found an equilibrium state.
This is because the recursive computation of 5 will then yield time-invariant prices

To be sure, this is an abuse of notation, for in the time-varying case Psi denotes a function that maps
the integer into a price whereas in the equilibrium case Psi is a price. But, this notation is convenient and
sufficiently clear.
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and commodity flows everywhere. (The illustration in Fig. 5 shows a case where
O1 < C1. This of course is not a dynamic state; it is merely a mathematical construction.)

Recall that in Ss, where 2 =< s =< n, Ss shifts vertically downward as E is decreased,
and $, shifts horizontally to the left as C, is decreased. In view of the conditions imposed
on our supply and demand functions, we can assert the following: In $1, if P1 is
decreased continuously from oo to 0, then O1 increases continuously and monotonically
from 0 to

On the other hand, in $2, by decreasing
continuously and monotonically from -i V (o0) to 0. Furthermore, in 4,3, as we

Vdecrease E from oo to 0 and simultaneously decrease C3 -02 from Y.i 2 (o0) to 0,
we move the intersection point Y3 continuously along the $3 curve toward its upper
vertical portion. This means that -02-03 decreases continuously and monotonically
from Y’. V (o0) to 0. The same variations hold in $4. We can therefore conclude that,
as we decrease P1 E from 0 to oo, C1 =-02-03- 04 decreases continuously and
monotonically from a finite positive value to 0.

It now follows from the intermediate value theorem that there is a unique value
of P1 > 0 for which 01 C1. This ends the proof.

It is possible for a particular trader, say the ith trader, to be eliminated as an active
agent under an equilibrium state. This occurs when the rural-market equilibrium prices
P, and his costs T are so high that

E- T -P P1- T -Ps < 0

for every s 2, , n. In this case, C 0. As a result, the ith trader’s supply function
in 1 is simply the positive price axis. This trader neither acquires goods in the rural
markets nor sells them in the urban market.

We turn now to the storage model. In this model, each trader has an expected
price E in bl as well as in the other markets. In an equilibrium state, because of the
constancy of all prices and Conditions IV, we have that P1 E for every s 1, n
and every i, as before. One consequence of this is that under equilibrium each trader
operates in 1 at the upper corner point (E, Gi) of his supply function (see Fig. 2).
This means that he never stores goods in an equilibrium state; he always sells whatever
he has on hand in 1. Thus, Ai= 0 for all i. As in the no-storage model, if under
equilibrium C 0 for some i, then, since A 0 too, the ith trader will be eliminated
as an active agent.

Because every trader operates on (more precisely, just at the end of) the upper
vertical portion of his supply curve when an equilibrium state exists, we can deduce
the existence and uniqueness of such a state for the storage model directly from that
of the no-storage model. Indeed, we can convert any storage model into a no-storage
model simply by discarding every cost schedule Z and replacing the S (p, t) of Fig. 2
by a vertical line that extends the upper vertical portion of $ (p, t) downward to the
abscissa. It follows immediately that the storage model has an equilibrium state if and
only if its associated no-storage model has one. Thus, we have the following corollary.

COROLLARY la. The storage model o"a single-ring periodic-marketing system that
satisfies the hypothesis o1: Theorem 1 also has a unique equilibrium state.

7. Asymptotic stability. As for the stability of the equilibrium state, we can show
for the no-storage model, at least, that the equilibrium state is locally asymptotically
stable, so long as a few more assumptions are made. This will be done by making a
first-order Taylor expansion around the equilibrium state and then manipulating the
resulting set of equations in differentials.
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First of all, we maintain the assumption used in Theorem 1 that every demand or
excess-demand function Ds does not depend upon t.

One assumption we add is that

(7.1) E’s(t + s 1)= P(t), s 2,..., n.

That is, every trader uses the last received price in 1 as his estimate of the next
price in 1.

Another added assumption is that for all and ,
(7.2) T]- T{ T/ T, s, tr 2,..., n.

This means that the functions p--> V[P(t) T -p] do not shift relative to each other
as s varies. We may now set T min T and

(7.3) V[Pa(t)- T -p] , v’[e(t)- T -p].

The function p--> V[P(t)-T-p] represents the aggregate excess-supply function of
all the traders in Cs. If T varies with s, the function shifts its position but does not
change shape as s varies.

Finally, let G D- be the inverse function of D. Still, another assumption we
now impose is that V and every G have continuous second derivatives. This means of
course that the corner points of the V are assumed to be rounded off. Conditions I do
not prohibit this.

We will need one more condition in order to establish asymptotic stability. It is
rather complicated and is stated in Theorem 2 below.

To proceed, we can rewrite the clearance equations (4.7) and (4.8) as follows.

(7.4) P2(t + 1) G2{- V[Pl(t)- T2-P2(t + 1)]},

(7.5)
Ps(t + s 1)= G{V[Px(t)- T_x-P_x(t + s -2)]

V[Px(t)- T -Ps(t + s 1)]}, s=3,...,n,

(7.6) Px(t + n)= GI{V[P(t)- T, -Pn(t + n 1)]}.

These equations have the form z f(x, y, z), where x, y and z denote prices. (f does
not depend on y in (7.4) and (7.6).) We denote equilibrium prices by x0, yo and Zo. By
the recursive analysis of 5, each of (7.4)m(7.6) implicitly determines the price on the
left-hand side in terms of prior prices. With z denoting that left-hand price, we may
write z g(x, y) and Zo g(xo, yo). It follows from our differentiability assumptions
that g is Lipschitz continuous so that

(7.7) [z zol-<- gll(x, y) (x0, yo)ll,

where I1" denotes the Euclidean norm and K is a constant. By the twice ditterentiability
of G and V, we have the following first-order Taylor expansion with remainder. Here,, fo and fz denote equilibrium values of the first partial derivatives of f with respect
to the indicated subscripts.

z Zo +fx (x Xo) + fyo (y Yo) +fz (z Zo) + r(x Xo, y Yo, z Zo).

In view of (7.7) and the fact that Ir(a,/3, )] o(ll(c,/3, )’)ll), this allows us to write the
following equation in differentials around the equilibrium point, after we take x Xo
and y --> y0.

(7.8) dz fx dx +fo dy +fz dz.
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We now apply (7.8) to (7.4), (7.5) and (7.6). Fs, where s 1,..., n, will denote
the first derivative of Gs evaluated at the equilibrium value of its argument. Also,
where s 2, , n, will denote the derivative of V evaluated at the equilibrium value
of Pl(t)- T -P(t + s 1). By the chain rule for differentiation, we obtain

(7.9)

(7.10)

(7.11)

(1 r’2f2) dPE(t + 1) -F2’2 dPl (t),

F12_1 dP_(t+s-2)+(1-F12) dP(t+s-1)

Fs(12_l- 12) dPl(t), s 3,. ., n,

dPx(t + n) Fill, dPx(t)-Fxfl, dP.(t + n 1).

Next, (7.9) is solved for dP2(t + 1), which is then substituted into (7.10) for s 3.
The equation obtained is solved for dPa(t + 2), which is in turn substituted into (7.10)
for s 4. Continuing this way, we get an expression for dP,(t + n 1) in terms of dPl(t).
This is substituted into (7.11), which yields

(7.12)

where

H=FID,n-

dPl(t + n) HdPx(t),

Consequently, we can state the following precise result, which holds under the
assumptions imposed in 4 and at the beginning of this section.

THEOREM 2. The equilibrium state o]’ the no-storage model ofa single-ring periodic
marketing system is locally asymptotically stable if IHI < 1. It is not locally asymptotically
stable if IHI > l.

Inl will clearly be less than 1 if the IF land ]12 are small enough. We can therefore
conclude with the following economic interpretations. The It’ll being small, means that
the demand function Dx of the wholesalers in the urban market and the excess-demand
functions D, of the suppliers and local consumers in the rural markets, are sufficiently
elastic in the vicinity of the equilibrium prices. The 112] being small, means that the
aggregate excess-supply functions of the traders in the rural markets are sufficiently
inelastic in the vicinity of the equilibrium prices. Actually, if the good being traded is
a perishable staple food, the condition on the Ir l is unlikely. Dx and Ds are more
commonly inelastic in this case. Moreover, the condition on the 112 also need not hold.
As is indicated in Fig. 4, the intersection point is quite likely to be on the nearly
horizontal part of the $ curve. All this indicates that single-ring periodic marketing
systems tend toward instability. This is another possible explanation of the observed,
seemingly erratic, price behavior of periodic markets.

8. An "unexpected" price variation. We now show, by example, that, according
to our model, a sudden rise in demand in an urban market can lead to a fall in price in
a rural market two days later. This can be seen by examining a two-ring system with a
three-day market week, shown in Fig. 6. b and b2 are urban markets, and b2 and
3 are rural markets. Each of the many traders follow the arrows around either the
upper ring or the lower ring. For the sake of simplicity, we also assume that (7.1) and
(7.2) hold, that the same number of traders operate out of bl as out of b2, that the
V functions are all the same and that the traders do not store goods, even though none



EQUILIBRIUM, STABILITY IN A PERIODIC MARKETING RING 287

FIG. 6. A two-ring periodic marketing network.

of these assumptions are essential to our argument. It follows that the aggregate
excess-supply curves for the two groups of traders have the same shape. It also follows
that, if the demand functions Dll and D12 are identical, then the markets 4 and (12
are duplicates of each othermso far as supply and demand are concerned.

Let D2, D2 and D3 be time-invariant. Consider first the case where DI D12.
We may combine 41 and (12 and conclude from Theorem 1 that our system has an
equilibrium state. It is indicated by the solid-line curves of Fig. 7. Suppose that the
system has operated in this equilibrium state for a while and then, on the urban-market
day 1, the demand in 4 jumps up to the curve D*. By (7.1) the traders out of 411

PI2 PII

P

PI’’-IXD

C

DI2 DII
2

FIG. 7. An example ol an "unexpected" price variation.



288 A.H. ZEMANIAN

increase their expected price to P:t while the traders out of b12 maintain their expected
price at Pt2 Ply. This raises the aggregate excess-supply curves for the traders out of
bxt, while the corresponding curves for the traders out of b2 remain fixed. For b2 the
sum of both curves is indicated by the dash-dot curve, and similarly for b3. If the D2
and D3 curves are positioned as indicated (i.e., relatively low supply in b2 and relatively
high supply in b3), then the price in b2 rises to P* on day 2, as expected, but the
price in 3 falls to P’ on day 3.

This phenomenon can also be explained as follows. On day 2, the traders out
of bt expect a high price P* in b at =4 and therefore bid the price up in b2.
Moreover, they buy substantially more in b2 than they ordinarily did under the
equilibrium state. On the other hand, the traders out of d,2 maintain their lower
expected price Pt and, seeing an elevated price in d,2, buy nothing in d2. Nevertheless,
with D2 positioned as indicated, the total amount of goods bought in b2 is significantly
larger than it ordinarily was. This diminishes the total traders’ demand in 3 for large
supplies of the commodity. Since the supply curve -D3 is large, the price in 3 drops
to P3*.
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OPTIMAL FORMULAE OF THE CONDITIONAL MONTE CARLO*

B. L. GRANOVSKYt

Abstract. The conditional Monte Carlo method is designed for estimating a conditional expectation of
a function, by sampling from an unconditional distribution. We give a description of the whole class of
formulae of conditional Monte Carlo and on its basis derive an explicit expression for optimal (in the sense
of dispersion) formulae. Such optimal formulae are constructed for three particular practical problems.

1. Introduction and summary. The conditional Monte Carlo method was dis-
covered by Trotter and Tukey [1], [2]. The theory of the method was further developed
in [3]-[5]. General discussion of the method and references can be found in [7];
particular mention should be made of the paper [6] devoted exclusively to the
application of conditional Monte Carlo for solving the transport problem.

In 2 of the present paper we give a description of the whole class of formulae of
conditional Monte Carlo. From this description the formula proposed in the above
papers appears as a particular case.

In 3 we derive an explicit expression for optimal (in the sense of dispersion)
formulae and in 4 we construct such formulae for three particular problems con-
sidered in [1]-[6].

2. Formulae of conditional Monte Carlo. Conditional Monte Carlo is designed
for estimating a conditional expectation of a function, by sampling from an uncondi-
tional distribution.

Let z be a random vector in Euclidean n-space Rn, having a probability density
function (PDF) h (z). Let h (z: (z) y0) be a conditional PDF of z under the condition

r/(z) Yo

which is assumed to determine a surface S in Rn. Denote by F the set of functions q
having the conditional expectation

(1) I(yo) I(q; yo) E{q (z); h(z" r/(z) yo)}.

Conditional Monte Carlo consists of evaluating I(yo) using the estimate/r(yo) of the
form

N

(2) /+(g Yo) [(Yo) N-* E #(Tz,) W(zi).
i=1

Here z, 1, ., n are independently sampled from the unconditional PDF h (z), and
the weight function W and the transformation T of R are chosen so as to provide the
unbiasedness of/N(yo), for all 0 F:

(3) E[r (yo) I(yo), o F.

As pointed out in the above-mentioned papers, the conditional Monte Carlo
technique proves to be useful when the direct simulation of the conditional PDF would
be a difficult process. In the given setting it is also worthwhile to note that the PDF
h(z) having the given conditional PDF h(z: r/(z)= yo) may not be prescribed, but
chosen, for example, on the basis of convenience of simulation.

* Received by the editors May 12, 1980, and in final form December 26, 1980.
t Technion, Israel Institute of Technology, Haifa, Israel.
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Throughout the paper any estimate (2) satisfying (3) will be called a formula of
conditional Monte Carlo, and our first aim will be to give a description of all such
formulae.

To proceed, observe first that from the above setting it follows immediately that
condition (3) is equal to

(4) E[(Tz) W(z); (z)] Z(; yo), F.

Since I(; y0) depends only on the values the function q takes on $, the condition (4)
implies that the transformation T should obey the condition

(5) Tz S, z Rn (mod h).

Choose further as in [3] a vector function x ’(z) in such a way that the system

(6) x=r(z), y=r/(z), zRn
establishes a 1 1 correspondence between the product space X Y of pairs (x, y), and
the space Rn. In other words x, y provide a coordinate system in R,, x being a system
of coordinates in $. Denote by z u(x, y) the inverse transformation from X x Y to Rn,
and suppose it has a Jacobian J(x, y) dz/dx dy. Then/(x, y) h(u(x, y))J(x, y) is the
PDF of (x, y), so that

h (z: r/(z) yo)
h(u(x, y0))J(x, Y0)

Ky(yo)

where Ky(y)= x/(X, y) dx is the PDF of y.
Condition (5) on T can now be rewritten in the form Tz u(Ux, yo), where U is

a transformation X X and x r(z). So we obtain

h(u(x, yo))
(7) I(q. yo)= |q(u(x, yo)) J(x, yo) dx

Jx Ky(yo)

and

(8)

EN(yo)= E[q (Tz)W(z);

Ix Iy (u(Ux, Yo))W(u(x, y))h (u(x, y))J(x, y) dx dy

Ix(u(Ux, Yo) dx y W((x, y))h ((x, y))J(x, Y) dy.

In all the preceding papers U was chosen to be the identity. In what follows we
will restrict ourselves to such a choice of U only for the sake of simplicity of exposition.
An obvious modification of the resulting formula (9) below may easily be obtained by
introducing the Jacobian of the transformation U.

Now from (7), (8) we derive that, under U(x)= x, the unbiasedness condition (4)
implies the following necessary and sufficient condition on the weight function W"

(9) Iy W(u(x,y))h(u(x,y))J(x,y)dy
h(u(x’ y))

J(x, yo) xX.
Ky(yo)

The estimation procedure of I(yo) can now be described in the following way. N
values of zi, 1,..., N are sampled independently from h (z), and the corresponding
values of xi, yi, 1,..., N are calculated by formula (6). These values are used to
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obtain the scores o(v(xi, yo)) and the accompanying weights W(zi)= W(v(x,
satisfying (9).

It is easy to see that a partial solution of (9) is the following expression for W
proposed in 1]-[6]

(lO) W(z) w(v(x, y))=

where/(y) is an arbitrary PDF on Y.

h (v(x, yo))J(x, yo)I(Y)
h (v(x, y))J(x, y)Ky(y0)’

3. Optimal formulae of conditional Monte Carlo. From (9) the problem naturally
arises of determining the weight function W W* minimizing the dispersion of a
conditional Monte Carlo formula on the class of functions 0 F.

We have

var N(o; Yo) N-I[E{o2(Tz) W2(z)} I2(yo)]

=N-I [Ixq2(u(x, yo))dx Iv W2(v(x’ y))h(v(x,y))J(x,y)dy-12(yo)].
Hence our problem is equivalent to the following one" Given h, u find W W*
minimizing

Rw(x) Iy W2(v(x’ y))h(v(x, y))J(x, y) dy, xX

under the condition (9). The solution is obtained immediately with the help of the
Cauchy-Schwarz inequality

(11) W* h (u(x, yo))Y(x, Yo)
Kr(yo)K,,(x)

where Kx(x) x h(v(x, y))J(x, y) dy is the PDF of x on X.
Formula (11) shows the optimal weight W* and hence the optimal formula of

conditional Monte Carlo should be independent of y.
From (10) it also follows that if the transformation " is chosen so that the random

variables x st(z) and y r/(z) are independent, then W* 1 and the optimal formula
takes the form of the simplest Monte Carlo technique:

N

[N(Yo)=N-1 ’. q(v(xi, Yo)).
i=l

Observe that in this case the optimal weight W* 1 can be obtained from (10) under
/(y) Ky(y), but, in general, (10) does not reduce to (11) under any choice of/(y).

4. Examples. In this section we obtain optimal formulae of conditional Monte
Carlo for three particular practical problems considered in [1]-[6]. In each of these
examples our formulae have less variance and are no more difficult to implement than
the corresponding formulae in the above papers.

Example 1 ([4], [5]). Let z (-o, +) be a scalar random variable with a PDF
h(z). It is desired to estimate E[(z)lz > 0]. To present the problem in the form (1), put

1, z->0,
y=n(z)=

-1, z<O
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as in [4], [5] and choose x r(z) Izl. Y-space in this case is a two element set {1; -1},
yo 1, X (0, +oo). The inverse transform is

z=v(x, y)={ x

--X

if y Yo 1,
if y -1,

and J(x, y) is identically one.
Substituting these results in (10) we derive the optimal formula

N
r(q; Yo) N- (Iz, I)

i---1

where

and

W*(z) h(lzl)[p(h(-z)+ h (z))]-1

p=Ky(yo)=prob{z>O}=Io h(x) dx.

The weight of the corresponding formula in [4], [5] is

Ap-1, z > 0,

W(zl ( lh(-z)
- -5i z<=o,

where A is assumed to be a real number between 0 and 1. It is easy to check that

var [w(Iz I)W*(z)]-<- var [w(Iz I)W(z)],

with equality if and only if A is not a constant but a function A*=A*(z)=
h(lz[)[h(z)+ h(-z)]-l; in this case the two formulae are identical.

Example 2 ([1]-[3]). Let z (z,. , z,,) be a sample of m observations from the
normal distribution N(0, 1), r/(z) =maxizi-minizi, the range of the sample and yo
a prescribed positive number. Put X {x (xl, , x,,)}, Y {y: y _-> 0} and consider
the following transformation from X to X Y"

Zi
xi- i=1 m,n(z)’
y=n(z)=z(,,)-z(),

where z(i), 1,..., m are the order statistics of the sample. The transformation is
the same as proposed in [1]-[3]. The inverse transform

(12) z= v(x, y)= yx

is uniquely determined in the field

y => 0, max Xi min Xi 1.

The Jacobian of the transformation (12) is J(x, y)=
Now, from (12) we have

f(, y)= (2r)-/
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and

where F(x) is the gamma-function.
With the help of (11) we come to the following expression for the optimal weight"

2A exp -A z z
i= i=1

yoF(rn/2)K,(yo)

m/2

where Ky(yo) is the value of the PDF of the range of the sample at the given point yo,
a a (y)= yo/(yV). The value Ky(yo)can be determined from the known asymptotic
expansion of the PDF Kr(y) (see, e.g., [8]). The corresponding score is rC((yo/r/(z))z).

Example 3. One-dimensional transport problem ([5], [6]). Here we have to
evaluate the integral of the form

I(zo) Iz, p (z’, Zo) dz’,

where z’= (zl," ’, zn) and Zo is a given real number. Denote z (z’, Zn+l) and let h(z)
be an arbitrary PDF on the (n + 1)-dimensional space Z {z}. Now we can represent
I(zo) in the form (1)"

(13) I(zo) Iz ff(z)h(z" r/(z)= yo) dz,

where

h (z" n (z) yo)

and r/(z), Yo are chosen so that the equation r/(z)=yo is equivalent to z,+l Zo.
Following [5], [6] we define the transformation from Z to X x Y by

Z0
y ,(z)-

Zn+l
X"" ’(Z)-"yZ’-" y(ZI,""", Zn)"-Zo (Z1, Zn),

Zn+l

and take yo 1.
Hence the inverse transform is

with the Jacobian
[Zo[

J(x, y)- [yl,+=.
Now from (11), (13) the weight of the optimal formula may be readily found to be

1
W*

Kx( Zo z’)’\Zn+l

and the score is q((Zo/Z.+)z). From this it follows that the optimal formula in this case
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has the form of an importance sampling technique, so that the PDF h (z) can be adjusted
for reduction of standard error.

Observe that in our notation the weight function W of the corresponding formula
in [5], [6] is W 1/[(x/y) and the score is the same. So the two formulae coincide if
the PDF h (z) is chosen in such a way that x and y are statistically independent.
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SEMIANTICHAINS AND UNICHAIN COVERINGS IN DIRECT
PRODUCTS OF PARTIAL ORDERS*

DOUGLAS B. WEST," AND CRAIG A. TOVEY

Abstract. We conjecture a generalization of Dilworth’s theorem to direct products of partial orders. In
particular, we conjecture that the largest "semiantichain" and the smallest "unichain covering" have the
same size. We consider a special class of semiantichains and unichain coverings and determine when equality
holds for them. This conjecture implies the existence of k-saturated partitions. A stronger conjecture,
for which we also prove a special case, implies the Greene-Kleitman result on simultaneous k- and
(k + 1)-saturated partitions.

I. Duality between semiantichains and unichain coverings. In this paper we study
the relationship between semiantichains and unichain coverings in direct products of
partial orders. Serniantichains are more general objects than antichains, and unichains
are a restricted class of chains. The study of antichains (collections of pairwise unrelated
elements) in partially ordered sets admits two approaches. The earlierarises from
Sperner’s theorem [32], which characterizes the maximum-sized antichains of a
Boolean algebra. In general, Sperner theory obtains explicit values for the maximum
size of antichains in partially ordered sets having special properties, and explicit
descriptions of their composition. When the poset is ranked and the maximum-sized
antichain consists of the rank with most elements, the poset has the Sperner property.
Generalizations of Sperner’s theorem have mostly consisted of showing that various
posets have the Sperner property or stronger versions of the Sperner property. Greene
and Kleitman [13] have given an excellent survey of results of this type.

Dilworth’s theorem [4] bounds the size of the largest antichain by another invariant
of the partial order. In particular, covering the partial order by chains is a "dual"
minimization problem. No chain hits two elements of an antichain, so a covering always
requires more items than any antichain has. Dilworth’s theorem asserts that in fact the
optimum sizes are always equal. The result does not give the extremal value or extremal
collections, but it applies to all partially ordered sets. Generalizations of Dilworth’s
theorem have flowed less freely. A number of alternate proofs have been given, e.g.
[3], [10], but the only broad extension we have is Greene and Kleitman’s result [12]
on k-families and k-saturated partitions.

The study of k-families began with Erd6s. A k-family in a partially ordered set is
a collection of elements which contains no chain of size k + 1. An antichain is a 1-family.
Erd6s [6] generalized Sperner’s theorem by showing that the largest k-family in a
Boolean algebra consists (uniquely) of the k largest ranks. A (ranked) partial order
satisfying this for all k is said to have the "strong Sperner property." Again, further
Sperner-type results on k-families can be found in [13]. Clearly any chain contains at
most k elements of a k-family, so any partition C of a partial order into chains {Ci}
gives an upper bound of ink(C)= Y.i min {k, ICi[} on the size of the largest k-family. If
the largest k-family has this size, the partition is called k-saturated. Greene and
Kleitman proved there always exists a k-saturated partition, which for k 1 reduces
to Dilworth’s theorem. They showed further that for any k there exists a partition which
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is simultaneously k- and (k + 1)-saturated. They applied lattice methods generalizing
Dilworth’s less well-known result [5] about the lattice behavior of antichains. Saks [30]
gave a shorter proof of the existence of k-saturated partitions of P by examining the
direct product of P with a k-element chain.

We consider a generalization of the Dilworth-type idea of saturated partitions to
the direct product of any two partial orders. Sperner theory has also discussed direct
products. A semiantichain in a direct product is a collection of elements no two of which
are related if they are identical in either component. The class of semiantichains
includes the class of antichains. If the largest semiantichain still consists of a single rank,
then the direct product has the two-part Sperner property. Results of this nature have
been proved by Katona [21], [23], Kleitman [24] and Griggs [15], [17], with extensions
to k-families by Katona [22], Schonheim [31] and recently by Proctor, Saks, and
Sturtevant [27]. Examples where maximum-sized xsemiantichains are not antichains
were examined by West and Kleitman [33] and G. W. Peck [26].

To generalize Dilworth’s theorem to semiantichains we need a dual covering
problem. Semiantichains are more general objects than antichains, so we need more
restricted objects than chains. We define a unichain (one-dimensional chain) in a direct
product to be a chain in which one component remains fixed. Alternatively it is the
product of an element from one order with a chain from the other. Two elements on
a unichain are called unicomparable. Clearly no semiantichain can contain two ele-
ments of a unichain, so the largest semiantichain is bounded by the smallest covering
by unichains. After [33], West and Saks conjectured that equality always holds. We
have not proved equality for general direct products, but we prove a special case here.
Also, we make a stronger conjecture analogous to Greene and Kleitman’s simultaneous
k- and (k + 1)-saturation. If one of the partial orders is a chain of k + 1 elements, the
conjecture reduces to their result.

Note that maximizing semiantichains and minimizing unichain coverings are dual
integer programs. One such formulation has as constraint matrix the incidence matrix
between elements and unichains. Showing that the underlying linear program has an
integral optimal solution would prove the conjecture, by guaranteeing that the integer
program has no "duality gap."

These dual programs form an example of the frequent duality between "packing"
problems and "covering" problems (see [1], [2], [7], [8], [11], [19], [25], [29]).
Dilworth’s theorem is another example; Dantzig and Hoffman [3] deduced it from
duality principles. Hottman and Schwartz [20] also used integer programming ideas to
prove a slight generalization of Greene and Kleitman’s k-saturation result by trans-
forming the problem into a transportation problem. These methods work partly
because any subset of a partial order is still a partial order. However, a subset of a
direct product need not be a direct product. Indeed, subsets of direct product orders
frequently have duality gaps between their largest semiantichains and smallest unichain
coverings. (The smallest example is a particular 7-element subset of the product of a
2-element chain with a 3-element chain.)

Dilworth’s theorem can also be proved by transforming it to a bipartite matching
problem or a network flow problem (see [9], [10]). The difficulty in applying these latter
methods to direct products is that unicomparability, unlike comparability, is not
transitive. Much is known about the integrality of optima when the constraint matrix
is totally unimodular, balanced, etc., as summarized by Hoffman [18]. Unfortunately,
none of the several integer programming formulations we know of for this direct
product problem have any of those properties. Finally, Greene and Kleitman use lattice
theoretic methods because the set of k-families and maximum k-families form well-
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behaved lattices. We have found no reasonable partial order on semiantichains or
maximum semiantichains.

In the case where the largest semiantichain is also an antichain, network flow
methods can be used to prove the conjecture. This result will appear in a subsequent
paper. In 2 we find necessary and sufficient conditions for equality to hold when
semiantichains and unichain coverings are required to have a particularly nice property
called "decomposability." When this happens, the size o the optimum is determined
by the sizes of the largest k-families in the two components. In 3 we develop the
stronger form o the conjecture and show it holds in this case. We note with boundless
ambition that if the first conjecture is true we can begin to ask about the existence of
"k-saturated partitions" of direct products into unichains, analogous to k-saturated
partitions of posets.

Before embarking on the subject of decomposability, we note that this duality
question can be phrased as a problem in graph theory. The "comparability graph" of
a partially ordered set is ormed by letting (x, y) be an edge in G(P) ff x is related to
y in P. An antichain becomes an independent set of vertices; a chain becomes a
complete subgraph. Dilworth’s theorem states that the independence number t(G)
equals the clique covering number O(G). When we take direct products, the "unicom-
parability graph" is just the product graph G(P) G(Q). Now independent sets are
semiantichains and cliques are unichains, and again we want to show t 0. Compara-
bility graphs are perfect graphs, but it is not true in general for products of perfect

0 (Example’ xgraphs that a where the left factor is perfect, but not a
comparability graph.) We can ask or what subclasses o perfect graphs does
a(GxH)=O(GxH)?

2. Deeomposabilily. We consider semiantichains and unichain coverings which
arise from partitions of the component orders. We will use d(P, Q) to denote the size
of the largest semiantichain in P x Q.

Partition P and Q into collections of antichains and . Any matching of
antichains in with antichains in induces a semiantichain when the complete direct
product o each matched pair is included. An antichain which can be formed in this
way is called decomposable.

Given partitions of P and Q into antichains, it is a simple algebraic consequence
that the largest decomposable semiantichain we can form from them is obtained by
matching the largest from each, then the next largest, and so on. We call this the "greedy
product" of two partitions, and its size is

g(, 3)=Y’. IAil[Bi[, where Ai >Ai+l and B >=Bi+l.

Now partition P and O into collections of chains and . This induces a unichain
covering of P x O. For each pair (C, De), we cover the sub-product Ci x Di. It is easy
to see we do this with fewest unichains if we take man {[.Ci[, IDol} copies of the longer
chain. Again, a unichain covering so formed is called a decomposable covering. Its size,
a "pairwise minimum" function generalizing rn, is

m (c, ) y,. man {1 Cil [Dj 1}.
i,.i

Independence number=size of largest set of mutually nonadjacent vertices. Clique covering
number size of smallest collection of complete subgraphs which together touch all vertices. Product graph
G xH has as vertices the Cartesian product of the vertex sets of G and H. (u, v) and (u’, v’) are joined by
an edge if u u’ and (v, v’) is an edge of H or v v’ and (u, u’) is an edge in G.
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Using Greene and Kleitman’s terminology, we let dk(P) denote the size of the
largest k-family in P and put Ak(P)= dk(P)-dk-l(P). Let AP. A=k Ak(P)Ak(Q).
(We note this is a quantity which appears independently in [29], where Saks proved
dl(P x Q) <- AP A.)

To further simplify notation, let a and b be the size of the ith largest antichains
in and . Since g(, ) depends only on the sizes in the partition, we will speak
interchangeably of g(, ) and g((a), (b)) even if there is no decomposition corre-
sponding to those numbers.

THEOREM 1. For any antichain partitions and and chain partitions and fi9

of partial order P and O,

(0) g(, 1) <--_ AP A <--_ m(C, ).

Furthermore, equality holds on the left if and only if
(1) bk > bk+ Y. ai dk (P),

i<_k

(2) ak > ak+l :ff Y. bi dk(Q),

(3) bk bk+ and ak ak+ :::> Y ai dk(P) or Y bi dk(Q).
i<_k i<__k

Also, equality holds on the right if and only if
fi, (p) > A / (p) is k-saturated, and

(4)
is l-saturated whenever has a chain of size I.

Equality on the right is also equivalent to the statement obtained by exchanging
with and O ]:or P in (4).

Proofi The first inequality holds by the same argument that made the greedy
product the best way to match up antichains. Increasing a (beginning with k 1, then
2, etc.) by shifting units from smaller ai can only increase g, since those units will be
paired with larger b than before. We must find an upper bound on this process.

The union of k antichains forms a k-family, so (a) is a nonincreasing sequence
with Y<_ a <- d(P) Y__<__< A and similarly for bg. So, we increase a to AI(p) and bx
to h(p), then increase a and bz, etc., until a A(p) and b h(O). It is important
to-note that h >__h/x, a nontrivial result proved in [12]. This guarantees that the
nonincreasing character of the sequences will be preserved by the process. If we begin
with an actual partition (, ), we end with A(p) A(Q) without decreasing the value
of g.

When will equality hold? If (a), (bi) are the sequences for and and Y.i_-<k ai is
less than dk(P) for some k with bk > bk/, we can increase g by increasing ak at the
expense of the smallest ag. (Technically, we increase di for the smallest f such that

ai ak.) If ak =ak/ and bk bk/l, but both initial segments sum to less than the
respective dk, there will be room to gain by making such a change in both sequences
simultaneously. On the other hand, if (1)-(3) are never violated, all the (legal) switches
made to reach AP A will leave them satisfied and produce no gain, so equality holds.

The second inequality is more subtle. We need more notation. Let ak(C) be the
number of chains in partition which have at least k elements. If a partition of P is
simultaneously (k 1)- and k-saturated, by definition mk-() dk-(P) and mk()
dk(P). Subtracting the first from the second yields ak(C)= Ak(P). So, if a completely
saturated partition exists, the number of chains with exactly k elements will always be
Ak (P) Ak+1 (P). Let/k (P) Ak (P) Ak+(P).
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Next we cite the discrete analogue of integration by parts. Assuming the boundary
terms vanish,

u(v -v/) (u u_)v.
k k

For Uk plug in dk Of one partial order, and for Vk use Ak Of the other. Since/k Ak Ak+1,

we have

(5) Z dk(P)k(O) Z Ak(P)Ak(Q) Z flk(P)d.(O).

By grouping pairs of chains appropriately, it is easy to see

(6) Z mlc, ()= m(c, )=Z mlol (c).

Now let c. be a collection of chains with k(P) of size k and* a collection with k(Q)
chains of size k. c. and * may not exist as chain decompositions of P and Q, but as
we did with antichains we can still apply the function rn to those collections of chain
sizes. In particular, c. and * behave like completely saturated partitions, with
ink(CO*) dk(P) and mk(*)= dk(Q). Applying this to (6), we get

(7) E dk(P)k(O) rn(C*, *) E k(P)dk(O).

When we use rather than *, the first half of (6) gives

(8) m(c*, ) Z Bk(P)mk() >= , Bk(P)dk(O),

with equality if and only if is k-saturated whenever Bk(P)> 0, i.e., when Ak(P)>
Ak/I(P). Similarly, m(C, *) >- rn(C*, *).

Now, if Yk() is the number of chains in of size k, the other half of (6) gives

(9) m(c8., ) E mr, (cS*)Yk() E dk(P)Yk().

Replacing c. by an actual partition c gives

(10) m(% ) E m,(cS)Yk() >= E dk(P)Yk().

(5)-(10) combine to give

(11) m(C,)>=rn(C*,)>=m(CC*,*)=EAk(P). Ak (O).

For equality to hold every step of the way, the conditions are as stated in the theorem,
i.e., saturation requirements when k and Yk are nonzero. Note that passing through
rn(C, 5*) gives us the other set of conditions. The two are equivalent. [-1

Of course, if equality holds on both sides of (0) the desired duality holds. It has
not been shown that the conditions for equality hold when the extremal semiantichain
and unichain covering are both decomposable. Even if they do, the extremal packing
and covering are not always decomposable, although there always exists a maximal
decomposable semiantichain (i.e., no larger semiantichain contains it). Furthermore,
the size of the optimal semiantichain and unichain covering may be strictly greater or
strictly less than AP. A. The first example of a direct product with no decomposable
maximum-sized semiantichain was found by Saks [28]. Pictured in Fig. 1, it has
AP A 13, but the largest semiantichain has 14 elements, as indicated. The smallest
example we know of is the product in Fig. 2a. The largest decomposable semiantichains
have 9 elements, but it is not hard to find one of size 10, namely {la, lb, lc, 2d, 2e, 2f,
3d, 3e, 3b, 3c}, indicated by large dots. Meanwhile, m(21, 2211)= 10. The unichain
covering is indicated by heavy lines. However, when a slight change is made to reach
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6xAB I

x’HI

g(2211 x 32211) 13 A(p). A(Q),
14= m(33,522)= m(411,522) d(P, (2)

FIG. 1. "little H" x "big H".

Fig. 2b (adding the relation 3 > 1), the semiantichain of size 10 disappears. Now the
largest semiantichain is decomposable (g(21,411)=9), but the smallest unichain
covering is not.

The usefulness of decomposable objects is that the extremal value among such
objects can be computed quickly. For unichain coverings we can consider the broader
class of quasi-decomposable coverings. These fix a partition of only one of the partial
orders, then match each chain in that partition with some partition of the other order.
We do best by providing a k-saturated partition for each k-chain. Then, if Q had the
fixed partition, the size of the induced covering is Y. dk (P)3’k(@). In the proof above,
this is m(*, ), so such coverings are also bounded by AP A.

In this broader class less is required for equality. In particular, if one of the orders
has a completely saturated partition, becomes* and there is a quasi-decomposable
unichain covering of size AP A. Unfortunately Fig. 2b shows that even when both P

de f 23 de f2 ,3 xk////k Vx
a bc a bc

d(P, (2)= m(21, 2211)= 10
(a)

AP. A= (21 42)= 10
d(P, Q)= g(21,411)= g(21, 33)=9

(b)

FIG. 2. Nondecomposability.

and Q have completely saturated partitions, there need not be a semiantichain of this
size. Here duality still holds, though, because the minimum covering is not even
quasi-decomposable, but is smaller yet. As with decomposable coverings, the optimum
quasi-decomposable covering is easily computed. Not all chain partitions of Q need
be considered; chain partitions whose sequences are refinements of others are always
dominated by the latter. In general, any covering by disjoint unichains can be expressed
by partitioning the direct product into suitable subproducts such that the covering is
the union of decomposable coverings of the subproducts. However, this formulation is
unwieldy. Quasi-decomposable coverings give a quick near-optimal value which can
help reduce the search for the optimal.

As for the usefulness of decomposability, we see that products of posets with
completely saturated partitions will have unichain coverings of size AP A. Note also
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that when the partial orders can be decomposed into antichains of sizes Ak, there will
be a decomposable semiantichain of size AP" AO. This condition says the largest
k-familie are obtained by uniting the first k of some sequence of antichains. (This is
not always true; in the poset of Fig. 3 no largest 2-family contains a largest 1-family.)

In particular, strongly Sperner posets satisfy the the latter condition. Sufficient to
imply the strong Sperner property is the LYM property. (For a survey of results on
LYM orders, see [13] once again.) The question of whether LYM orders always have
completely saturated partitions remains open (see [14], [16]). If so, then products of
LYM orders would have this "two-part Dilworth property." In any case equality
certainly holds for products of symmetric or skew chain orders, etc., which are strongly
Sperner and have completely saturated partitions.

3. Magic triples. We now discuss the analogue of a "simultaneously k- and
(k + 1)-saturated partition" for direct products.

We define a magic triple 2 (, a//, x) in a direct product P Q to be a maximum-sized
semiantichain 6e, a minimum-sized unichain covering 0-//, and an element x in P or Q
satisfying the following properties.

1) x is the fixed element of unichains in 07/ the same number of times it is a
component of elements in .

2) When x is deleted, the restrictions of and q/to the smaller direct product
are still extremal.

CONJECTURE. A magic triple exists for every P Q, and hence the duality confec-
ture follows by induction on IPI + Iol,

Of course, if the duality conjecture is true in general, then property (2) above will
hold whenever property (1) holds. Showing that implication holds without assuming
the duality conjecture would make it easier to show magic triples always exist.

The magic triple conjecture is particularly satisfying because, although inductive,
it is symmetric in P and Q. In their proof Greene and Kleitman had to consider two
cases, corresponding to whether the element x belongs to P or to Q. The conjecture
also explains the peculiarity in their result of guaranteeing simultaneous k- and
(k + 1)-saturation but being unable to guarantee more at one time. (The usual example
that more cannot be guaranteed simultaneously is "little H" in Fig. 1.)

If Q is a (k + 1)-chain, then any semiantichain in P Q "projects down" to a
(k + 1)-family in P of the same size, since it uses k + 1 disjoint antichains of P in the
k + 1 "copies" of P. Conversely, any (k + 1)-family in P gives rise to (several) semianti-
chains of that size, so dk/l(P)= d(P, Q). A unichain covering of P Q collapses to a
partition c of P by collapsing the unichains that vary in Q to their fixed elements in
P. Since Q can be covered by a single chain, such an element of P need not appear in
any other unichain. If the unichain covering is minimal, the same chain decomposition
of the remaining elements of P will be used in each of the k + 1 copies of P in P Q,
and all the P-unichains used will have at least k + 1 elements. So, the bound mk/l(c)
given by the corresponding partition c of P has the same size as the unichain covering.

Suppose magic triples exist, and hence duality holds. By the discussion above, the
collapsed partition c is (k + 1)-saturated. If the magic triple for P Q has its "element"
x in Q, then is also k-saturated. If x is in P, we use induction on IPI. Obtaining a
k and (k + 1)-saturated partition and corresponding k and (k + 1)-families for P-x,
we add x to the families and as a single element chain to the partition. The properties

Such a triple was originally called a "Catholic cucumber" due to late-night slurring of "the element is
Q-crossed as many times as it is Q-covered."
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of a magic triple guarantee the resulting partition of P is k and (k + 1)-saturated, and
the resulting collections are largest k and (k + 1)-families.

Note that we have required a triple. It may be that for any extremal semiantichain
or unichain covering there exists an example of the other that with it will form a triple.
However, it is not true that any pair (Y, 0//) will extend to a triple. For example, when
the partial order of Fig. 3 is crossed with itself, there are (among others) two largest
semiantichains and two largest unichain coverings which extend to triples when paired
correctly but not when paired the other way.

FIG. 3. M over W.

If a pair (, 07/) admits a sequence of elements such that successive restrictions of
this pair form magic triples until the partial orders are exhausted, we call them
completely mutually saturated. Theorem 2 is a sufficient condition for complete mutual
saturation which applies to products of partial orders satisfying the conditions for
equality in Theorem 1. It would be nice to strengthen this theorem by removing the
words "of the same size", i.e., to show that if a maximum-sized semiantichain and
minimum-sized unichain covering are both decomposable, then they have the same
size.

Also, we note that the converse of the theorem is false, as shown by the examples
in Fig. 2. The (, q/) pairs shown are not decomposable, but they are completely
mutually saturated. The correct sequence of elements to be eliminated starts with {3}
in Fig. 2a and with {1} in Fig. 2b. Then the reduced pair (6e’, q/’) (see proof below) are
decomposable, and the theorem can be applied to complete the sequence.

THEOREM 2. If a direct product order has a largest semiantichain and a smallest
unichain covering of the same size which are both decomposable, then they are completely
mutually saturated.

Proof. The element chosen to complete the magic triple can be any element on
the chain which is shortest of both partitions. Let 6e be the semiantichain (induced by
M and ), q/ the unichain covering (induced by c and ), and assume c has the
shortest chain so x P. Then we claim 59 must be 1-saturated, and x appears in some
antichain paired with the maximum-sized antichain of Q in 6e. We show this will make
it a magic triple. When x is removed, what remains of 6 and 0//will be extremal and
decomposable for (P-x) x Q, so we can repeat this until the orders are exhausted.

Let M’ and cg, be the reduced antichain and chain partitions of P-x, and let
d (P, Q) denote the size of the largest semiantichain in P x Q. d(P-x, Q) is bounded
from above by the reduced decomposable covering, which gives the first inequality
below. The middle equality follows since x lies on the shortest chain. That is, when cg
and induce a unichain covering, the elements on the shortest chain always appear
as fixed elements crossed with a longer chain in the other order. Removing such an
element removes from the count the number of chains in @. So we have

(12) d(P-x, O)<=m(’, ) m(, )-Il [l-I[.

On the other hand, d(P-x, Q) is bounded from below by the restriction of
giving the first inequality below. The second follows because in 4 x , x must be
paired with some antichain in , which has at most dl(Q) elements. Finally, since
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is a partition it has at least dl(Q) chains, by Dilworth’s theorem. This gives us

(13) d(P-x, Q)>=g(’, )>-g(, )-d(Q) >_- [6[-I[.
Since [6el Iq/[, all the inequalities in (12) and (13) become equalities. In particular,

[1 d(Q), and d(Q) is the size of the antichain matched with x’s antichain. Also,
m(’, ) g(’, ), so (6e, 0//, x) is a magic triple, 6e’ and q/’ are decomposable and
equal and the argument can be applied to (P-x) Q to complete the desired sequence
of elements.

We close with the only example we have yet found where neither the maximum
semiantichain nor the minimum unichain covering is decomposable. One factor is the
order "big H" devised by Saks and mentioned previously. The other is an example
devised by Griggs [16] to show lack of implication among various poset properties.
After much worry, we found the semiantichain and unichain coverings both of size 40
pictured in Fig. 4. Again the elements of the semiantichain appear as heavy dots, one."

d(P, Q) 40,
A. A g(6633, 32211) 39,
m(4442211, 522) 42,

X

./
./\. \.
\. \./

./

Fish x Big H

5 5

154454, 4 5 4 4.’4".. 4

4 S S

FIG. 4.

on each unichain. Elements labeled 4 or 5 in the direct product are covered by unichains
which are copies of 4 or 5 element maximal chains in "big H". Although not
decomposable, this pair still extends to a magic triple by selecting either of the two
points of highest degree (marked x) in the "fish". After they are removed, the reduced
semiantichain and unichain covering are still extremal but no longer extend to a magic
triple. We are left with four disjoint products, including two copies of Saks’ example
and two selections of a 2-family from "big H". By choosing different extremal pairs,
we can continue finding magic triples until the orders are exhausted.
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A HELLY THEOREM FOR SETS*

G. W. PECKS

Abstract. In this note we prove the following Helly type result.
THEOREM. Let X be a collection of subsets of an n element set S with the property that any k members

ofX have an element in common. IfX has at least (k + 2)2n-k-1 + 1 members, then all members ofX have
an element in common. The same statement fails for bounds of one less for n >= k + 1.

In this note we prove the following Helly type result.
THEOREM. Let X be a collection of subsets of an n element set S with the property

that any k members of X have an element in common. If X has at least
(k +2)2n-k-l+ 1 members, then all members of X have an element in common. The
same statement fails for bounds of one less for n >- k + 1.

The argument used here is an example of application of the "pushing" method
[1], [2] which can be described as follows. Imagine that our n elements are the integers
1 to n; then each set C containing ] but not - 1 is "pushed" into the corresponding
set with ]-1 but not by a "j-push"; no other sets are affected by a/’-push. A
collection of sets has each of its member sets pushed when a j-push is applied to it
unless the resulting set is already in the collection, in which case it is left alone.

By a succession of such pushes for different values of j one can take a collection
of sets into a "canonical form" having the same number of members which is invariant
under all j-pushes. Statements of the form: "every k members of Z have intersection
at least/’..." are preserved by pushing so that one can, by pushing, reduce discussion
of collections restricted by only such properties to the possible push invariant collec-
tions.

To prove our theorem here, we apply this technique to a maximal sized collection
Z of subsets of S such that every k or fewer have an element in common, but not
all do. It is easy to see that the first condition of the previous sentence (that every k
or fewer members have an element in common) is preserved by pushing. What is
perhaps surprising is that the second condition, that not all elements of X have an
element in common, is also preserved under pushing for maximal sized X.

The argument proceeds by proving the following observations:
1. If a set A is in X and B contains A, then B is in X.
2. All (n 1) element sets lie in X.
3. Any push invariant Y obtained by pushing on X has every k members

containing an element in common and not all its members with an element
in common.

4. If no collection of k members of Y have only n in common, then the collection
of subsets of {1,..., n- 1} obtained by omitting n from all members of Y
containing n obeys these same two conditions and, by induction, we have
YI- Ixl-<- 2(k + 2)2n-l-k-1 (k + 2)2-k-1.

5. If there are collections Q of k or fewer members of Y that contain only n
in common, then complements of these elements must form a partition of
1,... ,n-1.

* Received by the editors January 22, 1981. This research was supported in part by the Office of Naval
Research under contract N00014-76-C-0366.

t Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139.
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6. Every member of such a collection Q must be a minimal member of Y in
that no subset of it can be in Y.

7. If any member of a Q has (n-l) members, by induction YI<=
(k + 1)2n-k-1 + 1.

8. Suppose that the hypothesis of 7 does not hold and that members of Y lie
in the union of all Q. Then one can find a set T containing t/2 or fewer of
them that intersect every Q.

9. By removing the members of T from Y and adding the sets obtained by
omitting n from all other members of the union of all Q, we obtain a collection
Y of the same size or larger than Y with the same properties in which no
collection of k members of Y have only n in common, and by 4 the result
is proven.

10. There is a collection obeying the given properties having (k +2)2n-k-1

elements for n _-> k + 1.
We now prove these observations.
1. If a collection of k or fewer members of X U {B} has vanishing intersection,

then the same collection with B replaced by A also does; therefore by the maximal
size of X, B must be in X.

2. By virtue of 1, if an (n- 1) element set A is not in X, then all members of
X contain the element complementary to A in $, violating the definition of X.

3. We show that the result of a f-push (](Y)) of Y obeys the conditions given
on X if Y did. First we show that it obeys the first property: that every k or fewer
members have an element in common. If some set G of k or fewer members of Y
has an element other than ] in common, the images in ](Y) do so as well. If G’s
members had only ] in common, its image in ](Y) would have j or ]- 1 in common
unless there were a set G’ in Y of the same size as G with empty intersection; G’
can be obtained by taking the members of G with both/" and ]-1, those with ] only
that are not in/’(Y), and those with ]- 1 only whose presence in Y caused the others
in G to be unaltered under the push. The (n 1) element sets are obviously invariant
under pushing, so that the second property holds as well.

5. If some element/" of S was not in two of the members of Q, replacing n by
] in one of them would yield a set which would be disjoint from the intersection of
the remainder of Q.

6. If one replaced a member of Q by a proper subset, the argument of 5, here,
would yield a collection of k or fewer members of Y with empty intersection.

7. If a member D of Q has (n- 1) elements, by 6 it must be the only member
of Y without the element it lacks. The remaining members of Y must obey the
conditions on Y for (n-l) and (k-l) since using D as one of the k members
eliminates that element and reduces k to (k- 1) for the rest. Induction then yields
YI-<-(k / 1)2"--’ + 1.

8. For each Q we choose two members, the one not containing n- 1, and any
one other. We define a graph G among the resulting chosen set by connecting the
two members chosen for each Q by an arc. We then seek here to find a set of vertices
that intersect every arc, using at most half the vertices that appear in all the arcs.
Since G is bipartite, it is well known that this can be done. (The number of vertices
necessary to intersect all the arcs is the size of a maximum matching in the graph;
this is a statement of Hall’s [3] marriage theorem.)

9. The statement is a proof in itself.
10. For each set A or k or k + 1 elements out of 1,..., k + 1 take all sets of the

form A B with B {k + 2,. , n}. The resulting collection of sets obeys the given
property and has (k + 2)2n-k-1 members, for n ->_ k + 1.
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For n <_-k any collection of sets such that any k of its members have an element
in common necessarily has some element common to all its members.

Acknowledgment. The author thanks D. J. Kleitman for his help in writing this
paper.
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A COUNTEREXAMPLE TO A BIN PACKING CONJECTURE*

JAMES B. SHEARERS"

Abstract. In this note we exhibit a counterexample to the following conjecture of Garey, Graham
and Johnson: If L={al,’",a,} is an ordered list of items with sizes s(ai)(O<s(ai)<=l) let FF(L)
be the number of bins of size required by the "first-fit" algorithm to pack L. Let
R(a)=limsupN_,oo[(1/N)max{FF(L)lL can be packed into N bins of size a}]. Let o(a)=
max{i__lk 1/(Pi_l)12<p<_p2< 1 1/P=a, the Pi are integers at least 2 of which 2}. Then
R(a) to(a).

Let L {al, a2, an} be an ordered list of items along with a size function s which
assigns to each ai L a size s(ai) satisfying 0 < s(a)-< 1. The first-fit (FF) bin packing
algorithm packs the items of L into bins B1, B2," , each bin having a size associated
with it, by successively placing each item of L in the bin of lowest index to which it will
fit (a set of items fits into a bin if the sum of the item sizes does not exceed the bin size).
Let FF(L) be the number of bins used by the FF algorithm when packing L into bins
of size 1. Let R(a)= lim supr_,o [(l/N)max {FF(L)IL can be packed into N bins of
size a}].

kSuppose c Y.--1 1/Pi (k may be o), where the Pi are integers >=2 at least two
of which 2. We assume PI=<P2 -<’’" Then there exists a set of lists which

k
show that R(c)>_-i__ll/(Pi-1) (see [1]). Hence if we define to(c)=

k k
max {i= 1 /(P 1)12 --< P1 -< P2 -<" "; _- 1/Pi <- a, the Pi are integers at least 2 of
which 2} we clearly have R (a) _-> to (c).

It is shown in [1] that the decomposition of c achieving to(c) is that one in which
we successively choose P1, P2"" to be as small as possible consistent with the

k
conditions that the P are integers -> 2, at least two of which 2 and --1 1/P <= . If
a is rational this procedure will terminate after a finite number of terms. If a is irrational
the procedure will generate an infinite number of terms but F._-I 1/(P 1) will converge
very rapidly.

For example, let a 1. Then P1 2, P2 3 and P3 6. We cannot choose P2 2
because this would violate the condition that at least 2 of the P 2. The procedure
terminates after P3 is chosen since 1 1/2 1/2-- 0. Hence to(l) 1 + 1/2+ 1/2 r6.17 It is
known [3] that R (1) 17

r6 also. This and other examples led Garey, Graham and Johnson
to conjecture in [1] (see also [2]) that R(c) to(a) for all a. However the following
example shows that this conjecture is false.

Let a 1/2 ++2 2 2564
-5208. Let N be an arbitrary positive integer and consider

the list L of 120N items with sizes

s(a,) 745
5208

s(ai) 869
5208

s(a2i-1) 1695
5208

s(a2i) 1819

1-<i =<30N,

30N < -<_ 60N,

30N < -<_ 60N,

30N < _-< 60N.

L can be packed into 60N bins of a. In this packing 30N bins contain 1 item of
1819 869size and 1 item of size and the remaining 30N bins contain 1 item of size 5208

1695and 1 item of size 5208.

* Received by the editors February 10, 1981.
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The FF algorithm packs L into 41N bins of size 1. The first 5N bins each contain
6 items of size 5728. The next 6N bins each contain 5 items of size 5828. The remaining

1695 1819 4130N bins each contain 1 item of size 5- and 1 item of size 5-. Hence R (a)->. But
o)(a) 1/2 -[" q" 6- 2500 2501 41

3-< r,. Hence R (a) to (a) for all a, so the conjecture is false.
This is not an isolated example. In fact, the constructions that show R (a)_-> to(a)

can be modified to show lim_.o+ R (a e) -> to (a). Since lim-,o+ to (a e) < to (a)
whenever a is rational numerous counterexamples exist. However, it can be shown
that if in the expansion a ik__l 1/e achieving to(a) the Pi increase sufficiently fast
then R (a)= to(a). Determining R (a) for all a appears to be a difficult problem.
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LOCAL PROPERTIES OF k-NN REGRESSION ESTIMATES*

Y. P. MACKS

Abstract. Let (Xi, Yi), 1, , n be i.i.d, bivariate random vectors such that Xi e Ip, Yi I1. Suppose
r,(x) denotes the k-nearest neighbor (k-NN) estimator of r(x) E(Y[X x). Under appropriate conditions,
we derive the rates of convergence for the bias and variance as well as asymptotic normality of r,,(x). These
appear to share some similarities with the k-NN density estimates. The technique is by conditioning on R,,,
the Euclidean distance between x and its kth nearest neighbor among the Xi’s. Some comparison is made
between the k-NN and kernel methods.

1. Introduction. Let (X, Y), 1,. ., n be independent identically distributed
(i.i.d.) random vectors such that X [P, Y I1. Let f(x, y) be the joint density of X
and Y, f(x)= f(x, y)dy be the marginal density of X and r(x)= E(YIX x) be a
version of the conditional expectation function defined via f(x, y) and f(x). The
problem of estimating r(x) from (X, Y) within the parametric setting has been well
studied, in particular when f(x, y) is assumed to be multivariate normal. In this
discussion, we concern ourselves with a class of nonparametric estimates of r(x). We
shall investigate their asymptotic behavior and make some comparison with another
class of nonparametric regression estimates.

Going through the research literature on the topic at hand (the reader can find a
comprehensive listing in [14]), we realize that much less is known compared with
nonpararnetric density estimation, although the two problems share some similarities.
Among the sources, we mention the work of Watson [17] where he suggested the
following estimators of r(x) in the bivariate f(x, y) case:

-_
i=1 n 1=1

where 8, is a sequence of nonnegative weight functions tending to the Dirac delta
function as n -+ co, and

E(2) r,(x) - i,where J ={i: Xi is one of the k k(n) observations nearest to x}. Watson gave some
analysis of the bias and variance of (1) and remarked that perhaps (2) is easier to handle
than (1) since it does not involve the ratio of two random quantities. (We shall return to
this remark later.) (1) and (2) are noteworthy since they are precursors of two large
classes of nonparametric regression estimates, namely, the kernel and the k-nearest
neighbor (k-NN) methods. Along the line of (2), Royall [12] in his doctoral dissertation
had made detailed analysis of the MSE, MISE, as well as asymptotic normality of a
generalization of (2) given by

(2)’ r,(x)
i=1

where W, Y/if X,. is the ith closest observation to x, and c, defines a triangular array
of nonnegative numerical weights.

Received by the editors January 14, 1980, and in revised form November 24, 1980. This paper is based
in part on the author’s PhD dissertation at the University of California.
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Proceeding as in density estimation, Rosenblatt [11] considered kernel type
regression estimates which parallel (1)"

1 w(X-X’]
-1 1

(1)’ r"(x)=[b(n)i=l \b(n),J ’[ w(x-Xi" in)/=1

Here w(u) is a weight function and b(n) is a sequence of bandwidths satisfying b(n) O,
nb(n) as n. Under appropriate regularity conditions on f(x, y), Rosenblatt
derived the bias, variance and asymptotic normality of (1)’ for p 1, although it is clear
that the higher dimensional case can be treated in the same manner.

Roughly speaking, since the density and regression functions are local in character,
both the density and regression estimators can be regarded as appropriate averages of
the observations in a neighborhood of the point under consideration. Whereas in the
kernel method, where a deterministic region Z based on b(n) is formed about x, and
then those sample points falling inside are averaged; following an idea of Fix and
Hodges [4] related to classification, the k-NN method first assigns a sequence of
positive integers k=k(n) with

k
(3) k, -0 as n,

n

then the smallest sphere S containing the k nearest neighbors of x among the
observations is located; finally an average of the k points is formed. In each method, the
estimators are obtained after dividing the average by the volume of the appropriate
region (E in the kernel case, S in the k-NN case). In this respect, we see that (1) and (2)
are prototypes of the two methods if we let

1

in (1), and write (2) as

r.(x) (x -x,.) (x-X,.).
1=1

with

1

where 1A is the indicator on the set A and R, is the distance between x and its kth
nearest neighbor.

One ostensible advantage of the k-NN approach as suggested by a number of
authors (see [2], [9], [16], for example) is that it is locally adaptive: if f(x) is small, then S
is large, and vice versa. Such a property is not enjoyed by the kernel method, as the
volume of E remains the same for all x. The extent to which this property contributes to
the local behavior of k-NN density estimates has been investigated in detail in Mack [7]
and Mack and Rosenblatt [8], where a comparison with the kernel method was also
made. On the other hand, the k-NN regression estimates, of which (2) and (2)’ are
special cases, have been studied recently by Stone [13], [14] in a broader context and
under rather mild assumptions. In particular, the k-NN regression estimates are

2L -consistent. Later Lai [6] in his thesis gave the MSE, MISE rates of convergence of
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(2) by specifying

1
c,i= ifl<=i<=k,

0 otherwise

in (2)’, in which case (for p 1)

(4) Var (r. (x)) Var(YIX=X)+o()k

and

Bias (r,(x)) 24f(x)a[(rf)"(x)-r(x)f"(x)] +o(2 +0 -An inspection of the bias expression reveals (as in the k-NN density estimates) that
the scale factor involving f(x) in the denominator can be nontrivially large in the tail
region of f(x). It would be of interest to see if such behavior persists in the higher
dimensional case with a general weight function. In addition, as Bickel mentioned in a
remark to Stone [14], (among other things), there is need to consider the asymptotic
normality of these general k-NN estimates. This paper will attempt to answer these
questions.

Throughout our discussion., we shall consider k-NN regression estimates given by

(5) r.(x)

where

h,(x)
L(x)

 wX-X h"(x) n-- ,_-1 R Y’

w(u) is a bounded, nonnegative weight function satisfying

(6) f w(u) du 1, and
J

(7) w(u)=0 for Ilulle 1.

R, here will be defined according to the Euclidean norm I1" in N", and k(n) satisfies (3).
(For a more detailed discussion of the role played by I1’ on where I1" need not be
the Euclidean norm, see Stone [14].)

Note that (5) incorporates the features of both the kernel and the k-NN methods,
and the weight w is a function of not only the distance but also the direction of the data
with respect to x, whereas the numerical weights in (2)’ depend only on the nearest
neighbor distance.

We first state the main results"
THEOREM 1. Suppose f is bounded, k o(n), log n o(k), w satisfies (6), (7) and

Suppose e(llx-xl]> r)= O(r-) for some > 0 as r--> o. Further suppose r and f are
continuously differentiable up to second order in a neighborhood ofx. Then ill(x) > O, we
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have

(9) Ern(x) r(x)+

Here
2f(x)" (cf(x))2/0

O(g)(x)= . J vvoDDog(x)w(v dr,

and c zrP/2/F((p + 2)/2) volume of unit ball in R.
THEOREM 2. Suppose yf(x, y) dy is bounded for fl O, 1, 2, k o(n), log n

o(k), w satisfies (6), (7) and

(10) J [v,l" [w(v)l dv < oo, a 1,..., p.

Suppose P(]lx-XIl>r)=O(r-) for some ’>0 as r--)oo. Further suppose r and f are
continuously differentiable in a neighborhood of x. Then iff(x) > O, we have

(11) Vat (r,,(x))
c Var (YIX x) w(v) dv +o --k

Remark. In view of Theorems 1 and 2, we have
COROLLARY. rn (X is pointwise consistent.
THEOREM 3. Suppose i Yf(x, Y) dy is bounded and continuous at x for O, 1, 2,

continuously differentiable in a neighborhood ofx for O, 1. Suppose E YI3 < o and w
satisfies (6), (7). If k o(n), log n o(k), Var (YIX x) >0 and f(x) >0. Then

(12) x/k- l [r,(x)-Er,(x)]--> N(O, c Var (YIX= x) f w(v) dv)
in distribution as n -->

2. Preliminary remarks. As will be apparent, our technique is by conditioning on
R,,. Denoting the common distribution of {llx -X’[I} by G, we see that R, is simply the
kth order statistic from the i.i.d, sample {llx-x,ll} with density

(13)

where

h(r) n
k

G(r)k-l(1-G(r))n-kG’(r)’

O’(r)=liml{II-eO E t-xllr+
f(t) dt-Iit_xll<__rf(t dt}

| f(t) dtr(t),
It-xtl=r

with o" denoting the surface area of lit-xll- r,

Under the assumption that f(x) is continuous, almost surely, all the observations
(Xi, Yi) have distinct first coordinates. Let the k-1 observations with their first
coordinates falling inside the sphere {z’llz-xll<r} be denoted by (3i, I7"i), i=
1,. , k 1. Then, conditioned on R, r, their joint density is given by

(14) f(l,’"", .tc-; 37,"’’, -lr) l-I [f(i, i)/G(r)].
i=1

Thus the (’i, I7"i) are conditionally independent, given R r.
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In order to have good enough estimates, we need to consider moments involving
R,, in some detail. If we let

t 6(r) P(llx x[I--< r)

(15) =II f(t)dt

f(x). volume {z, IIz xll =< r} / I []’(t) -f(x)] dt,

as r0,

(17)

f(x) crp + o(rP),

where c zrP/2/F((p + 2)/2)= volume of the unit ball in R. Thus, as r$0,

(16) r G-l(t) [cf(x)]-/ lip + o(tl/P).
Since T G(Rn) is just the kth order statistic from a uniform (0, 1) sample of size n,

moments involving Rn can be computed via (16). The existence of such moments is
ensured if we assume the tail-decay condition e(llx xII > r) O(r-) for some r > 0 as

Next, suppose is a differentiable function; then by Taylor expansion we have, as

(x uRn) (x uG-(T))
=(x-uG-I(ET))-&’(u-G-(ET) (G-(T)-G-I(ET)) u

+o(G-X(T)-G-(ET))
k=(x-uG-(n ))-&’(u-G-(+ i)) u ()

Finally, for some real numbers a and b, we have

a+h(x)-a
r,(x)

b+f.(x)-b
(8)

_a 1 a
-+-(h.(x)- a)--(f. (x)- b)+ O[(f. (x)- b)z + (h.(x)- a)(f. (x)- b)],

provided I(1 / b L (x) b )[ < 1 and b # 0.
In order that we can take expectation of the decomposition of r,(x) given in (18)

(see Noda [10, 4]), we develop the following result which has some interest in its own
right.

LEMMA 1. Suppose w is a positive bounded weight function satisfying (6) and (7).
Suppose f is positive and continuous at x. If k satisfies k/log n -> oo, kn --> 0 as n --> oo and
P(llx-Xll> r)= O(r-:) for some st>0 as r-c, then f,(x)- f(x) w.p.1 as n

Proof. Write

(19) f,(x) g,(x)
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where

k-1
(20) g,,(x) cnR
and

with the ...’s defined earlier. Then the result of Devroye and Wagner [3] implies that
g,(x)fix) w.p.1 under our assumptions on k and f. It remains to show that

(22) u,,(x)-E(u,(x)lR,,)-->O w.p.1

and that

(23) E(u,,(x)lR,,) 1 w.p.1.

Now using Theorem 2 of Hoeffding [5], by the conditional independence of the ’s
P{u,,(x)-E(u,,(x)lR,,) > e} EP{u,,(x)-E(u,,(x)lR,,) > elRn}

(24)
-2(k- 1)e_--< exp N2

where N is the bound for w. Thus the Borel-Cantelli lemma implies (22) since k --> c as
n --> . To show (23), note that

(25)
g,,(x)-X

.nG(R,,) I w(v)f(x-R,,v) dv,

which tends to 1 w.p.1 under our assumptions.

3. Proofs of Theorems 1 and 2. We state a number of results from [8] as
propositions here for later reference:

PROPOSITION 1. Suppose f is bounded, w satisfies (6), (7) and (8). Suppose
P(llx-xll>r)=O(r-c) for some st>0 as r-->c. Further suppose f is continuously
differentiable up to second order in a neighborhood of x. Then iff(x)> O, we have

(26t Ef,,(xl=f(x)+ 2(cf(xl)2/, +o

PROPOSITION 2. Suppose f is bounded, w satisfies (6), (7) and (10). Suppose
P(llx-xll> r)= O(r for  ome if>0 Further suppose f is continuously
differentiable in a neighborhood of x. Then ill(x)> O, we have

(27) Var (f, (x))
k

w2(v) dv+

We now proceed to prove Theorems 1 and 2. For the remainder of this discussion,
we assume that k satisfies (3) and that k/log n --> as n --> .
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PROPOSITION 3. Suppose yf(x, y) dy is bounded and differentiable up to second
order in a neighborhood of x. Suppose w satisfies (6), (7) and (8). Further suppose
P(llx-XIl> r)= O(r-) for some0 as r-. Then iff(x)>O we have

(28) Eh,(x)=r(x)f(x)+2(cf(x>)2/p + o(()).

E(h.(x)lR.)

(29)

nG(R,)
w(v) yf(x-vR,, y) dydv

k-11nT w(v)(rf)(x-vRn) dv

k-1
nT r(x)f(x)+..nT w(v)[(rf)(x -vRn)-()(x)] dv.

Since (rf)(x) is differentiable up to second order in a neighborhood of x, and
vw(v) dv =0 for a 1,...,p, we have

(30) w(v)[(rf)(x -vR,)-(rD(x)] dv Q(rD(x) R, + o(R2,).

Thus

(h(x))
-1 r(x)f(x)+1/20(4)(x)" .R +o E
nT , nT nT

(
-I-Or(x)f(x)+O(rf)(x) (Cf(X))2/p

PROPOSITION 4. Suppose y f(X, y) dy is bounded and continuous at x for [3 1, 2,
w satisfies (6), (7) and (10). Suppose yf(x, y)dy is continuously differentiable in a
neighborhood of x, and P(llx-XIl> r)= O(r-) or some if>0 as r-,. Let t(x)=
E yEIx x), then

cf2(x)t(x) I w2(v) dv + o()(32) Var (h,(x))=
k

cr(x)f2(x) I w2(v) dv + o()(33) Cov (h,(x), f,(x))=
k

Proof. First note that

Var h, (x) E(Var (h, (x)lR.)) + Var (E(h. (x)lR.)).
Now

n2R2.pVar \Rn /

k-1 I(34) 2 p w2(v)(tf)(x-vR.) dv-
n R.T

Write

nT2 w(v)(rf)(x-yR,) dv

(tD(x) I w-(v) dv+n2RT w2(v)[(tf)(x-vR,)-(tD(x)] dv.
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The expectation of the first term in ( is

cf2(x)t(X) I w2(v dv + o()k

The expectation of the second term in ( can be shown to tend to zero by the Schwarz
inequality and by the boundedness and continuity of y 2f(x, y) dy at x.

Similarly, we can show that if yf(x, y) dy is bounded and continuous at x, then
2

Thus we have

k k
+o

Next, from (29), we have

k-1 IE(h"(x)lR")=
nT w(v)(rf)(x-vR.) dv.

Using (17), we obtain

(rf)(x vR,,) (rD (x vG- (
(36)

n n+l

Proceeding as in the proof of [8, Prop. 2], for IT-k/(n + 1)l-> k/(n + 1), the contribu-
tion to Var(E(h,(x)lR,)) in this range can be shown to be O(e-k/2). For IT-
k/(n + 1)1 < k/(n + 1), we have

so that in order to estimate the variance of (29), we only need to consider the second
moment of

-1 k
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Since Var T kin 2 as n oo, the second moment can be shown to be equal to

k
+o

To summarize, we have

Var (E(hn(x)lR"))=cf2(x)t(X) w2(v) dv+(-)
and (32) is proved.

In a similar manner, it can be shown that

Cov (h,, (x), f. (x))=
cr(x)f2(X) w2(v) dv + ()

Theorem 1 now follows from (18), (26), (27), (28), (33), Lemma 1, and Theorem 2
follows from (18), (27), (32), (33) and Lemma 1.

Remark. Comparison between the kernel and the k-NN regression
estimates.

We consider the case where p= 1 with w(t)=, l{itl<l in some detail. The results
shown in Table 1 on the kernel estimate are extracted from Rosenblatt [11].

TABLE

bias

variance

Mean-squared error

kernel

[(rf)"(x)- r(x)f’(x)]
2f(x)

f v2w(v)dr, b2(n)+o(b2(n))

+O((nb(n))-1)

Var Y[X= x) I ( )
Optimal rate

b(n)=O(n -/5)
MSE O(n -4/5)

k-NN

[(rf)"(x)- r(x)f"(x)]
8fa(x)

Optimal rate

k(n)=O(n4/5)
MSE O(n -4/)

The correspondence nb(n)-k(n) seems to hold as in density estimation.
Here, the scale factors in the bias and variance terms seem to indicate that in low
density regions the bias in the k-NN estimate can be quite large; while the variance
may do better.

In the general case, the MSE of the kernel estimate is minimized by setting
b(n) dn -, 0<A < 1, and then we have A l(p +4) and the optimal rate of decay of
the MSE is O(n-4/(4+P)). The constant d in this case is given by

(38) dp+4=p Var YIX x)
f(x) [O(rf)(x)-r(x)O(f)(x)]:[ v:w(v) dr]-
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and

If(x)
w2(v) dv

(x)
(O(4)(x)-r(x)O(f)(x))

(39)

[()(+>+()(+’], n-(+>.

For the k-NN estimate, if we set k(n) d’n v, 0 < < 1, the optimal rate is obtained
for =4/(4+p), whence the rate of decay for the MSE is O(n -4/(+)) also. The
constant d’ is given by

(40) (d,)(+4)/ (4p_) [c Var (YIX=x)4(cf(x))1. f2(x)Jw2(v)dv]
J’

and the MSE is found to be the same as (39) again.

4. Proof of Theorem 3. Let us write

(41) O,(x) x/k 1 [r,(x)-Er,(x)]=A,(x)+B,(x),

where

A.(x) x/k 1 [r(x)-E(r(x)lR.)],
B.(x) 4k 1 [E(r.(x)lR.)-Er.(x)].

We shall show that A,(x)N(O,c Var(YlX=x)J w2(v)dv) in distribution and
B,(x) 0 in probability as n az. First, we have the following.

LEMMA 2. (a) Suppose f is bounded and continuous at x and w satisfies (6), (7).
Then

(42) E(L (x)lR.) -, f(x) in probability as n oo,

(43) k. Var (L(x)IR.)- [cfZ(x) I wZ(v) dv --/2(X)] in probability as n

(b) Suppose yf(x, y) dy is bounded and continuous at x and w satisfies (6), (7).
Then

(44) E(h,(x)[R)r(x)f(x) in probability as n o,

I in probability as

(45) n .
(c) Suppose y f(x, y)dy is bounded and continuous at x ]’or 1, 2, and w

satisfies (6), (7). Then

k’ Var (h.(x)lR.)- [cf2(x)t(x) I w2(v)dv-r2(x)f2(x)] in probability as no.
(46)

Proof. The results follow from the fact that

k-1
nR cf(x in probability
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and

k-1
1 in probability

nT

as noo.
PROPOSITION 5. Suppose yf(x, y)dy is bounded and continuous at x for

O, 1, 2, w satisfies (6), (7) and  lYI < Assume Var (YIX x)>0. Then ill(x)>0

An(x) N(O, c Var (YIX x) I w(v) dr)
in distribution as n .

Proof. Let a. =E(h.(x)[R.), b. =E(f.(x)]R.). Then by Lemma 2 and (18), as
n , we can write

an n an(47) rn (x) ff-. + (hn(x)-an)--.(fn(x)-bn)+Op(1).
Conditioned on Rn, let (.,i, i) be the k- 1 observations such that Ilx-.i11 < Rrt. Let

(48)

Then, conditioned on

(49)

where

An(x) [Var

1 k-1

Y. [Zi-E(Zi[Rn)]/[Var (ZIR.)]/.(x)
4k-1 =

is a centered and normalized average of i.i.d, random variables. As in Lemma 2, it can
be shown that

Var (Zi[R.)- c Var (YIX x) f(50) W2(t) dt > 0

in probability as n oo.
Under the assumption that E[ YI3 <M< oo and sup w <N < oo, if we denote the

conditional distribution of bn(x), given Rn r, by Fn(t[r), and the distribution of the
standard normal by (t), then the Berry-Esseen central limit theorem implies that, for
some constant 0 > 0,

(51)
0 MN

IF(tlr)-(t)l x/k 1 [Var (Zi[R,)]
as noo.

For e > 0 small enough, recalling the density of Rn from (13), we have

IP(q.(x) <= t)-(t)l
<-_ f dr

(52) OMN
<- ,P (Var(ZlRn)>e)+P(Var(Zi[Rn)<e)O asn

e3/2x/k -"’1
by (50). This completes the proof.



322 . P. MACK

PROPOSITION 6. Suppose y f(x, y) dy is bounded and continuously differentiable
at x ]or O, 1, w satisfies (6), (7). Iff(x)> O, then B, (x)-. 0 in probability as n

Proof. Expression (29) and

k-1
E(f (x)[R.) nT f(x) +(53)

imply that

(54)

nT w(v)[f(x -vR.)-f(x)] dv

+1__E(r,,(x)[R,) [r(x) f(x) I w(v)C(rf)(x-vR,,)-(rf)(x)] dv

f(x)
w(v)E/’(x-vR.)-f(x)] dv (1 +o(1)).

1 1 / k 1)
(x/)-

(n+(55) -v,Df(x-vG- (n+

n+

we find that the contribution to Var (k 1 (r,(x)R.)) comes from the second moment
of

(56) / />_1 1 k k"(c[(x)) "(k 1).(n+l) .(T-n+l) "(1+(1))"

But this is O((k/n)/), since Var T=k/n as n m. Thus Chebychev’s inequality
implies B(x) 0 in probability as n m.

Theorem 3 is now a consequence of Lemma 2 and Propositions 5 and 6.

g. Oe ee. Despite the drawback in the bias behavior of the k-NN
regression estimates in the low density region, the variances appear to do better than the
kernel estimates. Also the MSE’s of both types ol estimates for optimal choices of the
bandwidth b(n) and the sequence k(n) turn out to be identical (39). One advantage
the k-NN regression estimates which is not shared by the kernel estimates is that they
are invariant under a scale change on the X-variable, as pointed out in [12]. Next,
returning to the remark of Watson as indicated in the Introduction, for p 1 with
unitorm weights one can exploit the properties of order statistics and their correspond-
ing concomitants. If we define the r.v.’s lx -.11, and define the concomitant
by

where W( is the ]th order statistic from the i.i.d, sample {.}, then R W(, and we
can write (2) as

1

i=1

Using (36) and
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i.e., rn(x) can be studied as a linear combination of concomitants. Results on bias,
variance and asymptotic normality can be obtained by appealing to a paper of Yang
18]. Recently, some optimal rate of convergence results of rn (x) have been obtained by
Stone [15]. Finally, some indications of the performance of the kernel and k-NN
regression estimates with computer simulated data are illustrated in the works of
Benedetti 1] and Stone 13].
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THE SCHENSTED CORRESPONDENCE AND LEXICOGRAPHIC
MATCHINGS ON MULTI-SUBSET LATTICES*

KIEM-PHONG VO

Abstract. We present a connection between lexicographic matchings on multisubset lattices, and
the well-known Schensted correspondence. The connection is made via a natural representation of multi-
subsets as biwords. Some other interesting properties of the matchings are also given.

1. Introduction. Let rfi be the set {1, 2,..., m}. A multiset is a set in which
elements can be repeated. A multisubset of rh is a multiset with elements from rh. Let
I (il, i2, , i,,) be a positive integral m-vector. A multisubsetM of rh is said to have
I repetitions if the element k ofM is repeated at most ik times. Let S be the set of all
multisubsets of rh with I repetitions. It is easy to see that S is a distributive lattice
under set inclusion. In the special case when all ik’S equal 1, S reduces to the usual
subset lattice S,, of r. A multisubset of rh can always be represented by a weakly
increasing sequence. Using this representation, the elements in each rank row of$ can
be totally ordered lexicographically.

It has been known for a long time that S,, has chain decompositions in which a
chain starting at level will end at level rn i. That is, Sm has symmetric matchings, in
1972, M. Aigner [1] explicitly constructed a symmetric matching for S,, that is
compatible with the lexicographic ordering of rank rows. Informally, this is done as
follows. A chain is started with the lexicographic least unused element in the lowest row.
Each element in the chain is matched to the lexicographic least unused element of the
row above that covers it if this element exists. The new element is marked used. The
process is repeated until it cannot be further applied. Now a new chain is started. A
matching constructed this way is called a lexicographic matching. Different con-
structions of this matching were discussed by other authors (for example, de Bruijn,
Tengbergen, and Kruyswijk [2], Greene and Kleitman [4]). In 1977, D. E. White and
S. G. Williamson [7] characterized all different constructions of this matching based on
well-known recursions of

In this paper, we make a natural connection between lexicographic matchings on
the lattice $ and the well-known Schensted correspondence, relating biwords and
pairs of tableaux of the same shape. In the process, it will become clear that the above
matching on S, is only a special case of the one we constructed on S.

2. The codings of multisubsets. As already mentioned above, a possible
representation of multisubsets is by using weakly increasing sequences. We shall discuss
two more representations, one by biwords, and the other by pairs of tableaux. The next
few paragraphs will be devoted to clarifying these concepts.

Let A, B be two totally ordered finite sets (also called alphabets). A biletter is an
element of A x B written as a column. We say that () < () iff either a < a2 or a a2
and bl > b2. It is clear that < defines a total order on A B. This is called the locally
reverse lexicographic order. Let M be any multiset of biletters; we represent M by the
sequence of biletters obtained by ordering elements of M in <. Such a sequence of
biletters has a weakly increasing top row, and, in each block of equal letters in the top
row, the corresponding letters in the second row are weakly decreasing (hence, "locally

* Received by the editors January 6, 1981.
f Department of Mathematics, University of California, San Diego, La Jolla, California 92093.
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reverse"). A sequence of biletters so ordered is called a biword. We shall in general omit
parentheses in a biword.

A partition A --n of a positive number n is a sequence of positive integers
(A ---< A2-<-- _--< Ak) whose sum is n. The Ferrers diagram of A is a collection of n cells
arranged with A cells in the top row, A 2 cells in the second row, etc. A tableau in.A with
shape A is a filling of the Ferrers diagram A with elements of A so that every row is
weakly increasing and every column is strictly increasing. Here we are using the
convention that rows are read from left to right, and columns are read from bottom to
top.

Example 1. Let A {1, 2, 3 n}, and B {a, b, c ..}. Then:

(i) 11122333 is a biword in A B.
bbacacba

(ii) 44 is a tableau in A with shape (2, 3, 4).
233
1122

The column insertion is a process, found by Schensted [6], to insert an element a
into a given tableau T in such a way that the tableau conditions are preserved. The
process can be represented as follows:

procedure C-INSERT(a, T)
begin

if T= then T := a;
else begin

Let c < c2"" < Ck be the first column of T,
and T’ be the rest of T;

if a > Ck then append a to the first column;
else begin

Let be so that ci-1 < a

Ci := a;
C-INSERT(t, T’);

end
end

end
Let -Y-> denote column insertion. If a a a2. ak is a sequence of elements of A,

we can obtain T(a), the tableau of a as:

T(a) ak (’’" (a2- (a ))’" ")

More interesting, given a biword ( ’"), we can obtain a unique pair of tableaux of
the same shape (Tn, TA) as

procedure C-ENCODE(al a2" ak

b b2"’" bk’ TB,
begin

if k > 0 then
begin

C_ENCODE(;1 a2...ak-1 ).b’"b_ T, T
C-INSERT(Br, TB);
Put ak at the corresponding new cell in TA;

end
end
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We now have a theorem due to Schensted, Knuth and Burge:
THEOREM 1. C-ENCODE(*, 4, 4) defines a bi]ection between the set of biwords

and the set of pairs of tableaux (TB, TA) Of the same shape.
These algorithms and their variations are discussed in [3], [5], [6].
We are now ready to give the other two representations of elements of $.

Let B {0, 1}. Let

a=l...12...2...m...m

kl k2 km

be an element in S. We code a with the following biword of r B"

ix i2 i,
m

o... 0

k k2 k,,
By the above theorem, each a S corresponds uniquely to a pair of tableaux (P, Q).
P, Q have the same shape with at most two rows. The entries of P are 0, l’s, while Q
contains exactly il l’s, i2 2’s, etc. Generally, if T has il l’s, i2 2’s, we say T is an
/-tableau. In the special case when all ik’S equal 1, T is also called a standard tableau.
Thus, the Q tableaux are/-tableaux.

So we have three different codings of an element in $, by weakly increasing
sequences, biwords, or pairs of tableaux. We shall not always explicitly mention which
representation of an element is being used.

Example 2. Let r {1, 2, 3}, and I (2, 2, 2); then S(32’2’2) is:

112233

11223 11233 12233

11 1223 1233 2233

112 113 122 123 133 223 233

11 12 13 22 23 33

2 3

Also:

a) 1233

b) 123

c) 23

112233 11 23
101011 0011, 1123
112233 11 23
101010 0001, 1123
112233 11 23
001010 0000, 1123

The fact that these elements of S(32’2’2) have the same right tableaux is not
accidental. As we shall see next, they belong to the same chain in a lexicographic
matching of S(32’2’2).
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3. The matchings. Generally, as we have seen, if a S, then a can be represen-
ted uniquely as a pair of tableaux of the form

$1

1...1
o... oo 1 , o

SO S1

in which any of the strings So, s, s can be empty, and O is an/-tableau. When So #
we can define:

DEFINITION.

NEXT(a)= 1... 1

SO S1

That is, NEXT(a) is the pair of tableaux (P’, O) obtained by switching the last 0 0f
the string So to 1.

It is clear from the definition, and Theorem 1 that NEXT(a) is in S. So NEXT is
an injection that lifts elements from a rank row of S to elements of the next rank. If
a S with representation (*), we let"

a=l...1 and a-l...1
0 0, O 0...01...1, O.

Again, by Theorem 1, a S, and a S. Then NEXT defines a chain C as,
NEXT(a),..., NEXT(a)= a. In the chain C, all elements have the same right
tableau O. We say that O is the right tableau of C. We now have:

THEOREM 2. NEXT(a) covem a in S. Thus, NEXT decomposes S into disjoint
chaim such that i[ a chain C starts at level then:

a) The shape o[ tableaux o[ C is (i, N- i), here N = i.
b) The start and end elements o[ C have left tableaux:

and
1...1 1...1
0 0 0...01...1
N-i N-i

Proof. We induct on m. The case m 1 is trivial and omitted. Now, assume the
assertions for rn 1, and consider m. First, consider the case i,, 1. In this case, we can
partition S S (m), where SSin--1 [.J m-1 m-1 is the restriction of S in m- 1, and
Sm-x (m) is obtained by adding m to each element of S_x. By the induction hypothesis,
all assertions are satisfied in S,,_. We now examine what happens to the tableau
representations of elements of S,._x when Sm- is embedded in S. and Szm_x (m). Let

w=l 12 2 (m-l) (m-l)
1...10...01...10...0 1 10 0

Ibe in S,,-1. There are 3 cases"

Case (i). w is considered as an element in S. The effect on the biword is that of
adding the biletter (’) to w. So
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gives

q-k-lm

INow an element in S,-1I (m) is one in S,-1 with the biletter (T) appended. We
have:

Case (ii). Let w e $.-1 be an end element of a chain. We have

SO:

(m)w
1

<--1..’1 ql"’’qk

0’’" 011 1, q’l q-k-lm

Case (iii). If w is not an end element of a chain in i

and

0...00...01... 1,
q qkm

q’ q’k q-k-1,

From (i), (ii) we see that end elements of chains in S_x are mapped to those
considered in (ii), so that the covering property is preserved. These elements become
new end elements of the chains involved. By (iii) the covering property is verified in

IS’,_1 (m). Note that the start elements of the new chains are those of S,,-1 and those of
S_1 (m) not considered in (ii). Properties (a), (b) follow easily from this observation.
So, we are done with the case i,, 1.

In general, if i, k > 1, we can partition"

S S-i US_l(m)U US_I (m... m)

k times

Now, we can induct on k. The verifications here are similar to the above and will be left
as an exercise.

An immediate corollary to the theorem is:
THEOREM 3. NEXT decomposes S into disfoint symmetric chains. Every chain is

associated uniquely with an I-tableau with at most two rows (the right tableau of the
chain). Further, every such tableau is the right tableau of a chain defined by NEXT.

Proof. The first two assertions follow from conditions (a), (b) of Theorem 2. Now,
let Q be any/-tableau with at most two rows. Let P be the tableau with the same shape
as Q with l’s on the top row, O’s in the second row. Theorem 1 shows that (P, Q) is some
element of St,,,. This element must be in some chain C. Then Q is the right tableau of C.



SCHENSTED CORRESPONDENCE, LEXICOGRAPHIC MATCHINGS 329

Example 3. The construction for S(32’2’2 S(22’2’2 tO S(2"2’’2 (3) I..J S(22’2’2 (33)"

.112233

.11223 11233 12233

1122 1123 1223 1133 _1233

/ ._-/--- -2__----
112 122-- 113 123-- 223 133 233

/ / -\-- \
11 12 22-"- 13 23 33

1 2 3

...2233

The chains of S(32’2’2) and their right tableaux:

2 3
1 12 13
11 122 113
112 1223 1123
11223 12233 11233
112233

22 23 33
223 123 133
2233 1233 1133

233

2 3 22 23 33 233
112233 11233 11223 1133 1123 1122 112

By examining the proof of Theorem 2 more carefully (cases (ii) and (iii)) or by
direct considerations of the tableau representation, we have

COROLLARY 4. Let C be a chain defined by NEXT with right tableau O. Then
(a) The top row elements of Q constitute the multiset that is the start element of C.
(b) Using the row deletion algorithm (see [5], [7]), sequentially delete corners in the

top row of Q. The remaining elements constitute the end element of C.
Example 4. Let C be the chain (23,123, 1233) in $(32’2’2. Then the (2 tableau of C

23is 1123. Following is the sequence of top row corner deletions:

23 2
1123 1133 1233

So far, we have shown that NEXT defines a symmetric matching on S. It remains
to show that NEXT is also lexicographic. For this, we need the following specialization
of Theorem 3 in the case I (1, 1,... 1).

LEMMA 5. NEXT decomposes the subset lattice S,, into symmetric chains. Every
chain is associated uniquely with a standard tableau with at most two rows. Moreover,
every such tableau is the right tableau for some chain defined by NEXT.

Proof. Let N be as in Theorem 2. Replace the top row of each biword (element) of
$ by the sequence 123 N. Using the simple fact that this operation commutes with
C-ENCODE, or a direct proof using similar arguments as in the proof of Theorem 2,
we see that every chain defined by NEXT in St,,, is associated with a unique standard
tableau with N entries and at most two rows.
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Example 5. The right tableaux of S(32’2’2) and corresponding standard tableaux are

112233--123456,
2 --3 3 --5
11233 12456, 11223 12346,
22 34 23 35
1133 1256, 1123 1246,
33 -- 56 233 -- 3561122 1234, 112 124.

The new biwords obtained by replacing the top rows by 12. N can be viewed as
the images of a natural embedding ofS into SN. So, we can considerS as a sublattice
of SN. From the above observation, we see that the chains of $ form a subset of the set
of chains in $r. Now, on Sn, it is easy to see that NEXT is the same as the map - defined
by D. E. White and S. G. Williamson [7]. So, by their results, NEXT defines a
lexicographic matching on $r. Further, our embedding of S into Sr preserves the
lexicographic ordering of elements. So, we have:

THEOREM 6. NEXT defines a lexicographic matching on S.
4. Further results. It is a famous theorem of Dilworth that the maximum size of an

antichain is the same as the minimum number of chains needed in a chain partition for
any poset. This number is called the Dilworth number. Let N’ ,,-1

--"k=l ik, and I’=
(il, i2," ira-l, N’). Let g’(S) be the set of chains defined by NEXT in S. Let d(S)
be the Dilworth number of S. From Dilworth’s theorem, it is easy to see that
d(S)=I(S)I. From the one-to-one correspondence between chains in S and
/-tableaux, we have the following easy but somewhat surprising result:

THEOREM 7. If im >- N’, then d(S d(S).
Proof. Since tableaux have strictly increasing columns, the number of possible top

rows for I-tableaux with at most two rows is the same as that for/’-tableaux.
The chains of St can be partially ordered in a nice way. Let C1, C2 be chains of St

we say C1 <-_ C2 if[ every element of C1 is contained in the interval of St defined by the
start and end elements of Ca. Clearly, by the symmetry of chains, and the fact that they

S,,((S) is a partially ordered set, which we shall call the lexicographicpartition t ,<__)
chain poser of S. We have"

LEMMA 8. Let C (St,.), and w S. Let as and ar be the start and end elements
of C respectively. Let C(w) be the unique element in (S) containing w. If as <- w <- ar,
then C(w) <- C.

Proof. Again, we employ the basic partition of S/,, used in Theorem 2, and induct
on m. We only consider the case i,, 1. The reader can make appropriate extension to
the general case following the techniques used in Theorem 2. The case m 1, being
trivial, will be omitted. Now, for general m, we partition St,. S-I LI S,,-lt (m) as in
Theorem 2. The chains in St,. divide into two types, type A with start element in S-l,
and type B with start element in St

,-1 (m). There are 4 cases:
Case (i). w S-I, C is type B: impossible because as g w.
Case (ii). w St

,,-1, C is type A" since w does not contain any m, if a- is the
element immediately preceding ar in C, we have w <_-a- (as a-= ar-{m}). By

Iinduction, the chain C’(w) in Sin-1 is contained in [as, a-] (where [.,. denotes an
interval in S). Let w’ be the end element of C’(w); then w’ (A {m} is the end element of
C(w) by construction. Thus, C(w)<-[as, ar].

Case (iii). w S-I (m), C is type A. We have two subcases"
(a). C(w) is type A. Then w must be the end element of C(w). Let w- be the
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element immediately preceding w in C(w). We must have as <- w---< at where at is
S,,-1 is contained in [as, a-].defined as above. Now, by induction, the chain C(w-) in t

This again leads to C(w)<= [a, at].
(b). C(w) is type B. Remove all m from elements of C(w). The remaining

Imultisets form a chain C’(w) of S,,-1 without an end element. Again, by induction,
C’(w) <= [as, at], implying C(w) <= [as, at].

Case (iv). w S,,_1 (m), C is type B. All involved elements contain an m. Remove
this m, then repeat the basic induction argument, we have C(w)<= [as, at].

In any poset (P, -<_), let x P. Then the order ideal generated by x, I(x) is the set
{p P p <-_ x}. We now have"

THEOREM 9. LetA (S), and let as, at be its start and end elements, respectively.
Then [as, at] ce I(A) C.

Proof. Certainly, we have Uct(A C -<[as, at]. Now let w be in [as, at]. Let C(w)
be the unique chain of S containing w. By Lemma 8, C(w) I(A). So [as, at] -<

LJCI(A) C.
From Theorem 3 and Corollary 4, every element in 8’(S) is uniquely identified by

the top row of its associated right tableau. So, we shall label each chain with the top row
of its right tableau in the following example.

Example 6. The chain poset of (,(S(32’2’2)), ):

233

I(2)---{2, 22, 23,233}, and"

12233

1223 1233 2233

122 123 223 233

12 22 23

2

We end this section with a few numerical identities that are direct consequences of
Theorems 2 and 3. Let Sk be the number of/-tableaux with shape (k, N k) (k <- N/2),
where N is defined as in Theorem 2. Let rk be the number of elements with rank k in S.
For k <-N/2, we have Sk--rk--rk-1. Let tk be the number of tableaux with shape
(k, N k) and 0, 1-entries. It can be seen directly that tk N 2k / 1. We have:

THEOREM 10.

LN/2] LN/2J
(a) Is’ l X s,,t,, X s,,(N- 2k + 1),

k =0 k =0

[N/2I

(b) rtr/2j E Sk;
k=0
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when all ik’S equal 1:

(c) IS,,] 2 (m 2k + 1)/(m k + 1).
k=O

(d) rt/a Ira o

Proof. (a), (b) follow from Theorems 2, 3. For (c), (d) we note that for I (1,. 1),
we have N m, and:

(m) ( m ) ()(ram 2k + l)/(m k+l)Sk=rk--rk-= k k-1 k

Noes and aeknawlegmens. Corollary 4(a) and parts (a), (b) of Theorem 10 were
also proved by C. Greene, and D. Kleitman.

The idea of using the Schensted correspondence in connection with chain match-
ings resulted from conversations between Profs. A. M. Garsia and D. E. White. I am
grateful to Prof. Garsia for showing me this idea, also for his valuable encouragement,
and advices. I would like to thank Roger Whitney for several important suggestions
concerning this work, especially his assistance in the proof of Theorem 2.
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INCIDENCE MATRICES OF SUBSETS--A RANK FORMULA*

NATHAN LINIALt AND BRUCE L. ROTHSCHILD

Abstract. Let n -> k _-> -> 0 be integers, = a field, and X {1,. , n}. M Mn k is an (7) x () matrix
whose rows correspond to/-subsets of X, and columns to k-subsets of X. For L f?i), K X(k) the (L, K)
entry of M is 1 if L c K, 0 otherwise. The problem is to find the rank of M over the field :. We solve the
problem for = 7/2 and obtain some result on = 7/3. The problem originated in extremal set theory and
seems to be applicable also for matroids, codes and designs.

Introduction. The following problem was posed by M. Katchalski and M. A.
Perles. Given n >-k >-l>=0, integers, let X ={1, 2,. , n}. Denote by X(k) the family
of all subsets of X of cardinality k. A family of k-sets ’/" X(k) is said to be closed if,
for everyL Xt), I(K .Yrl L K}I is never 1. They wanted to know the smallest number
N N(n, l, k) such that if M Xk has more than N sets, then it contains a closed
subfamily. For k + 1, their problem was solved by P. Frankl, who showed that in
this case N (7_-). In fact he showed that if M cX"+ 1), has more than (7_-) sets, then
there is a family ’c M, such that for every L X(t), I(K :Xcl L K}[ is even. Define a
matrix M whose rows (columns) are indexed by X (resp. x(l+l). For LX(l,
KXt+l, the (L, K) entry is 1 if L K, 0 otherwise. Frankl’s proof is obtained by
showing that the rank of this matrix over 7/2 is ("7).

This raises the general problem: Given n >= k >= >= 0, integers and a field =, define
a matrix M M,,.t,k as follows. Let X (1,. , n}, then the rows (columns) of M are
indexed by Xt (resp. xk). For L X, K Xk, the (L, K) entry ofM is 1 if L K,
0 otherwise. What is the rank of M over the field =? For : Q the answer appears in
the literature [1], [2]; it is p(M)= min ((7), (7)}, so M has the highest rank possible. In
this paper we solve the problem for = 7/2 and for k + 1 over 7/3.

Define a cycle to be a family of k-sets such that every/-set is contained in an even
number of these k-sets (this is usually done in algebraic topology). The rank formula
over 7/2 gives the largest cardinality of a cycle-free subfamily of X(k).

The rank |ormula over 7/. Let s be a nonnegative integer; we define b(s) to be
the unique set of nonnegative integers S, for which s Y.xs 2x. Of course, b is an
injective function. If p, q are integers with b(p) b(q) we simply write p q. This
defines a partial ordering on the nonnegative integers.

Define d k- l, and let D b(d). For a function f:D- 7/+, the nonnegative
integers we define f(D ExOf(X )o

THEOREM 1. For n >--_ k + the rank of M,,t,k over 7/2 is

Y’. (- 1)) ( n

r:o_.z I- E f(x)2
xD

Notation. We denote the matrix M.-p.t-.k- by [p, q, r], where p, q, r are
nonnegative integers. Also, [p,q,r]t stands for M-p.l-.l-,, and [p,q,r]k
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Mn-p,k-q,k-r. (p, q) is defined to be the sum

l-q- Y. f(x)2
xD

Observe that Mn,l,k and Mn,n-k,n-I are transposed matrices. Therefore, to cover the case
n _-< + k in Theorem 1, replace by n k in the sum ormula.

We need some simple observations which we state without proof.
Observation 1.

[0, 0, 0]
[1, O, 1]

0

[,o,o]

where the left (right) columns correspond to k-subsets which contain the element 1,
(do not contain 1, resp.). The upper (lower) rows are the /-sets containing (not
containing) 1.

Observation 2. For p
Observation 3. () is odd iff a b.
Observation 4. (p, q) (p + 1, q) + (p + 1, q + 1).
Convention. If A is a matrix which depends on n, l, k, then A(p, q, r) denotes the

matrix which is obtained by replacing n by n -p, by l-q and k by k- r. Similarly, if
A depends only on n and (n and k), then A(p, q) results on replacing n by n -p and
by q(k q, resp.).

Let be a nonnegative integer; then we define

s,= Z (t, i).

Also we define a block matrix At, indexed by all ] such that ] t. Let b(t) {ax," , a,}
with ax>a2. >a->0. For i,] the (i,]) block of A, is It, i,]] if ]i and
b(]-i) ={a,. ., av} for some v >-0. All the other blocks are zero. Note that

So (0, 0), Ao [0, 0, 0],
and so we want to show that p(Ao)= So. Defining a by 2lld, we prove the stronger:

PROPOSITION 1. For 0<= t <-- 2, p(A,)=St.
Proof. By induction on n. For n 0, 1 there is nothing to prove. To perform the

inductive step, we show that under the induction hypothesis the following hold:
PROPOSITION 2. p (A2) S2..
PROPOSITION 3. For 0 <= <-- 2, p(A+x) S+ implies p(A) St.
It is dear how Proposition 1 follows from Propositions 2, 3 by a backward

induction.
Proof ofProposition 2. For 2, b(t) {a}, so:

It, t, t]

It, 0, t] It, o,o]
S,=(t,O)+(t,t).
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The matrices

I/
It, t, 0]

are nonsingular (in fact they are self-inverse), and they satisfy

I+
It, t, 0]/

At
It, 0, t]

To prove this, use Observations 2, 3 to show that in 7/2 It, t, 0]/[t, 0, 0]--[t, t, 0]"
(d-t)=0, since t=2lld, and so (d/t)t. Similarly t, t, ][ t, t, O]k O. But
It, t, 0]/It, 0, t] It, t, t](d) It, t, t], since d t, and also It, 0, tilt, t, 0]k It, 0, 0] for the
same reason.

Rank is preserved under multiplying by the nonsingular matrices, and so o(At)
la([t, O, t]). From the induction hypothesis the last rank is

Now St (t, O) + (t, t)

All the second summands appear also as first summands with the opposite sign: increase
f(a) by one. Doing all the canceling, we obtain only the sum of the first terms in which
f(a) 0; i.e.,

Z (-1)(\}
f D\{a}->7/+

n-t

l- Y f(x)2
D\{ot

p(At)=Stfort=2. U
Now we turn to the proof of Proposition 3. We establish a relation between

and At+l, between St and St+. We define A by 2xl[(t + 1).
PROPOSITION 4.

St=S,+x +2 Z (t+l,]).
2x)(/

PROPOSITION 5.

p(A,) p(A,.)+2 E P(A,*-2v/I(2*, 2, 2))
0v<,
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First we show how Propositions 4, 5 imply Proposition 3. For any 0 =< u < A, set
r= t+l-2+1. Using the inductive hypothesis we use the equality p(Ar)=Sr
j=r (r, ) with n replaced by n- 2+1, by l-2 and k by k- 2; i.e. we use

P(A(2+x, 2, 2)) Y. (r+2+,/’+2) Y (t+l,/+2) Z (t+l, i).

The last equality follows on setting + 2. Summing over all 0 =< u < A yields that
o(At+x) St+x implies o(At) St; i.e., Proposition 4, 5 imply Proposition 3 and thus the
main theorem.

We make the following simple observation.
Observation 5. For two nonnegative integers a, b, a c b + 1 holds iff exactly one

of the relations a c b, a 1 = b holds.
Proof of Proposition 4. St Yq=t (t, j), and by Observation 4 it equals

Yq=t(t+l,j)+(t+l,j+l)=Yq=t(t+l,)+j_l=t(t+l,). By Observation 5, this
equals Yq=t- (t + 1, j)+ 2 =t. j-=t (t + 1, f). But (j and j- 1 t) is equivalent to
(] and 2x ,/’). This proves Proposition 4.
To prove Proposition 5, we apply Observation 1 to each block of At. Thus the row

(column) of At is replaced now by two rows (columns) which we denote by i, i*. The
i,j blocks of At (being [t,i,]] iff tDi, t=j, ]Di anal b(f-i)={a,....,a} for some
v >= 0) are replaced by

[t+l,i+l,]+l]

[t+l,i,]/l] [t+l,i,]]

A zero block is replaced by

0 0

0 0

with the appropriate dimensions. The resulting matrix is called Bt; it is equal to At but
described in a different way. nt is, to sum up, a block matrix whose rows and columns
are indexed by all i, i* satisfying c t. The only nonzero blocks in Bt are

Bt(i, j) [t + 1, i, 1]
Bt(i, ]*) It + 1, i, j + 1] I iff

Bt(i*, ]*) It + 1, + 1, ] + 1]
] i, b(]- i) {ax, a} for some u => 0.

We want to define nonsingular matrices Pt, Qt such that in Ct PtBtQt the only
nonzero blocks are, for i, ] c t,

(i O) Ct(i, ]) [t + 1, i, ]] ; a} for some u >
(]t) Ct(i*,]*)=[t+l,i+l,]+l]jiff ]i,b(j-i)={al,’", O,

C(O,])=[t+l,O,]] itt b(])={ax,. ,a}forsome u>_-Oand2XlL
C(i*,t*)=[t+l,i+l,t+l] iff b(i)={a,. ,a,}forsome u>-l and2Xl(i+l),

Ct(0, t*) [t + 1, 0, + 1].
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The submatrix of C, spanned by all ]ct with 2rio", 0<=v<h, is equal to
At+l_2v+l(2v+l, 2, 2). To see this, we set a one-to-one correspondence between all
]’c + 1- 2+1 and all ] c with 2[L/, given by ] =]’+ 2v. This shows the equality
between these matrices. Also the submatrix generated by all ]* with ] c t, 21](] + 1),
0-<_v<h, equals At+_zv+l(2"+, 2, 2). Here we correspond/" t+ 1-2v+ to ]
j’+2-l,jt.

The remaining direct summand of Ct is the one indexed by all j with 2 ]j, and
by all j* with j c t, 2h[(j + 1). This submatrix is equal to At/" Use the correspondence,
to t + 1 2 assign j t, and to t + 1 with 2[[i assign j* (i 1)* (note that
i- 1 t). This correspondence shows that this submatrix is really equal to At/l. Thus,
if we can find nonsingular matrices Pt, Qt so that PtBQt Ct, then Proposition 5 is
established and therefore also the main theorem.

The matrices Pt, Qt are defined inductively. Reminding the reader that b(t)=
{a 1, , a} with a >. > a >_- 0, we do the induction on -. For - 0, i.e. 0,

Ao [0, 0, 0],

A1 =Bo= Co
[1,1,1]

[,o, ] [1,o,o]

and so Po, Qo are defined to be identity matrices.
In the general case denote 2a by 8, and s t-8. We define Lt, Kt to be block

matrices, indexed by all i, i* where c t. The only nonzero blocks in these matrices are
the ( + 8, ]*) blocks (] s), which are It + 1, ] + 8, + 1]t and It + 1, ] + 8, ] + 1]k respec-
tively.

Except for the cases 2- 1, which will be dealt with later, we define

P(,)

P(a, o)
(I + Lt), O, (I + Kt)

0(, o)

Note that Pt depends on n, l, only, and Q, on n, k, and so Ps(x, y)(Qs(x, y)) results
on replacing n by n-x and by l-y (k by k- y), in P(Q resp.).

To calculate the product PtBtQt we start by working out

(I + Lt)Bt(I + Kt) Bt + LtBt + BtKt + LtBtKt.

The only nonzero blocks in Ltnt are (i +8, ]*) blocks with s, ] t, i],
b (] i) {a,. , a}, (0 _-< v <- z). To find out what this block is we have to make the
following product:

[t+l i+8, i+l]t[t+l,i+l ]+l]=[t+l i+&]+l].(d+i+-]-l)
The binomial coefficient is odd if[

8l(d+i-]).
We are assuming in Proposition 5 that t <2, where 2lld, so a <ce and 81d. Hence,
the condition is equivalent to 81(]-i); but ]-i 2a +... + 2a" and this is equivalent
to h 0, 1. Therefore, the only nonzero blocks in LtBt are" for ] c s the (/" + 8, ]*) block
is [t + 1, ] + 8, ] + 1], and the (] + 8, (] + 8)*) block is [t + 1, ] + 8, ] + 8 + 1].
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Similarly, the only nonzero blocks in BtKt are" for /" c s, the (], ]*) block is
It + 1, ], ] + 1 and the (] + 6, ]*) block is It + 1, ] + 8, ] + 1 ]. Therefore, in L,Bt + B,Kt the
only nonzero blocks are: for ] t, the (], ]*) block is It + 1, ], ] + 1].

It is easy to check that LtBtKt -O.
Note that the submatrix of Bt consisting of all + 8, (i + 8)* rows and ], ]* columns

with i, ] s is equal to B(8, 0, 6), and so

(I + Lt)B,(I + Kt)= At +
0 0

B(, o, ) 0

where the only nonzero blocks in A, are the (], ]) block It + 1, ], ]] and the (/’*, ]*) block.
It + 1, ] + 1, ] + 1] for all ] t. Note also that (I + Lt)At(I + Kt) At (details are easy and
are omitted) and so in the inductive process of defining Pt, Qt we have

By definition of At

and so

P,B,O,

=At+

A(6,6,6)

A(6, O, O)

e(& o) B,(& 0,,)

0

c,(, o, )

O,(,,,)

0,(,, o)

In the last equality we made use of the fact that PsAsQs As and PsBsQs Cs. It can
be checked now that the only nonzero blocks PtBtQ, are given by: for i,/" t,

(i # O) PtBtQ,(i, ]) It + 1, i, 1"] 1 iff ] D i, b(]- i) {al, ", a}

(]#t) PtBtQt(i*,]*)=[t+l,i+l,]+l] frsmev>--0’

P,BtQ,(O,])=[t+I,O,]] iff b(])={al,...,a}withv>-0,2"l],

P,BtQ,(i*, t*) It + 1, + 1, + 1] iff b(i) {a, ., a,} with v _-> 1, 2’[(i + 1),

etB,Qt(O, t*)= It + 1, O, t+ 1],

where/, is defined by 2’[[(s + 1).
Since we assumed that is different from 2- 1, it follows that/z- h, and so

PtBtQt Ct as we wanted.
So assume 2x 1 and so /x h 1 and s 2*" 1. In this case we define Xt

(resp. Yt) as we define Pt(resp. Q,) in the general case. The only way XtB,Yt differs from
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C, in this case is that it has the added nonzero (0, ) blocks with b(])= {al,’’’, a},
v =>0 and 2"11 and the (i*, t*) blocks with b(i)={a,..., a} with v >= 1, 2"11(i / 1). The
only block of the first kind is the (0, 8) block which equals It + 1, 0, 8] and of the second
kind, the (s*, t*) block, being It + 1, s + 1, + 1 ].

We define the matrices Et(resp. Ft) as block matrices indexed by all i, i* with = t,
and the only nonzero block being the (s*, 0) block which equals [2a, 2", 0]
(resp.[2a, 2", 0]k ). We define Pt (I + Et)Xt and Ot Yt(I + Ft) and check that PtBtOt
Ct, as desired. This completes the proof of the main theorem.

A rank |ormula over
THEOREM 2. The rank of M,,l,t+l over 7/3 is

-0 -j

For n >-21 + 1 this equals

Y"
-3j >-o 1-3j-2_o

-E

Proof. Let F be a set of nonnegative integers; then we set w(F)=xF 2x, (of
course, w=b-1). Let X={1,...,n} be our base set. We show that =
{F X(t)Iw(F) < 2"+2/3} is an independent set of rows. Since
{FeX")Ine!F}U{FeX(IIn eF, (n-1)F, (n-2)e!F}U{FeX(tIn eF, (n-1)F,
(n-2)F, (n-3)F, (n-4)F}U..., and this union is a disjoint union, Ir[
io (,-)[1) and this shows that the rank is at least this big. We prove that r is an
independent set of rows by induction on n. For any n and 0, n 1 this is clear. To
perform the inductive step, define Y {1, , n 2},

1 {B Y(l-1)[w(B) < 2"/3},

3 {B Y(t-I)[w(B) > 2/3}.

If is dependent, this means that there is a function f" -, 7/3, so that

VAX(1+1) E f(F)=0
FA

For B e, let A B U {n 1, n }, to obtain

f(B U {n 1}) 0 VB e 3.

For B e 1, A B LI {n 1, n } we get f(B LJ {n 1}) +f(B LI {n }) 0.
For C e Y(, let A C U {n }’, then we get

VCe Y" f(C)+ f(BU{n})=0
BC

and for A C U (n 1) we have

f(c)+ E f(SU{n-1})=o,
BC
By(-)

f(C) + ,, .f(B I,J {n 1}) + E f(B I,J {n 1}) O.
BcC BcC
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All these equalities easily imply

VC e y<t) E f(B O {n}) 0.
B=C

But this shows that in Mn-2,l-l,l, where the basic set is Y, the rows of 1
{B Y(l-)[w(B)<2n/3} are linearly dependent, and this contradicts the induction
hypothesis.

For the reverse inequality we first make"
Observation 6. Let P be a p q matrix, Q a q x r matrix and R an r x s matrix. If

PQR 0, then

Now we prove

p(P) + p(O) +p(R <= q + r.

o(M,,l,l+) y, (n 1--2/)=>o I--]

For => 2 we have that over Q

Mn,l-2,l-l Mn,l-l,l Mn,l,l+l-" 3Mn,l-2,l+l

so over 7/3,
Mn,l-2,1-1 Mn,l- 1,1 Mn,l,l+ 0

and so over 7/3,

P(Mnl-21-1)q-p(Mn’l-l’l)4"P(Mnl’l+)<( n ) (7) (n+l)/-1
+

The 1.h.s. is

n + 1- 2]’
l-]

It follows that all inequalities are in fact equalities, which completes the proof of the
first assertion.

The proof that for n _-> 21 + 1

y,. (n-2]-l) (n=, )__, ( n )_o -] o l- 3] _o l- 3]- 2

is straightforward, by induction on I. This formula was presented just because it
resembles the rank formula of Theorem 1.
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FLUCTUATION RESULTS FOR MARKOV-DEPENDENT TRIALS*

R. B. NAINT AND KANWAR SENT

Abstract. Takacs (SIAM Rev., 21 (1979), pp. 222-228) obtained explicit results for the distributions of
the number of changes in luck in n Bernoulli trials with probability p(O < p < 1) for success. In this paper, the
corresponding results have been obtained for Markov-dependent trials.

1. Introduction. With probability p(0<p < 1) for success in Bernoulli trials,
Takacs (1979) obtained some explicit results of fluctuation, in terms of the first passage
probabilities. Here, we have extended Takacs’s technique to obtain the corresponding
results for Markov-dependent trials.

Consider the Markov-dependent random variables X0, X1,’’’, Xn, each assum-
ing the values + 1, with transition probabilities, n _-< 1,

P[X,, 1] P[X,, 1

P[X.-I=I] [ px 01 ](1)
P[Xn-1 -1] q2 p2

pl + ql p + q2 1.

Forn =0,1etP[Xo= 1]= 1-P[Xo=-I]=o.LetSo=O;Sn =X+...+X,n_->land
D/. -max {So, S,. S,}. The sequence {S,, n 0, 1,. .} represents the positions of
the walker in a Markov-dependent random walk.

This walk can be realized by repeated tossings of two coins, A and B, where A has
probability pl for heads and B has probability q2 for heads. Following a head, coin A is
tossed, and following a tail, coin B is tossed. Sn is the cumulative number of heads minus
the cumulative number of tails in n tosses.

Given Xo (= + 1 or -1), we introduce the random variables
(i) W i" (a), the number of subscripts r 1, 2,. for which either S_ a <S or

S_l>a S,
(ii) y, (a), the number of subscripts r 1, 2,.. for which D+ a,
(iii) v/ (a), the number of subscripts r 1, 2,. for which S a, and
(iv) /x, (a), the number of subscripts r 1, 2,. for which either S_ < a < S+1 or

S_>a > S+l.

2. Preliminary results. First we consider the probabilities of Sn r (r an integer).
For +1, -1, ]= +1, -1, let u,(n) and fi(n) be the 212 matrices

Ur(n) (ud(n)), fr(n) (fd(n)),
where

Also, let

u ’(n) P{S. r, X. ]lXo i},

[ P{S, r, Sx < r. S,-x < r, X, =/IXo i}f’(n
te{$, r, S > r, S,_a > r, X, ]lXo i}

u(n) u i’+1 (n)+ u i’-i (n)

Obviously, for r > 0

i.+1 (n)=--f(n)/’(n) =-.

if r>0,
if r<0.

fi’_i.r(n =-- fi’_-1 (n =-- fi__r(n ).

* Received by the editors April 18, 1980, and in final form March 10, 1981.
T Department of Mathematical Statistics, University of Delhi, Delhi, India.
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Define

Ur(r) Z ur(n)t", Fr(t) . fr(n)t".
n=0 n=l

For a correlated random walk (1) Nain and Sen (1980) designed the matrices

[pl 0] and[ ql], the matrices of the probabilities of "one-step" transition from a
q2 0 p2

position to its right (i.e., from k to k + 1) and left (i.e., from k to k- 1), respectively.
On multiplying these matrices by s and s -1 respectively, and then adding, we get

(2) P(s)= [pls qls-11]
kq2$ p25

From here it is straightforward to show that

Ur(t) coefficient of s in Y [tP(s)] [I- tP(s)]-1
n=0

and, therefore

(3)

U(t)
(Wpl/p2)r/2 [ (Wpl/p2)x/2-pltW qltWpl/p2 ]pt(:l - q2t (Wp/p2)/2-plt

p2t(1 W) q2tWp2/p (Wp2/pl)I/2-p2tW
for r ->_ 1, and

(4) Uo(t)
(Wp1/P2)/2 r|l -t(WplP2)

,2 qt(Wpl/P2)/2]’
pit(l-W) tq2t(Wp2/p)/2 1-t(Wpp2)/2

where

1 -{1-4plp2t2/(1 + t2)2}1/2

W
1 +{1-4pp2t2/(1 + t2)}/2’ p -q2.

The generating functions of the probabilities of first passage from origin to position
r can be found by the following obvious relations, for r > 0

F+ (t)= U+’i (t)= [F_ (t)]r, F-1 (t)= U-’i (t)
F_ (t)[F_ (t)]r_U’i(t) U’i(t)

5)
U:’i(t) [F:[ (t)]F} (t)= U, (t(t)= F{ (t)EF:{ (t)]-, F: (t)= U, (t

where

p2F (t)= pIF-{ (t)
1 + at2- {(1 + at2)2-4plp2t2}/2

2t
(6)

qlF- (t) q2F+{ (t) p2F{ (t)- at.

The results at (5) and (6) have also been obtained by Jain (1971) by the method of
difference equations.

Now, we introduce the random variable r/ (k), k -> 0, such that

r/ (k)= inf {n, Sn k and n _-> 0IX0 i}.
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Clearly, r/ (k)= oo, if S,k for all n _->0, and P[rti(k)=n] and P[rli(-k)=n] are the
coefficients of t" in F (t) and F-k (t), respectively. Using the result of Jain (1971), we
get

h--O h
P-hqh8(k’ h-k),

where

8(k, n)

and

4pzq i g=o-;-1-1 n g/
-n-k" 1-n-g/2" tS / tSz

It can now be obtained easily that

P[qi(k)<-n]=P[S,, -> klXo i]+2P[S,-m <0lXo 1]P[r/(k) m].

Writing generating functions

H(t)= P[rl(k)<-n]t,
n=k

we have

(8)

i(t) X U-+(t)H’(t)= E U(t)+Fk
r=k r=l

H-k(t) 2 U-r(t)+F-k(t) 2 U-(t).
r=k r=l

+1Further, it is observed that the random variables r/(1), r//l(2)-r (1), r/ (3)-
+1 +1

rt (2),..., r/+(k)-r/ (k-l) are independent and identically distributed, except
r/ (1), whose distribution depends on i. Then

+1Y. P[r/(1) nl]P[r/+(2)-r/i(1)= nz]’" "P[r/+l(k)- r/ (k- 1)=
nl+...+nk <=n

(9) E P[r/’(1) nl]P[r/+l(1)= n2] P[r/+I(1)= nk]
nl+...+nk <=n

=P[rl’(k)<=n]
for <- k <- n. This relation is similar to that of (10) in Takacs (1979) and forms the basis
of the proofs of further results of this paper.

3. The distribution of w (a). We shall prove the following"
THEOREM 1. For k >-1 and a >-O, we have

(10) P[w(a)>-k]= (q-22)[k/2](P) k-1

g=oki (k-1)(g _)gP[?’ (a + k g) <- n g].

Proof. Let us denote by 01, 02, Ok, the successive values of r(_->0) for which Sr
alternately takes the values a + 1 and a. Then Sr a + 1 for r 01, 03, and Sr a for
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r--" 02, 04, The random variables 01, 02-01,’’’, Ok--Ok-l,’’" are independent
and have distributions

(11)

P[01 mlXo= i]=P[rt’(a + 1)= m],

P[02-01 mllXo 1]=P[04-03 ml3Xo 1]

PIt/+1(-1) m] q--L P[r/-’(1) m],
q2

P[03- 0z mlXo -1] P[Os- 04 ml4Xo -1] P[r/-l(1) m]

for m -> 1, where gXo stands for that trial or the value of X (+1 or -1) at the end of
which 0g occurs.

(12) P[r/-l(1) _>- 2] =P- Pit/+1(1) _>- 2], Pit/-1(1) 1] =p-2 P[r/+I(1)= 1]. 6.
ql ql

Clearly, w i, (a) > k if and only if 01 + (02-- 01) -1-" "t- (Ok Ok-l) < n, given Xo i.
Therefore

(13) P[w i, (a) >= k] P[Ok <= n[Xo i].

By (9) and (12), we have

(14)

P[01 + (02- 01) +"" + (Ok Ok-l) mlXo i]
[k/2]

2
ml+...+mk

P[rt’(a + 1)= ml]P[r/-l(1)= m2] P[r/-l(1)= mk]

(.)tk/2]’p2"k-ql (l\ql/ l ( 1 8
P[rt (a+k-g)=m-g].

g=0 g

Thus by (13) and (14) we obtain (10).
For pl =q2=p(=l-q), the distribution of w in(a) reduces to the distribution of

w,(a) for Bernoulli trials (Takacs (1979)).

4. The distribution of , (a).
THEOREM 2. For k >-_ 1 and a >- 1, we have

(15) p[yi(a)>k pk2_ k-1 8 P[rl’(a+k g 1)=<n k+l g]

Proof. Let 0[, 0 + 0’ ,2, 0 +’" +0,, be the successive subscripts of r
1, 2, for which D+ a. Then

(16) e[,yi (a) > k] P[01 +"" + Ok < nlXo i]

The random variables 0, 0,..., 0,,. are independent and each has distribution

(17) P[O’g ml-Xo +1] qlP[r/-l(1) m 1],

except 0, which has distribution

(18) P[O mlXo= i]=P[rli(a) m].
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Then

(19)
P[O’ +... + 0’ mlXo i]

p-i Pit/ (a + k g 1) m k + 1 g].
g=0 g

Now, by (16) and (19) we get (15).
It seems that, for pl pz, the distribution of v i. (a) and /x (a) are not easily

obtainable by the technique being followed here. However, these distributions have
been found by the same technique for symmetrical Markov-dependent trials, i.e.,
pl pz p. Hereafter we shall use the above notation, but for pl p2 p only.

$. The distribution of v . (a). Here we shall prove the following"
THEOREM 3. For k >-_ 1, we have

e[n+(-g)_-< n k-g] /fa 0,
g=o g

P[v’(a)>-k] k-1 g

) (k-1)(_)p[rli(a+k_l_g)<_n_k+l_g] ifa >-1
g=o g

where c p q.
Proof. Let c 1, a + a2, , a +" ’ak, be the successive values of r 1, 2,

for which Sr a. Then

(21) P[t) in (a) >-- k] P[al +"" + a, =< nlXo i]

for k-> 1 and n_-> 1.
For a 0, the variables a l., a2,’" ", a,.. are independent and each has dis-

tribution

(22) P[ag ml,-Xo i]= P[r/-I(1)= m].

Accordingly, by (9), (12) and (22), we get

(23)
P[al + +a mlXo= i]

p[rl/l(k-g)=m-k-g].
g=O g

Now by (21) and (23) we get (20) for a 0.
For a > 0, the variables a l, a2,..., a,. are again independent and each has

distribution (22), except a 1. The distribution of c in this case is

(24) PEal mlXo i]=P[rli(a) m].

Then

(25)
P[al + + a, mlXo= i]

P[rl (a + k 1 g) m k + 1 g].
g=o g

By (21) and (25), we prove (20) for a > 0.
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6. The distribution of tt,l (a).
THEOREM 4. For k >-0, we have

P[7 k-2g)<=n-g] //a 0,
g=0

P[’. (a) => k]
P[q(a+2k-2g-1)<=n-g+l] //a > 0.

g=0 g

Proof. Denote by a x*, a + a ’,. ., a x* +" + a :,. the successive values of
r 1, 2,. for which either Sr-a < a < Sr+l or S_1 > a > Sr+. Then, we have

(27) P[, (a)>k]=P[a= +" "+ =<nlXo=i]

for n 1 and k> 1.
First, for a 0, the random variables a, a,..., a,.., are independent and

each has distribution

P[a* ]g-aX0 i] P[-(2) m].g=m(28)

Then

(29) P[a’ +...+a’ mlXo i] P[rt+(2k 2g) m g].
g=0 g

Now by (27) and (29) we get (26) for a 0.
For a > 0, the variables a*, a2*,"" ’, a:, are still independent and each has

distribution (28), except a which has distribution

Thus

P[* miX0= i]=P[rti(a + 1)= m + 1].

P[a +...+o’ mlXo= i]
g(30) (qP-)- =o’ (k-g 1)(-- +2k-2g-1)=m+l-g].

Hence by (27) and (30) we prove (26) for a > 0.
For p =q =1/2, the distributions of v in (a) and/z (a) reduce to the distributions of

v,,(a) and/x, (a), or Bernoulli trials with 1/2 as the probability of success (Takacs (1979)).
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WEIGHT ENUMERATORS OF NORMALIZED CODES*

STEPHEN M. GAGOLA, JR."

Abstract. A linear code C over a finite field is normalized if it contains the all ones vector. If a normalized
code C is also self-dual then its complete weight enumerator is invariant under the action of a linear group
G, which is explicitly determined. The character of this representation is then used to calculate the Molien
series for G.

Further restrictions on C may lead to larger finite linear groups containing G. It is determined here that
if the field is not GF(2) or GF(4) then there are only finitely many linear groups containing G with the
property that the only scalar matrices appearing are those already contained in G. In fact, if the characteristic
is odd and t is the unimodular subgroup of G, then the finite unimodular subgroups containing ( are
contained in a unique, such maximal linear group. The classification of the finite simple groups is used for
the proof of this last result.

1. Introduction. A linear code is defined to be normalized if it contains the all
ones vector. In this paper the complete weight enumerator for a normalized self-dual
code is shown to be invariant under the action of a linear group G, which is explicitly
determined up to an isomorphism. The Molien series for G is also determined. Because
there seems to be a fundamental difference between odd characteristic and characteris-
tic two, the discussion of the construction of G is divided into two sections ( 4 and
5), and likewise for the construction of the Molien series ( 6 and 7).

A. M. Gleason [6], has determined a linear group Go under which the complete
weight enumerator of a self-dual code is invariant. As reported in [15], the Molien
series for Go has also been determined (unpublished) by A. M. Gleason, R. J. McEliece,
E. R. Rodemich and H. C. Rumsey, Jr. Since Go appears as a subgroup of G, these
results are recovered here. (In characteristic two Go G, while in odd characteristic p,
G is an extension of Go by an appropriate extraspecial p-group of exponent p.)

For small values of q, the complete ring of invariants of Go has been determined.
The corresponding problem for G will not be considered here, however. For q 3, the
Molien series of G and generators for the corresponding ring of invariants are given
in [19]. In that paper G is referred to as GT, the linear group of degree 3 and order
2592. This group is also discussed in [16], where it is denoted by 32592.

In this paper, the Molien series for G and Go are given in unsimplified form, but
for small values of q, q =< 9 are worked out explicitly in the appendix. The calculations
there were originally done by hand in the case of o(X) for q -< 9 and (X) for q 3.
These were later checked independently by using the HP9830A calculator, which also
covered the remaining cases not done by hand. I wish to acknowledge here the help of
my wife Gloria, who did most of the calculations.

Linear groups containing G (for odd characteristic) are discussed in 8.
Much of what is done here carries over to the "Hermitian case" (when F has an

automorphism of order two) and this will be the topic of a sequel.

2. Preparations from coding theory. Let F be a finite field. By a code in F we
shall always mean a linear code, that is, a subspace of Fn. If C is a code in F", then C
denotes the dual code of C, i.e.,

C- {v F"I l)iCi 0 for all c C}.

* Received by the editors April 24, 1980, and in final form February 2, 1981.

" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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A code is self-dual if Cl= C and is normalized if it contains the all ones vector ].

Clearly, if F" contains a normalized self-dual code then n must be even and a multiple
of the characteristic of F. If char F 2, it is also readily checked that any self-dual code
is necessarily normalized.

For each element a of F let Xa be an indeterminate. The complete weight
enumerator for a code C

_
F" is defined by the equation

Wc=EX.,X X.,
where the sum extends over all vectors (al, a2," ", a,) in C. If IFI =q is odd and C is
self-dual, Wc is invariant under the action of a group Go of q q matrices, which, as
an abstract group, is isomorphic to SL(2, F)x J [6]. Here J is cyclic of order 2 or 4,
according to whether q 1 or 3 mod 4, respectively. This group is contained in a larger
matrix group G (constructed in 4 and 5) which leaves invariant the complete weight
enumerator of any normalized self-dual code. Matrix generators for these groups
appear at the end of this section.

Starting with a normalized self-dual code C, it is possible to impose conditions on
the complete weight enumerator, which imply that it is invariant under the action of a
still larger matrix group. One obvious example of this is to require that the dimension
n be a multiple of some fixed integer k. The corresponding extension of G is obtained
by adjoining the scalar matrix el, where e is a primitive kth root of 1. Another example
is to assume that the subspace C is setwise invariant under the action of the Galois
group of F over some subfield. Here, the larger matrix group is obtained by forming
the semidirect product of G with the Galois group, and so is not a simple "scalar
extension."

Scalar extensions of G may be regarded as trivial. With this in mind, it becomes
interesting to classify all finite subgroups H of GL(q, C) which contain G and which
contain no scalar matrices other than those already contained in G. For a given value
of q different from 2 or 4, the matrix group G is primitive, and, as a consequence of a
theorem of Jordan [13], there are only finitely many possibilities for H. For a modern
treatment of Jordan’s theorem see [11, Thm. 14.12], or [4, Thm. 30.3], where a slightly
better bound for IH" 7](H)[ is obtained.

For odd q the group G has the form C x G, where C is cyclic of order 2 or 4 and
is represented by scalar matrices. The group G turns out to be perfect (equal to its
commutator subgroup G’) when q. > 3, and hence is the unimodular subgroup of G.
When q 3, is not perfect and G’ is the unimodular subgroup of G. The linear group
G’ is still primitive and by the remarks above, is the unimodular subgroup of G for all
odd q. For convenience we shall restrict our attention to the finite unimodular
subgroups H of GL(q, C) (and hence of SL(q, C)) containing t’. The result obtained
in 8 is that there is a unique largest such group hr.

When q 2 or 4, it turns out that G is similar to a group of monomial matrices,
and because of this there are infinitely many possibilities for H. Indeed, when q 2, G
is a dihedral group of order 16. This matrix group is therefore contained in an infinite
collection of larger matrix groups, each corresponding to an irreducible representation
of a larger dihedral group.

The remarks following the next theorem will attempt to justify considering only
finite subgroups of GL(q, C) containing G. The theorem itself is an example of the type
of result obtained using weight enumerators. N. J. A. Sloane attributes it to some
unpublished work of Gleason [20].

THEOREM 2.1. Let k > 1 be an integer, Fa finite field with q elements and C
_
F2n

a self-dual code. If the weights of all vectors in C are divisible by k, then one of the
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following holds:
(1) (k, q)= (2, 2), (2, 4), (3, 3) or (4, 2).
(2) k 2, q _-> 8 is a power o[ 2 and C is equivalent to a direct sum o[ n copies o[ the

code {(a, a)[a eF}.
(3) k 2, q 1 mod 4 and C is equivalent to a direct sum o[ n copies o1 the code

{(a, ca)l a F}, where c F and cz 1.
The proof of this result uses the Hamming weight enumerator, which is an invariant

( (1 q-l)(1 0) ), where e is a primitive kth root of lof the matrix group 1/q
1 -1 0 e

This matrix group may be viewed as an irreducible complex representation of
degree 2 of an abstract group G(k, q). When the parameters (k, q) are equal to one
of the four possibilities given in (1), the group G(k, q) is finite. In fact, we have the
isomorphisms

G(2, 2) D16,

G(3, 3) SL(2, 3) C4,

G(2, 4) -D12,

G(4, 2) GL(2, 3) Y Cs.

Here, Cn and Dn denote a cyclic and dihedral group of order n respectively, and
denotes a central product. The Molien series for the given two-dimensional rep-

resentation of G(k, q) is known in each case, and in fact generators for the full ring of
invariants are known and listed in [2].

If k 2 and either q 3 or q > 4, the group G(k, q) is infinite dihedral, and the
ring of polynomial invariants relative to the given two-dimensional representation is
generated by the single invariant x 2 + (q 1)y 2. For the remaining choices for (k, q) the
group G(k, q) is infinite, not dihedral, and the ring of polynomial invariants consists
only of constants.

Thus, when G(k, q) is infinite, the code is either highly restricted, or does not exist
at all. Returning to the situation discussed before the statement of the theorem, it seems
reasonable to consider only those conditions on the complete weight enumerator
of a normalized self-dual code which lead to a finite subgroup of GL(q, C), which
contains G.

In order to describe matrix generators for Go and G, it is convenient to introduce
some notation which describes the characters of F. Recall that a character of F is any
homomorphism from the additive group of F into the multiplicative group C.
Regarding (F, +) as an abstract group, the characters of F coincide with the irreducible
characters of the group (F, +). The trivial map F {1} is then the principal character
of F. Let GF(p) denote the prime subfield of F and let /Xo: GF(p)C be the
"standard character" given by/xo(]) exp (27ri]/p). Let tr :F GF(p) be the trace map
and define A :F C by A (a) 0(tr (a)). Thus, A is a nonprincipal irreducible charac-
ter of F. If b F, define Ab (a) A (ba) for all a F. Thus, Ao is the principal character
of F, A A and {;t Ib F} is the full set of irreducible characters of F. This notation
will be retained throughout the entire paper.

In order to state the MacWilliams identity it is convenient to introduce some extra
notation. If ]’(Xx,..., Xq) is a polynomial and M =(mii) is a q x q matrix, let ]’.M
denote the polynomial [(Yx,..., Yq) where Y Y’. mi’r’. Finally, a square matrix
whose rows and columns are naturally indexed by some set $ will be called an $ $

matrix.
THEOREM 2.2 (MacWilliams). Let C

_
F" be any (linear) code andfor each a F

letM’ be the F F matrix over C whose (r, s) entry is Aa(rS). Then, for every a 0 in F,
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the weight enumerators Wc and Wc are related by

1
Wc" l Wc M’a.

In particular, i]’ C is self-dual, then Wc is invariant under the action of q-a/2M’a.
The original version of this theorem appears in 14]. The proof of the version given

above closely parallels the original, and will be omitted.
For each a F, let Ma, Na, Da and Ea be the F xF matrices with entries in C

defined as follows"

(Ma)r,s q-a/2Aa(rs) (thus Ma q-a/2M’),

(Ea)r,s 6r,sAa(r).

Here 6r. denotes the Kronecker delta. By Theorem 2.2 we have Wc Wc" Ma for
every self-dual code C and any a F, a # 0. When a 0, Theorem 2.2 does not apply,
even though Mo and No are still defined. However, these matrices are singular, and
will not be used.

Notice that the matrix Ma is ambiguous, as the sign of the square root q-a/2 was
not specified. We assume that some choice is made for this sign, and that this same
choice is made simultaneously for all of the matrices Ma, a F.

Since Y’. c2 0 holds for every vector (ca,’", cn) of a self-dual code C, it readily
follows that Wc is invariant under Da for all a e F. If in addition C is normalized then
Y. ci 0 also holds, and We is invariant under Ea. That Wc is also invariant under Na
for a 0, is a consequence of the next result (although this also follows easily from the
definition of Wc and the linearity of C).

LEMMA 2.3. For every a, b, c, d F with a 0 and b 0 we have

MaMt, N-at
NaNb Nab,

DcDa Dc+a,

EcEa E+a.

M2 NbMa N
N-aDcNa
NIEcNa Ea-’c,

These relations are easily checked and the proof will be omitted. The matrices
Na and Da (for appropriate a) are discussed in [15], where they are denoted by Ta, T4
and T5 respectively.

From the remarks preceding the theorem, the weight enumerator of a self-dual
code is an invariant of the matrix group Go (Ma, D a, c F, a 0), while that of a
normalized self-dual code is an invariant of G (Ma, Dc, Eala, c, d F, a # 0). These
groups are determined abstractly in 4 and 5, and the Molien series for the given
matrix representations of them are worked out in 6 and 7.

3. Preparations from group theory. Most of the notation and terminology used
is standard. The general references for group theory chosen here are Gorenstein’s book
[7] and Huppert’s book [10], although there are many other good books. I. M. Isaacs’
book [11 and L. Dornhoff’s book [4] are used as references for representation theory.
In particular, Dornhoff’s book contains a complete character table for the group
SL(2, q) which will be referred to in 5.
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If G is a group and H is a subset of G, we will write H <-G to mean that H is a
subgroup of G. If g for a A, are elements of G, let (g[a A) denote the subgroup
generated by {gla A}. If H -< G, a (right) transversal for H in G is a set T of coset
representatives for H in G. Thus G t_J t THt, where the union is not redundant. The
notation ISI will always mean the cardinality of the set S. Hence, if T is a transversal
for H in G then TI- a" HI, where [G" H[ denotes the index of H in G.

If H, K-<_ G and G is the internal direct product of H and K, then G H> K.
The core in G of a subgroup H, denoted by coreo (H), is the largest normal subgroup
of G that is contained in H. Hence,

core (H)= f3 x-lHx.
xG

An action of a group G on a set 1 is a function fl x G fl, where a a and
(O g)h gh

a Here, the image of (a, g) is denoted by a g IfH andN are groups, an action
by automorphisms of H on N is an action which satisfies (xy)h xhy h for x, y N and
hH.

If H acts on N by automorphisms, then the semidirect product G H <N may
be formed as follows. As a set, G is H x N, and the group multiplica6on is given by:
(h, n)(h’, n’) (hh’, nh’n’). It is easily checked that G is a group, and H and N will be
regarded as subgroups of G via the natural embeddings. In particular, n h h-lnh so
that the action of H on N becomes conjugation within G. The group H acts faithfully
on N if the kernel of the action is trivial, that is Cn(N)= {1}.

A representation p of degree n of a group is a homomorphism p" G GL(n, C).
The corresponding character h’ afforded by this representation is the function X" G C,
defined by x(g) trace (p(g)). Two representations p and p’ of degree n are equivalent
if there exists GL(n, C) such that p(g)= t-p’(g)t for all g G. It is well known in
representation theory that two representations are equivalent if and only if they afford
the same character [11, Corollary 2.9]. A representation of degree one will always be
identified with its character and will be called a linear character of G. If G H> K,
and if h and are linear characters of H and K respectively then h #/z denotes the
linear character of G defined by (A # tx)(hk) A (h)tx(k). If p is any representation of
G then det p denotes the linear character whose value at g G is det (p(g)). It is
convenient to regard any representation, or character, of a factor group GIN as a
representation or character of G (with N in its kernel).

If p is a representation of H <-G then p denotes the corresponding induced
representation. If T is a transversal for H in G then p (g) may be defined as a T T
matrix in blocked form, as follows. The (t, u) entry of p(g) is p(tgu-a), where
p(x) p(x) for x H and p(x) is the zero matrix (of the appropriate size) otherwise.
If p affords the character X, then g will denote the character afforded by p. The
representation p does depend on the choice of T, but its character X does not. In
particular, p is well defined up to equivalence of representations.

The kernel ofp is the largest normal subgroup of G which is contained in ker (p).
Thus, kerp core (ker p)= fq xx-(ker p)x.

If K is another subgroup of G, then by the Mackey decomposition, the restriction
of p to K (denoted O[K) is equivalent to a direct sum of representations of the form
(taxlx-lHxn:)c, where x ranges over a set of double coset representatives for (H, K) in
G. Here, pX is the representation of x-Hx defined by pX(x-lhx)=p(h). If g is the
character afforded by p, let X denote the character afforded by px. Hence, X (x-ahx)
x(h). A special case is worth pointing out. If H- G, then g is a character of H for all
x G, and G acts transitively on the set {xX[x G}. The inertia group of h’ in G, denoted
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I(X), is the stabilizer of X in G under this action. Thus, Io(x) {g GIXg X}. Since

X is a class function on H it follows that H =<I(X). If X is an irreducible character of
H and I(x)= H, then X is irreducible (see [11, Thm. 6.11]).

If X is an irreducible representation of the normal subgroup N of G, say that X is
extendible to G if there exists a character , of G such that ;IN X. Clearly, if X is
extendible to G then I(X) G. The converse is not true. However, it is convenient to
record here the following extendibility theorem.

THEOREM 3.1. Let X be an irreducible character of the normal subgroup N of G.
Assume I(x) G. Then X is extendible to G if either

(1) GIN is cyclic, or
(2) X is extendible to all subgroups H of G, containing N, such that H/N is a Sylow

p-subgroup of G/Nfor all prime divisors of IG" NI.
(The first part of this theorem is [11, Corollary 11.22] and the second part is [11,

Corollary 11.31 ].)
We remark, that in the second case of the theorem, if H/N is a Sylow p-subgroup

of GIN and X is extendible to H, then X is extendible to g-lHg for all g G. Hence,
extendibility need only be checked for a single Sylow p-subgroup of GIN for each
prime divisor p of G" NI.

If X is extendible to a character , of G, then , is not necessarily unique. However,
every extension of X to G has the form A, where A is a linear character of G with
kernel containing N. If GIN is perfect, i.e., equal to its commutator subgroup, then
the only choice for A is the principal character 1, and , is unique.

The following theorem provides a uniqueness result for extensions of representa-
tions.

THEOREM 3.2. Let X be an irreducible character of the subgroup N of G afforded
by p. IfX is extendible to a character ; ofG, then p is extendible to a unique representation
of G affording

Proof. Let t3 be a representation affording ). Then t3IN affords X X, so t3l is
equivalent to p. Replacing t3 by an equivalent representation, we may assume pr p.
Suppose now t5 is another representation of G affording ,, satisfying
and t3 afford the same character, there exists a nonsingular matrix such that

(g) t-l(g)t for all g s G.

Now tSl t3lN so commutes with p(x) for all x N, and this implies, by Schur’s lemma,
that is a scalar matrix. Hence t5 t3 and the theorem follows.

4. Construction o| G (odd characteristic). In this section, F FG(q), where q is
a power of the prime p and p-> 3. Let V denote the two-dimensional row space over
F, that is, V ={(a, b)la, b F} and define the group E as follows: As a set, E is
V x GF(p). If (u, m) and (v, n) are in E, define

(u, m)(v, n)= (u +v, m + n +tr (UlVz-uzva)).

Here tr:FGF(p) is the usual trace map, u =(ul, u2) and v (vx,/32). It is readily
checked that E is indeed a group and in fact is an extraspecial p-group of exponent p
and of order q2p. It will sometimes be convenient to identify the set F F GF(p)
with E.

Define an action of the special linear group SL(2, F) on E as follows: For
g $L(2, F) and e (v, n) E, define e g (vg, n). Again, it is readily checked that this
is an action, and since det g 1 for g $L(2, F), the action is by automorphisms. Notice
that $L(2, F) acts on E/TI(E) and that this action may be identified with the natural
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action of $L(2, F) on V. Let ( denote the semidirect product $L(2, F)K E. Hence, as
a set ( is $L(2, F) F_., with the group multiplication defined by (g, e)(h, f) (gh, ehf).
As usual, SL(2, F) and E will be regarded as subgroups of G, via the natural
embeddings.

It is convenient to fix a notation for certain subgroups of G. Let Ao {0} xF {0}
E, and 7/= {0} {0} GF(p) <= E. Notice that Ao is elementary abelian and 7/= 7/(E).
Let A AoZ Ao < 7/, so that A is also elementary abelian. Let $ SL(2, F), and
define

P={(10 )aEF}<=S and H={( a_10) aEF}-<_S.
Then H normalizes P and the group PH normalizes Ao, so PHAo is a group. The group
7/is centralized by PHAo so PHA PHAoT/= PHAo , 7/. Finally, let T F {0} {0} =<
E so that T is a subgroup of E as well as a transversal for PHA in PHE (and A in E).

Recall that/zo denotes the "standard character" of GF(p) 7/, and we may regard
/zo as a character of 7/. Define the representation pl of PHE by setting pl

(1pHAo # leo)PHE with the understanding that the transversal T is used in the construc-
tion of the induced representation. Since T is a group naturally isomorphic to F, pl(g)
will be viewed as an F F matrix for g PHE.

All of the above notation will be fixed throughout this section.
The first theorem of this section is an explicit determination of the matrices pl(g)

for g PHE. The result ties in with several of the matrices defined at the end of 2.
THEOREM 4.1. The representations pl, pl[PE andpl] are allfaithful and irreducible.

Moreover
(1) If e=(a,b,m)E then the (r,s) entry of pl(e) is 6r+a.sAzb(r+a/2)txo(m). In

particular, if e (0, b, O) Ao, then pl(e)
(2) i[

x
0

eP, then

(3) I[

-1 e H, then pl(h) Na.
a

Proof. From the definition of

p1[ (1pHAo # Ixo)PHI ((I PHAo
The character lao #/.to of A has inertia group equal to A in E, and it follows that
(1ao # /Zo)E is an irreducible representation of E. Thus, pl is irreducible as well as
pxle and pl itself.

The kernel of pile is the core in E of ker (1ao # /Zo)= Ao. Since every nontrivial
normal subgroup of E must intersect the center 7/ nontrivially, and AofqZ 1, it
follows that the core of Ao in E is trivial. Hence pl[z is faithful. Let K be the kernel
of/91. Then K f’) E 1, so K

_
CpHE(E). But CPHE(E) CPHE(E/7/) E, as PH acts

faithfully on E/Z. Thus K
_
E so K K f’l E 1, and pl is faithful.

Now suppose e--(a,b,m)eE. For (r, 0,0) eT we have PHA(r,O,O)e-
PHA(a + r, b, m + tr (br)) PHA(a + r, 0, 0). Thus, the (r, s) entry of pl(ei is
0 unless s=r+a. The (r,r+a) entry is (1PHAo#lZ0)(X), where x=
(a +r, b, m /tr (br))(-r-a, O, 0)= (0, b, m +tr (2br/ba)). Hence (1pHAo # /Zo)(X)
/xo(m + tr (2br + ba)) =/xo(m)/zo(tr (2b(r + a/2))) lzo(m)AEb(r + a/2). The rest of (1)
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now follows from the definition of E2b.

Suppose x
0

eP’If(r’O’O)eTthenPHA(r’O’O)x=PHAxx-(r’O’O)x=
PHA(r, O, 0) PHA((r, O)x, 0) PHA(r, ra, 0) PHA(r, O, 0). It follows that O(x) is a
diagonal matrix, and the (r,r) entry is (1plao#o)(x(r, ra, O)(-r, O, O))=
(1PHAo 0)(0, ra, tr (r2a)) o(tr (r2a)) ha(r2). From the definition of D then,

OI(X)=pl( ) D.

Finally suppose h=
0 a_ ell. If (r,O, 0)T, then PHA(r,O, 0)h=

PHAhh-(r, O, O)h PHA(r, O, O)h PHA((r, O)h, O)= PHA(ra, O, 0). Thus, the (r, s)
entry of o(h) is zero unless s ra, and the (r, ra) entry equals

(lenao o)(h(ra, O, O)(-ra, O, 0))= (leao o)(h) 1.

(a O)By definition of Na then, pl(h)=pl
0 a_ =Na.

COROLLARY 4.2. The group generated by N, Db andE for a, b, c F, a 0 is a
solvable group of order (q 1)q 2.

Proof. By the preceding theorem,

(Nla e F) pl(H), (Db b e F) pl(P), (Eclc F) pl(Ao).

It already has been noted that PHAo is a group, and hence the group generated by
these matrices is pl(P)pl(H)pl(Ao)= pl(PHAo). As pl is faithful, this linear group is
isomorphic to PHAo. Clearly PHAo has order (q- 1)q2 and PHAo is contained in the
solvable group PHE.

THEOREM 4.3. The representation pl[PE is uniquely extendible to a representation
of . Moreover, if 0 denotes the unique nonprincipal character of PHE/PE satisfying
192= 1pHE, then PIPHE

Proof. First notice that E_ ( and that the character of pile is invariant in (. By
Theorem 3.1, to prove that pll is extendible to (, it suffices to prove that it is extendible
to RE for every Sylow r-subgroup R of S. The case that r p is standard (see [5] for
instance). For r-p we may assume R -P. In this case, PllPE is an extension of PlI,
and it follows that Pile is extendible to a representation of (. Any other extension
has the form hp, where h is some linear character of (.

If q > 3 then (’= t forcing h 1 and so p is the unique extension of PlIE to
Now PI’H and pl are both extensions of pl[, so PI’H, O’p for some linear character
19’ of PHE. In this case (q > 3) the commutator subgroup of PHE is PE, so the kernel
of 19’ contains PE. The equation p[PZ ple follows and p is the unique extension of

to O.
Suppose now q 3. Then ItS" 0’1 3, and there are three extensions of p,lE to (.

As before, pIPH. O’pl for some linear character 19’ of PHE. In this case, however, the
commutator subgroup of PHE is E. The character 19’ is uniquely determined by its
restriction to PH P’ H. Write 19’ 191 # 192, where 191 and 192 are irreducible characters
of P and H respectively. Let to denote a nonprincipal linear character of G. Since

2G PG’ it follows that l a, to and to are the three distinct linear characters of G, and
--/Oexactly one of these, say to, satisfies to le 0. Then to is the unique extension of

pl[ to ( which satisfies to-p[p p[p.. We may replace p by to-p so as to assume
0 and OlP 1p. Then p is the unique extension of px[PZ to .



WEIGHT ENUMERATORS OF NORMALIZED CODES 355

In either case we have proved that pllPE has a unique extension to a representation
p of t and that p satisfies ole, 0’p for some linear character 0’ of PHE/PE. It
remains to prove that 0’= 0.

By Theorem 4.1 (3), if a eF and h
0 a- then o(h)=N. Now N is a

permutation matrix corresponding to the permutation F F, given by x ax. Assume
a is a generator for F. Then this permutation fixes one point (namely 0) and moves
the others in an orbit of size q- 1. As q- 1 is even, det o(h) -1. From the definition
of 0, it follows that det o(h) O(h), holds for all h H, as the equation holds for a
generator.

On the other hand, det o(h) 1 for all h e H as H G’ (regardless
q). Thus 1H det P[H det (OplIH) (0)q det PllH OOH, as (0)q- 1H. This
equation forces 0 OH, and hence 0’= 0. The theorem now follows.

It is worth noting that det p # 1, if q 3.
Notice that

a

where (. IF) is the "Legendre symbol for F," i.e., (a/F)= 1 if a is a square in F and
(a/F) =-1 if a is a nonsquare in F. Thus,

(a 0) ()(a 0) () F/9
0 a -1 Pl 0 a_ N for all a

At this point we have shown that each of the matrices Na, Db, Ec (for a, b, c F,
a 0) appears in the image of pl. The matrices Ma for a 0 are not in the image of pl

but certain scalar multiples of them are in the image of p, as the next theorem shows.

THEOREM 4.4. Let p be the unique extension ofplpE to r, guaranteed by Theorem

4.3. Then 0 -2
cM, where c det MI. Moreover, c + 1 if q 1 mod 4 and

c + if q -= 3 mod 4. Finally,

Ma c-() ( 0 a/2 for allaeF0-2/a 0 ]

Proof. By Theorem 2.2,M N_ soM (N_) I. In particular,M- M3

N-1M, and the (r, s) entry of M-t is q-I/2A (-rs) Using this and Theorem 4.1, the
(r, s) entry of M-(p(a, b, O)M is

1., Ax(-rt)6t+,uA2b(t+)A(us)q t,uF

1 Y. Aa(-rt)Ax(2bt+ab)Ax(ts +as)
q tF

1
Y. A(ab + as + (-r + 2b + s)t).

q teE

If -r + 2b + s # 0 then the function

t--- ab + as + (-r + 2b + s)t,

is a bijection of F onto itself, and the corresponding sum is zero. If -r + 2b + s 0,
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then each term in the sum equals h l(ab +as)=ha(b+s). Thus, the (r, s) entry of
M71pl(a, b, O)M1 is 8r-zb,sha(b + s)= 6r_2b,sh(r-b). From Theorem 4.1 again, this is
the (r, s) entry of pl(-2b, a/2, 0). Hence, M7101(a, b, O)MI pa(-2b, a/2, 0).

Now x
-2

e S and (-2b, a/2)= (a, b)x, so that in G (-2b, a/2, 0)=

(a, b, O) x-(a, b, O)x. Therefore 0(-2b, a/2, O) O(x-(a, b, O)x) O(x-(a, b, O)x)
=p(x)-o(a,b, O)o(x)=p(x)-Ol(a,b, O)o(x), where we have used O]=O[. This
establishes that

( 0 1/2- ( 0 1/2MTo(a, b, O)M1 =0 -2 0
o(a, b, 0)0

-2 0 /

0 1/2)-holds for all a, b F. Hence, Mp
-2 0

centralizes all matrices of the form

( 0 1/2)
-1

ol(a, b, 0). Since F xF x {0} generates E and RllE is irreducible, MIO -2 0
is a

scalar matrix, by Schur’s lemma.

(0 1/2 (-1 0)Write p
-2 0 ]

cM1. Squaring this equation yields p
0 -1

c2N-" But

0 -1
e H so 0 0

=(-1/F)o
0

=(-1/F)N_. Hence, c

(-1/F). Now -1 is a square in F if and only if q 1 mod 4, and the formulas c + 1
for q-= 1 mod 4 and c +/-i for q--3 mod 4 follow. Notice that for all values of q,
q+l --1.

The matrix x _(-20 1/20/ has order 4 and d" d’l is odd, so e d’. Therefore,

det O(x) 1, which implies c q detM 1 and so det M1 c.
Finally, notice that for a 0, M MM (MM)(M)M N_,N_M1

NaMe. Since N, (a/F)o a_ and 0 is a homomorphism, we have

0 0
a

0_1) C-1/9 -1=c P 2a

a

as desired. ]
It should be noted that the matrices Ma for a F are determined only up to a

sign. However, since q is odd, c det Ma changes sign when M is replaced by -M.
Hence cM, is uniquely determined.

Because of the presence of scalar factors in the previous theorem, it is convenient
to extend the group 0 slightly. Define cq -1 if q --- 1 mod 4 and cq if q 3 mod 4.
Hence (cq) is a cyclic group of order 2 or 4. Define Go (cq) S and G (cq) . Notice
that, since S is naturally embedded in t, we may regard Go as a subgroup of G.

The representation p of G may be extended naturally to G by setting p(c, g)=
cp(g) for c (cq) and g (. Notice that we use the same notation for the extended
representation. It is readily checked that t9 is faithful on G.

THEOREM 4.5. (M,,, Na, Db a, b F, a # O) p (Go) and (M,,, N,,, Db, Eb a, b
F,a#O)=p(G).
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Proof. Let X denote (Ma, Na, Dbla, b F, a 0). Combining all of the previous
theorems we have"

0
a

M c-1() 0 () (a 0) (1P 2
N,= P 0 a -a Db=p

0
a

where all scalar factors belong to (cq). Hence X <- p(Go). Now, the Bruhat decomposi-

tion of SL(2, F) PH UPH( 0 10)-1
P is well known, and proves that

1 a 0
0 a

0
{P(0 )’P(0 a-") ’p 2

a,bF,aO

a

generates p(S). Hence, modulo (cqI), X is all p(Go), that is (cqI)X p(Go). It suffices
to prove cqI X.

Since (cI) is central in (cI)X, the commutator subgroup of (cqI)X coincides with
the commutator subgroup of X. Thus,

x’= ((cZ>x)’ o(O0)’ p(O’o) ,(S’).

Since _(-2/a0 a/2O/ has order 4 (for any choice of a F) and Is:s’l is odd,

( 0 a/2P -2/a 0 ]
belongs to p(S’) and hence to X’X. Now M=

-a ( 0 a/2c (a/F)P_2/a 0 ]Xandsoc (a/F)IX. ThisresultholdsforallaF. Since
-1c +cq, the field element a may be chosen so that c -a(a/F) c. Hence, cI X and
X p(Go) as required.

Now let Y=(M,Na, Do, EoIa, bF,aO). By Theorem 4.1(1), Eo=
to(O, b/2, O) p() <-_p(G), so Y <-p(G) by the first part of the proof. Since X _-< Y, the
inclusion tO(Go) <- Y also follows from the first part of the proof.

Since the action of S on El7] is irreducible, and E’= 7/, it follows that the only
subgroups of ( containing S are S, 775 and (. Hence, the only subgroups of G
containing Go are Go, ZGo and G. Now for b 0, Eo p (77Go) and it follows that Y G
as required.

The significance of the last result is the fact that the weight enumerator of a
self-dual code in F" is an invariant of p (Go). If the code is also normalized, the weight
enumerator is an invariant of p(G). Notice that for q-= 3 mod 4 these groups contain
//which forces n to be a multiple of 4. It is possible to give a direct proof of this last
result (see 1 8]).

The exceptional behavior when q 3 is also interesting. Here to(G) contains each
of the diagonal matrices

where to is a primitive cube root of 1. What this means from a coding theory point of
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view is that any code vector from a normalized self-dual code over GF(3) contains a
multiple of 3 of zeros, ones and twos.

5. Construction of G (characteristic two). Throughout this section F denotes the
field GF(q), where q is a power of 2.

Let V=FF and define the bilinear map [3" V V-GF(2) by /3(v, w)=
tr (vw2), where v (v, v2), w (w, w2) and tr’F-, GF(2) is the usual trace map.
Associated with/ there is another bilinear form/ (the "transpose of/") given by
the familiar formula/r(v, w)=/3(w, v). If y is any form and gGL(2, F), let y.g
denote the form (v, w)y(vg-, wg-). This defines an action GL(2, F) on the space
of all bilinear forms V V-, GF(2). Set

O+ V) ={g GL(2, F) fl g {/3,

It is readily checked that

so that O/(V) is the full two-dimensional orthogonal group over F, with respect to the
quadratic form (Vl, v2) -- VlV2.

As in the odd characteristic case, an appropriate extraspecial group E is construc-
ted in such a way that O/(V) acts "naturally" on E. The matrices M,, Na, Db, Eb
(a F, b F) will then lie in the image of some irreducible representation of
G=O+(V)E.

The map /3 determines the quadratic form Q(v)=fl(v, v), and notice that/3 a

determines this same form. If g O+(V), define 6(g) GF(2), by setting 6(g)=0 if
fl.g =/3, and 6(g)= 1 if/3.g =/3 .

The group E is defined as follows. As a set, E is V GF(2) (sometimes viewed
as F xF x GF(2)) with multiplication defined by

(v, m)(w, n) (v + w, m + n + (v, w)).

It is readily checked that E is an extraspecial 2-group of order 2q 2. If g O/(V) and
e (v, m) E define e g (vg, m + 6(g)Q(v)). The equations

6(gh)=6(g)+6(h), O(vg)=O(v), O(v+w)=O(v)+Q(w)+(v, w)+7"(v, w),

imply that O/(V) acts on E by automorphisms.
As usual, let G O/(V)v< E be the semidirect product of O/(V) with E. As in

the odd characteristic case, O/(V) and E are viewed as subgroups of G.
Define four subgroups of E (and hence of G) as follows"

Ao {0} x F x {0}, T F x {0} x {0},
7] {0} x {0} x GF(2), A AoT].

Notice that T is a transversal for A in E. Let

a_ a eF <-O/(V).

Then H normalizes each of the four subgroups listed above. Also, HA HAoT]
HAo " 7]. As in the odd characteristic case, x0 (the "standard character" of GF(2)) will
be viewed as a character of . Let 0 denote the representation of HN induced from
the character 1HAo 0 on the subgroup HA. Thus p (1HAo 0)HE and we use the
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transversal T in the construction of this induced representation. As before, the rows
and columns of pl (x) will be indexed by elements of F.

TI-IEOREM 5.1. The representations pl and Pile are faithful and irreducible.
Moreover:

(1) Ire =(a, b, m)E then the (r, s) entry ofpl(e) is Sr+a,sAb(r)tzo(m). In particular,
if e (0, b, O) Ao then 01(e) Eb.

a
(2) tf h

0 0)a_ e H then pl(h) Na.

Proof. That pl and pile are faithful and irreducible follows from an argument
identical to that given in the first part of the proof of Theorem 4.1.

Suppose now e-(a,b,m)eE and (r, 0,0) eT. Then HA(r, O, O)e
HA(a + r, b, m +tr (rb)) HA(a + r, 0, 0). Hence, the (r, s) entry of pl(e) is zero unless
s a + r while the (r, r + a) entry is (1HAo # /Zo)(X), where x
(a + r, b, rn + tr (rb))(a + r, O, O) (0, b, rn + tr (rb)). Hence (1HAo # /Zo)(X)
txo(m + tr (rb)) txo(m)txo(tr (rb)) txo(m)hb(r). The rest of (1) follows from the
definition of

NowsupposeaFandh=(a O)0 a -1 H. If (r, 0, 0) T, then HA(r, O, O)h

HAhh-l(r, O, O)h HA(ar, 0, 0) so that the (r, s) entry of pl(h) is zero unless s ra.
The (r, ra) entry equals (1HAo # tzo)(h(ar, O, O)(ar, 0, 0))= (1HAo #/zo)(h) 1. By the

(a 0)definition of N, then,

THEOREM 5.2. The representation 01 ofHN is extendible to G. Moreover ifp denotes
one of these extensions, then

0 a) Fx
0
=cM fora

where c + 1 is independent of a.

Proof. The group E has a unique faithful irreducible character, say ’, and, by
Theorem 5.1, " is afforded by pl]. Let be the character affordedby pl. Then is
an extension of " to HE and any other extension has the form 0r for some linear

character 0 of HN/N. Let a be a generator of F and set h
0 a -1 e H. By the

previous theorem, pl(h)= N. The matrix Na is a permutation matrix corresponding to
the permutationF F, given by x ax. There is one fixed point under this permutation
(namely 0) and the other elements of F are moved in a cycle of length q 1. Since q 1
is odd, det N, 1 and det gl 1 follows.

Suppose first that q > 2. Then is the commutator subgroup of HE and det (
1. Hence det 0g= 0q det g= 0 for any linear character 0 of HE/E. This proves
that 01 is the unique unimodular representation which extends 011, and hence its
character g is invariant in G. As G/HE is cyclic, 01 is extendible to G, by Theorem
3.1. In fact, as IG" HNI 2, there are precisely two extensions of 01 to G.

If q 2 then 01 PlIE and " is the unique faithful irreducible character of E
(=Ds). Hence, pl extends to a representation of G (by Theorem 3.1 again). As in the
preceding case, there are two extensions of pl to G.

Let p denote one of the extensions of pl to G. (The other is then Kp, when K is
the unique linear character of G with kernel HE.)
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From Theorem 2.2, M2 N-1 N1 L since -1 1 in characteristic. 2. Hence
Mi-1 M and the (r, s) entry of M-p(a, b, O)M is

1
Z A(rt)6t+auAb(t)A(us)

1
Z A(rt)A(bt)A(ts+as)

q t,u_F q tF

_--1 E A((r+b+s)t+as).
q tF

Arguing as in the odd characteristic case gives that this sum is zero if r + b + s 0,
and is A l(as)=Aa(S) if r+b+s =0. Hence, the (r, s) entry of M-p(a, b, 0)M1 is
6r+b,sA,(S) 6,+b,sA(r)A(b).

On the other hand,

-1 -1

p( 10)p(a,b,O)p( 10)=p(( 10)(a’b’O)(O1 10))
p(b, a, O(a, b)) p(b, a, tr (ab)).

Since pIE=PIlE, the (r,s) entry of this last matrix is 8r+b,sh(r)lxo(tr(ab))=

+,(r)Aa(b). HenceM acts by conjugation on o(E) in the same way that 0 1 0

acts. By Schur’s lemma, then, 0 1
=cM for some complex number c. Now

(0 1) and M both have order 2, so c=l Finally, the identity MM=N_ =NPl_ 0_

implies M NM NM. By Theorem 5.1,

P 0 a- pl
0 a_ =N,

SO

and the theorem follows.

a10)) =P(o aO-)P( 1/\ cNM cM,
0/

THEOREM 5.3. The groups (M, Na, Db a F, b F) and (M, N, Db, Eb a
F, b e F) coincide, and both are equal to p(G), where p denotes either of the two
extensions ofp to G.

Proof. LetX (M,,, N,, Do la e F, b F) and Y (Ma, Na, Db, E a e F, b e F).
Obviously X _-< Y. If b, rF then hb(r2) A (b2r2) o(tr (b2r2)) o(tr (br)) Ab(r).
The penultimate equality follows, since (br) is a conjugate of br. Hence, hb:(r2) hb (r)
and DO "-Eb follows. Thus X Y, proving the first part of the theorem.

Now let p denote one of the two extensions of 01 to G and let c +1 be the
constant appearing in the statement of Theorem 5.2. Since p(0, 0, 1)=-/, it follows
that

Ma co a- 0
O(G) for allae

Theorem 5.1 shows that N and Db E4 belong to pI(HE)<-_p(G) for all a eF and
b e F. Hence Y X <- p(G). It remains to prove the reverse inclusion.
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By Theorem 5.1, p (A0) {Eblb F} <-_ Y. From Theorem 5.2,

((0 1)
-1

(0 1))=M_flp(ao)Ml<y.p(T)=p
1 0

Ao
1 0

As T and Ao generate E, p(E)<= Y. In particular, -I p(0, 0, 1) Y. Using the same
two theorems again, p(O+(V))=(cM,, N[a eF)<=(-I, M,, N,la F)<= Y. Hence,
p(O)=p(O+(V)E) <- Y, as desired. [-1

As already noted in the first section, a self-dual code over F is automatically
normalized. This fact also follows from the identity Eb Db2.

The significance of the last theorem is that the complete weight enumerator of a
(normalized) self-dual code is an invariant of the linear group p(G).

It is worth pointing out that, even though the extension p or 01 to G is not unique,
the group p(G) is uniquely determined. The Molien series for this group is calculated
in7.

6. The Molien series (odd characteristic). The Molien series associated with a
complex representation p of a finite group G is defined by

1 1
b’(X) go det (I-Xp(g))"

The coefficient of Xa in this expansion is the dimension of the space of homogeneous
polynomials of degree d which are invariant under the action of the matrix group p(G)
[17]. A proof of this fact may also be found in [19]. When the representation p of G
is clear from the context, the Molien series will be denoted by a(X). Notice that the
polynomial det (I-Xp(g)) depends only on the eigenvalues of p(g) and hence on the
conjugacy class of g, rather than on g itself. In calculating the series it is convenient to
group together terms from the same conjugacy class. The Molien series is determined,
then, when a complete description is given for the conjugacy classes, and when for each
class representative g the polynomial det (I-Xp(g)) is known.

It is convenient to begin this section with two lemmas concerning quadratic forms
over finite fields. These lemmas will be useful in calculating some of the polynomials
det (I-Xo(g)).

LEMMA 6.1. Let F be a finite field of odd characteristic and let Fo be the prime
subfield of F. If 0 # c F, let O"F Fo denote the quadratic form given by O (x)
tr (cx), where tr" F Fo is the trace map. I]:a Fis not a square, then O is not equivalent
to O.

Proof. If d F, d # 0, then O is equivalent to Oa2 (the transforming map F F
is given by multiplication by d). Hence, we may assume that a is a generator for the
multiplicative group F. If IF[ p", where p is a prime, then 1, a, a, a "-1 is a
basis for FIFo. Let Uo, ul," ’, u,-1 be the dual basis. (That is, tr (aui) &i.) Define
the matrix M (mi) over Fo by the equations

n-1

a miiui, i=0, 1,...,n-1.
/’=0

Hence, tr (aa) mi mii. Notice that M is the matrix of the form 01 in the basis
1, a,..., a "-1. Let/(x) x" + r,_lx

"-1 +... + roFo[x] be the irreducible polynomial
of a over Fo. Then the matrix of the form O in this same basis is easily worked out
to be CM7- CM, where C is the companion matrix of ]’(x). Therefore, the discriminant
of 01 is det M, and that of O is (det M)(det C)= (-1)"to det M. To prove that 01 is
not equivalent to Oa, it suffices to show that (-1)%o is not a square in Fo. The norm
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map N’FF is surjective, and the generator a of F must map to a generator of
F. Hence, N(a)= (-1)"r0 generates Fo, and in particular cannot be a square in Fo.
The lemma now follows. U

LEMMA 6.2. Let p be an odd prime and GF(p) a nonsquare. Let 0" and 0-
be the quadratic forms defined over GF(p) by the equations:

O+2k+l (X1, X2, X2k+l) X X2 + .if_ X2k-lX2k -" Xk+l,

Q-k+I (X1, X2," XEk+I)-’XIX2+ + X2k-lXEk + IX22k+1,
+Q2k(X1, X2," X2k)-- XIX2 + -’X2k-lX2k,

k _->0,

k-_>O,

k_->l,

k_->l.

(Os, Os)s (OsOs, ls)s 2,

proving that : and r/are irreducible.
The decomposition 0s : + r/ can also be seen by appealing directly to the

character table (see [4, p. 228]). Indeed, by Theorems 4.1 and 4.3, we know that

P 0 a- (a/F)N, holds for all a e Since Na is a permutation matrix correspond-

For c GF(p) let n (c) denote I{(x, x2,’’’, Xd) GF(p)dlO (xx,""", Xd)= CII.
TheFt

+ 2k, + p2k-1 k k-1 2k-1 k(1) n2k+l(O)=n]k+(O)=p n2k(0)= +p --p n2k(O)=p --p +
k-1.P

(2) / / p2k-1 k-1n2k(1) n2k (l) -p
(3) + 2k k +n2k+l(1) n2k+ (l) p +p (l)= nk+ (1) p2k k

n2k+l -P
(4) nk(1) nk(l)=p2k- +pk-X.
The proof follows from straightforward counting arguments and will be omitted.

In verifying the fourth identity, it is useful to observe Qk Q;k-2 Q], and that Q]
is equivalent to the quadratic form GF(p2)o GF(p), given by the norm map. All of
the notation rom 4 is retained in this section. In particular, for the remainder of this
section, F is the field GF(q), where q is a power of the odd prime p. The groups
G SL(2, F) E, S SL(2, F) are direct factors of G, G0, respectively. Because of
this, the Molien series for G and G0 with respect to O follow easily from those of
and S (see Theorems 6.9 and 6.11 below).

The Molien series for S will be calculated first. Let O be the character afforded by
the representation O. Then O is irreducible since, in fact, O is irreducible. However,

0 0
=(-1/F)N_a is not a scalar matrix, so Os reduces. If (-l/F)= 1, then

(-1 0) has eigenvalues 1 and -1 with multiplicity (q + 1)/2 and (q- 1)/2 respec-O_ 0 -1_

tively, while if (-l/F)=-1, these multiplicities are reversed. Thus, Os reduces to a
sum of two characters, say +, where the degrees are (q 1)/2 and where no
constituent of one of the summands is faithful while all of the constituents of the
other are.

In fact, the characters , are irreducible, as is seen by the following. By standard
arguments O0 is the character of the representation of G on atqxq(C) where the
action is given by m.g o(g)-amo(g) for g e G and m e. Now o(FxFx {0}) is a
basis for , and S permutes this basis. Thus, OsOs is the permutation character of S in
its action on F xF x {0}. There are exactly two orbits (one contains only (0, 0, 0)) so
the multiplicity of l s in OsOs is 2. Hence, by properties of character inner products,
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ing to the permutation F--> F given by multiplication by a, it follows that n
0n + (regular character of H). Here 0 has the same meaning as in Theorem 4.3. In
particular, l s appears at most once as a constituent of s. Any other irreducible
character of SL(2, F) of degree less than q has degree q 1 or (q + 1)/2. The restriction
of any character of degree q 1 to H is the regular character of H, and as such contains
In as a constituent. If this character appears in ,s then so must ls and this leads to the
contradiction (fin, ln)n 2. From the character table of SL(2, F) it now follows that
ffs + , where is I or 2, using the notation of the table found in Dornhoff’s book.

Using the ideas appearing in [12], the values of the character Os can be computed
explicitly without the use of a character table, although we shall not do this here. Notice
that the eigenvalues of p (g) are readily computable if g is in P orH since these matrices
are known and easy to work with. The character ffs will be used to determine the
polynomials det (I-Xp(g)) for other elements of S.

Let a be a generator of F and set h
0 a_ Let k SL(2, 4) have order q + 1

and set c d
0

Let 1 and z denote the identity matrix and
0

respectively. Table 1 lists the conjugacy classes of SL(2, F) together with the size of
each class. This differs from Dornhoff’s table [4, p. 288] only in that he uses a and b
to denote h and &.

TABLE 1.

Class h t,
representative 1 z 1-<_I-<(q-3)/2

Size of class q2+q

k rrt
l<-m<--_(q-1)/2

q2_q

c d cz dz

(q2_ 1)/2 (q2_ 1)/2 (q2_ 1)/2 (q2_ 1)/2

As in Dornhoff’s book, it is convenient to let e (- 1/F). Thus e 1 if q 1 mod 4
and e =-1 if q--3 mod 4. To calculate det (I-Xp(g)) we consider each class in turn.

Let g h H. We already observed that

fin 0K + (regular character of H).

Since (h ) has index d (l, q-1) in H we have l(hl "-0l<h’> / d (regular character of
(hi)). As o(hl)=(--1)l=(--1)d it now follows that det (I-Xp(hl))
(1- (--1)dx)(1-X<q-1)/a)a. Notice that this polynomial depends only on d (l, q 1)
rather than l, and this will be used later. Now suppose K (k) and g k K. Since
,s :i + r/i, where is 1 or 2, it follows from the character table that

(regular character of K) SK +
2 IK" kerwhere/x is the unique nonprincipal character of K satisfying/x lr, i.e.,

2. If d (m, q + 1) then, arguing as in the previous case, we have det (I-Xp(k’))
(1--Xq+/a)a/(1--(--1)dx). As before, this polynomial depends only on d=
(m, q + 1) rather than on m.

Notice that z hq-/2 kq+1/2 so that det (I-Xp(z)) may be computed using
either of the two formulas derived, alone. This polynomial equals (1-X2)-x/2(1
eX) (1 -X2)q+x/2/(1 + eX), where as we recall e (-1)-/2 (-l/F). Obviously,
det (I-Xo(1))= (1-X)L It remains to calculate det (I-Xla(g)) for the elements of
orders divisible by p.
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that

and

Since p( Db for all b F, and each Db is a diagonal matrix, it readily follows

det (I-Xp(c))= H (1-A1(r2)X)
rS

det (I-Xp(d))= I-I (1-A(r2)X).
rS

Denote these two polynomials by f+(X) and f_(X) respectively. Finally, since p(z)=
eN_, we have p(cz)= eDN_. This matrix is similar to a matrix in blocked diagonal
form which contains a single 1 1 block consisting of (corresponding to r 0) and
(q 1)/2 blocks of size 2 2 of the form

0

eA(r 0 ]

(corresponding to the unordered pair {r,-r} for rF). Thus, det (I-Xp(cz))=
(1- eX) (1-A (r2)2X2), where the product extends over a transversal for {1,-1} in
F. Let this polynomial be denoted by g+(X). Replacing cz by dz amounts to changing
A1 to A in the formula. If the resulting polynomial is denoted by g_(X), then
g_(X) det (1-Xo(dz))= (1- eX) 1-I (1-A(r2)2X2), where the product extends over
the same index set as before.

The only obstacle to the calculation of the Molien series for $ SL(2, F) (and
hence Go) is the determination of the polynomials f+/-(X) and g+/-(X). Notice that f+(X)
and f_(X) enter symmetrically into the Molien series (as do g+(X) and g_(X)) so only
the unordered pairs {f+(X), f_(X)} and {g+(X), g_(X)} need be determined.

LEMMA 6.3. [+(X)f_(X) (1 -X)2’/t’.
Proof. From the definition of f=(X),

f+(X) II (1 A (cr2)X),
rF

where the subscript is + if c rs 0 is a square, and if c is a nonsquare. Clearly,

2 2

rS rN

where S and N denote the set of squares and nonsquares in F. Hence,
2

rF

Now the map r---A(r) is a q/p to one map from F onto the group of pth roots of 1, so
f+(X)f_(X) (1 -X)q/ as desired.

Let O denote the field generated over O by adjoining a primitive pth root of unity.
Notice that I (r)e O, for all r e F, so f+(X) and f_(X) have coefficients in O. More is
true, as the following lemma shows.

LENMA 6.4. If q is a square, then f+(X) and f_(X) belong to 7/[X]. If q is not a
square, then f+(X) andf_(X) are conjugate polynomials having coefficients in the unique
quadratic extension o0 contained in 0.

Pro@ Let a e Gal (O/O). Then sends a primitive pth root of unity to its/th
power for some e 7 with (l, p) 1. Hence I (r) I (r) A (lr) for all r e F. In the last
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expression, is regarded as a nonzero element of GF(p). Hence

f+(X)= H (1-A(r2)X) H (1-A(Ir2)X).
rF rF

If is a square in F, this last expression is f/(X). Otherwise it is f_(X).
If q is a square, then every element of GF(p) is a square in F, so ]’/(X) f/(X),

holds for all Gal (Qp/Q). Hence [/(X), and similarly f_(X), have coefficients in
If q is not a square, then tz may be chosen so that is not a square in F. Thus

{f/(X),/_(X)} is an orbit under the action of Gal (Qp/Q) and this implies the final
assertion of the lemma.

LEMMA 6.5. Assume q is a square. Then, in some order f/(X) and f_(X) are the
polynomials

(1-X)q/P-+/(1 +X + +XP-1)q/+q/

and

(1-x)q/P+’/’q-4q/t(1 +X + +Xp-1)q/p-//p.

Proof. By definition, f+(X) HrF (1 A (r2)X). By the two preceding lemmas, and
the irreducibility of the cyclotomic polynomial, f+(X) has the form (1-X)l(14-X +

+X-I)"*, where, of course, +(p-1)m-q. In particular, f+(X) is completely
determined by the multiplicity of the root 1. This multiplicity is I{r FIA (rE) 1}t. Now,
A (rE) =/z0(tr (rE)) 1 if and only if tr (rE) 0, so I{r FI tr (rE) 0}[. Similarly, the
multiplicity of the root 1 for f_(X) is I{r FI tr (arE) 0}1 where a F is a nonsquare.
By Lemma 6.1, the forms x tr (x 2) and x ,- tr (ax) are not equivalent. Write q p2k,
SO that F is isomorphic to the vector space GF(p)2k, and these two forms are regarded
as forms defined on GF(p)2k. Now in any given dimension, there are two equivalence
classes of nonsingular quadratic forms. Hence these two forms (in some order) are
equivalent to QE+k and Qk, using the notation of Lemma 6.2. By that lemma, is either
2k-1 k k-1 pEk-1 pk k-1p +p -p or + p and Lemma 6.5 follows.

It is possible to determine explicitly which polynomial is f/(X), although this will
not be needed. The result is that f/(X) is the first polynomial if p 1 rood 4, and is the
second polynomial if p 3 mod 4.

LEMMA 6.6. Assume q p2k+l is not a square and that I(X) and (I)2(X) are the
irreducible factors of (1 +X+ +Xp-1) over the quadratic extension of Q contained
in Qo. Assume also that 1 and d2 are normalized so that 1(0)= 2(0)- 1. Then, in
some order, f+(X) and f_(X) are the polynomials

and

Proof. By Lemmas 6.3 and 6.4, f+(X) has the form (1-X)q/PI(X)2(X)m,
where q/p+(p-1)(/+ m)/2 =q and f_(X) has the same form with and m inter-
changed. The lemma will follow once is computed. Since/xo(1) is a primitive pth root
of 1, choose the notation so that/zo(1) is a root of I(X). Then the multiplicity of
I(X) as a factor of f/(X) is the same as for the factor (1-o(1)X). Now A(r2)

/zo(tr (r2)) SO h (r2) =/zo(1) if and only if tr (r2) 1. Since f+(X)= I-[reF (1-A (r2)X), we
have I{r

From the same argument as in the previous lemma, this integer is /n2k+l(1)
p2,+pk, or n2-k+l(1)=p2k--p k (in the notation of Lemma 6.2), and the result
follows. I-]
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Notice that when q is not a square, f+(X)f_(X), so f+(X) does not have all
coefficients in 7/. It is worth noting that when q =p is a prime, then these polynomials
are (1 X)I(X)2 and (1 X)qE(X)2.

Fortunately, the polynomials g+(X) can be calculated in terms of f+/-(X), as the
next lemma shows. For convenience, if c F define fc(X)= f/(X) and &(X)= g/(X)
if c is a square, and f(X) f_(X), & (X) g_(X) otherwise. Recall that e (-l/F)
(_1)(q-1)/2.

LEMMA 6.7. If C F then

[f2c(X2)] 1/2

&(X)=(1-eX)[I,X j

where the square root is chosen so that ga (0)= 1.
Proof. By definition,

g(X) (1 eX) rI (1 hc (r2)2x2),
tea

where A is a set of coset representatives for { + 1} in F. Hence,

&(X) (1 eX) 1-I (1 h2(r2)X2)
rA

1/2

=(1-eX)[ I-I (1-A2c(r2)X2)]rF

The product inside the square root is f2(X2) except that the term corresponding to
r 0 is not present. Since this term is (1-X2), the lemma follows. F1

As a consequence of this lemma and Lemma 6.3 we have

g+(X)g_(X) (1 eX)
2(1

1 -X2

Notice also that when q-p is a prime, g+/-(X) are equal to (1-eX)t(X2) and
(1 EX)2(X2).

At this point, the polynomials det (I-Xp(g)) have been determined for all
g S SL(2, F). The conjugacy classes for this group have already been listed, and
this leads easily to the next result.

THEOREM 6.8. The Molien series for S with respect to p may be calculated as
follows"

1 1(q3-q)s(X)--+
(l-X)q (1- eX)(1-XZ)(-)/

q(q+l)
dlq-1

d(q-1)/2,q-1
(1-X(q-)/)(1-(- 1)’X)

+
q2_2{1 [

If+(X)_-ff)2-f-ff+L(X)]
(1-x)),,/,,] }+ [ (g+(X) + g_(X))

(1 eX)2(1 X2

q(q-1) y. b(q + 1 (1- (- 711X_)2 alq+ d )(i2:--)-
d(q+l)/2,q+l
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Here f+/-(X) is given by Lemmas 6.5 or 6.6 according to whether or not q is a square,
and g+/-(X) is given by Lemma 6.7.

Recall that Go=(Cq)S, where (cq) is -1 or i, according as q-= 1 mod 4 or
q---3 mod4.

THEOREM 6.9. The Molien series for Go with respect to p may be calculated as
follows: Iq 1 mod 4 then

+o(X) ( s(X) + +s(-x))

while if q 3 mod 4 then

1/4(+so(X) (X)+s(-X)+s(iX)+ds(-iX))

In either case, s(X) may be calculated as in Theorem 6.8.
Proof. Aso(X) 1/IGol Yo 1/det (I-Xp(g))and Go (cq) S the contribu-

tion to the sum coming from the coset cS is

( )(cx)1 :
l<c,,>lla0l det (I- ci,rYp(g))

The result follows by summing over ], 0 <_-] < }(cq>].
Much of the work has already been done towards the calculation of the Molien

series for SL(2, F)E and G (cq) . Table 2 is a list of the conjugacy classes
of . Here h and k e $ have the same meaning as before. Again, A denotes a set of
coset representatives for { + 1} in F.

Let 7/= 7/(() 7/(E) so that 7/is cyclic of order p and generated by r (0, 0, 1) e E.
If c is a -conjugacy class then so is ,.i and hence acts on the set of conjugacy
classes by multiplication. Since [7/[ p, all orbits have size 1 or p. If a representative is
listed in the first column as gi then the corresponding class is in an orbit of size p under
the action of 7/, and it is understood that ] ranges over the integers from 0 to p- 1. If
the representative is not listed in this form, then the corresponding class is fixed by 7/.
These classes appear in the last three lines of the table.

TABLE 2
Conjugacy classes of.

Representative

z(
h’(’, <=i<=(q-3)/2
k, <=i<=(q-1)/2

Number of
classes

P
P
p(q-3)/2
p(q-1)/2

Size of
class

q3(q+ 1)
q3(q- 1)

c(
d(
cz
dz
(1, 0, 0)E-7/
c(r, O, 0), c A
d(r,O,O),reA

P
P
P
P
1
(q- 1)/2
(q- 1)/2

q(q:Z-1)/2
q(q:Z-1)/2
q2(q2-1)/2
q2(q2-1)/2
q2p_p
pq(q:Z-1)
pq(q:Z-1)

Notice that a given row may correspond to several classes. The number of such
classes is given by the entry in the second column, and the (common) size of any of the
classes is given in the third column.
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It can be checked that these representatives do in fact lie in distinct classes, and
the fact that the dot product of the last two columns equals pq3(q2_ 1) 10] shows that
the list is complete.

The first eight lines correspond to class representatives of the form gr’, where g S.
Moreover, ill(X) det (I -p(g)X) then det (I -Xp(g()) det (I iXp(g)) f(X),
where o(1) is a primitive pth root of 1. These polynomials have already been
calculated, and so it remains to determine det (I-Xp(g)) for g being a class representa-
tive appearing in one of the last three lines.

If p >3 then gP= 1 holds for each of these representatives. Moreover, g is
conjugate to g( which implies that multiplication by (a primitive pth root of 1) is a
permutation of the eigenvalues of p(g), preserving multiplicity. Hence, each eigenvalue
8i appears with the same multiplicity q/p in p(g) and it follows that

[p-1 ]q/pdet (I-Xp(g))= I-I (1-8X) (1-XP)"/’.
/=0

If p 3 and g (1, 0, 0), the same argument as above applies, and yields det (I-
Xp(g)) (1-X3)"/3. However, the elements c(r, 0, 0) and d(r, 0, 0) may have order 9
(depending on the value of r), and a different argument is necessary to calculate
det (I-Xp(g)).

Assume then p- 3. Direct calculation shows (c(r, O, 0))3 (0, 0, tr (--rE)) and
(d(r, 0, 0))a (0, 0, tr (- arE)), where a e F is a nonsquare. Let to =/.t0(1) so that to is
a cube root of 1. Then p((c(r, 0, 0))3) totr-r2)i and p((d(r, 0, 0))3) totr-ar2)I. There-
fore, if g denotes c(r, 0, 0) (or d(r, 0, 0)) then the eigenvalues of p(g) are cube roots
of totr-> (or totr<-ar2>). Since g is conjugate to gr, multiplication by to permutes the
eigenvalues of p(g), preserving multiplicity. Hence, if is an eigenvalue of g, then

tr(--ar2)83= to
tr(-r2) (or to and

det (I-Xo(g)) [(1 6X)(1 &oX)(1 &oZX)]/3

(1_ 63X3)’/3.

tr(-r2)x3)cl/3 tr(-ar2)x3)q/3This last expression is (1-to for g=c(r, 0, 0) and (1-to for
g d(r, O, 0).

The contribution to the Molien series for G from all the conjugacy classes
represented in the last two lines of the table is

3q(q2- 1) rA (1 -totr(-r2)x3)q/3 + (1 -totr(-ar2)x3)l’/3
3q(q2-1) ( 1 1 )2 F (1 totr-X3’)/3 +

(1 totr--h’2xa)q/3
3q(q2-1) 2

2 (1 -X3)/3"

If q 3’, then the forms x- tr (- x2) and x - tr (- axE) may be identified with Q
and Q in some order. By Lemma 6.2, then, these sums reduce to

3q(q2-1){n+,,(O)+n,,(O)-2 n,(1)+n(1)n,(-1)+n,,(-1)}2 (1 X3)/3 +
(1 toX3)q/3 +

(1 toEXa)q/3
2X3)-q/3_q2(q2 1)((1 -X3)-q/3 d--(1 -tog3)-q/3-+-(1 -to

-3q(q2- 1)(1-X3)-q/3.
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This may be combined, with the contribution to the Molien series by the class
represented by (1, 0, 0), to yield

(*) S(X) (q 3q + 3)(q2 1)( 1 X3)-q/3 + q2(q2 1 )(( 1 0X3)-q/3 + (1 0Zx3)-/3).
Gathering together all the information obtained thus far, we have the following

theorem.
THEOREM 6.10. The Molien series ]’or G with respect to p is given by

p--1

pq3(q2_ l)Od(X)= (6iX)+S(X),
j=0

where 6 is a primitive pth root of 1. Here
21 q

(x) +
(l-X)" (1- eX)(1-X2)

3q (q + 1) O((q- 1)/d)Y’,
X(-l)/a)d(12 t- (- (l)X)

d#(q-1)/2,q-1

q3(q 1) b((q + 1)/d)(1-(- 1)dx)
2 dlq+l

d#(q+l)/2,q+l

q(q2_ 1)/’f+(X) +f_(X)
2 \ -{--k-q--TF ,] +q

(q- 1) ((g+(X) + g_(X))(1 -X)

and S(X) is given by
(q2_q + 1)

S(X) p(q2_ 1)
(1-XP)q/’ if p > 3,

while for p 3, S(X) is given by equation (*).
Notice that (X) represents the contribution to the Molien series of ( from a set

of coset representatives for 7/in (, except for those classes appearing in the last three
lines of the table.

Recall that G (Cq) x r.
THEOREM 6.11. The Molien series for G with respect to O is given by

(X) 1/4(d(X) + d(-X) + 8(iX) + do(- iX))

if q =- 3 mod 4, and

(x) (o(x) + ( x))

if q=- l mod 4.
The proof of this result follows from Theorem 6.10 in the same way that the proof

of Theorem 6.9 follows from Theorem 6.8 and will be omitted.

7. The Molien series (characteristic two). From 5, the group G has the form
G O/(V)E. Let O denote either of the two extensions of 01 to G guaranteed by

Theorem 5.2. Let x
1 0

so that O+(V) (x>H and G (x>HE. In calculating the

Molien series of G with respect to O, it is convenient to partition G into E, HE-E
and G-HE xHE, and to calculate the contribution to the series from each of these
subsets.
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LEMMA 7.1. The elements of E have order at most 4. The number of elements of
each type and their contributions to the Molien series is given in Table 3.

TABLE 3

Type of
element g

identity element: (0, 0, 0)
central involution: (0, 0, 1)
noncentral involution
element of order 4

Number of
such elements

1
q2+q--2
q -q

det (I Xp(g))

(1 -X)
(I+X)

(1 -X2)q/2

(1 + X2)q/2

Proof. The first two lines of the table are clear. Let e (/31,/)2, a) E E-7/(E). Then
2e (0, O, Q(vl, rE))= (0, 0, tr (vl v2)).

Suppose first e is a noncentral involution. If v 0 then there is no restriction on
/)2 E F or a GF(2), other than that /)2 # 0. If V # 0 then a GF(2) is arbitrary but
v2 Vi- ker (tr). Therefore, there are (q-l). 2+(q-l). 2. (q/2)=q2+q-2, non-
central involutions in E.

Let " be the character afforded by pE. As st(l)2= IE’Z(E)I, is fully ramified over
Z(E) and hence vanishes on E-Z(E). In particular, p(e) has q/2 eigenvalues equal to
1 and q/2 eigenvalues equal to -1, and the third line of the table follows.

The remaining q2_q elements of E-Z(E) have order 4. If e is one of these
elements, then p(e 2) p((0, 0, 1)) -I and hence the eigenvalues of p(e) are and i.
As already noted, st(e) 0 and this means that and appear with equal multiplicity
q/2. The last line of the table is now verified, and the proof of the lemma is
complete. F]

Notice that when q 2, H is the identity group and HE-E is empty. There is no
contribution to the Molien series in this case.

LEMMA 7.2. Assume q > 2 and h H, h # 1. If the order of h is d then the coset Eh
contains q2 elements of order d and q2 elements of order 2d. If y Eh has order d then
det(I--Xp(y))=(1--Xd)(q-)/d(1--X), while if y has order 2d this polynomial is
(1 +Xa)(q-)/a(1 +X).

Proofi Let 7/(E)= (z). The group H acts Frobeniously (fixed point freely) on
El(z), so any element of Eh has order d mod (z). The map y yz exchanges elements
of order d in Eh with those of order 2d. Moreover, if y has order d, then y is conjugate
to h. Since P[<h> is similar to l<h>+((q--1)/d) (regular representation of (h)), we have
det (I-Xp(y))= (1--xd)(q-1)/d(1--X). If y has order 2d then yz has order d and is
conjugate to h. Hence, p(y) is similar to p(hz)=-p(h), and det(I-Xp(y))=
det (I +Xp(h))= (1 +xd)(-)/d(1 +X) follows. []

this section x will always denote "(0 1)"For the remainder of
1 0

Before analyzing

the elements of xHE, it is convenient to record some useful relations which hold in G.

( 1), h, h EH, t, tl T, v, v EF and a GF(2). Then"LEMMA 7.3. Let x
0

(1) (xhE)h xh2hiE.
(2) (xtA)t= XttlA.
(3) (x(0, v, a))2= (v, v, tr (v2))= (v, v, tr (v)).
(4) (v, v, a)2= (0, 0, tr (v2))= (0, 0, tr (v)).
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(5) (/), 0, 0)-l(x(0, /), a))(v, O, O)= (x(O, v, a))-1.
(6) (vl, v, 0)-(x(0, v, a))(v, v, O) x(O, v a + tr (v(v + 1))).
The proof of this lemma follows easily from the definition of the multiplication of

elements of G as defined in 5, and will be omitted. Notice that in (3) and (4) we used
tr (v 2) tr (v), as v 2 is an algebraic conjugate of v.

LEMMA 7.4. The elements ofxHE have order 2, 4 or 8.
Tables 4 and 5 determine the number of elements of xHE of each type and their

contributions to the Molien series.

Order of
element

2
4, type 1
4, type 2
4, type 3
8

TABLE 4
(q a square)

Number of
such elements

q(q-1). 2
q(q-1).(q-4)
q(q-1)
q(q-1)
q(q-1).q

det (I- Xp(g))

(1 -X2)q/2

(1 X4)q/4

(1 +X2)/4(1-X)’(1 +X)t3

(1 +X2)/4(1-X)t3(1 +X)
(1 -I- X4)q/4

a, q/4 + q/2

TABLE 5
(q not a square)

Order of Number of
element such elements det (I-Xp(g))

2 q(q- 1). 2 (1-X2)q/2

4 q(q-1).(q-2) (l-X4)q/4

8, type q(q 1). (q 2) (1 + X4)/4
8, type 2 q(q- 1) (1-x/X+X2)(1 +x/-X+X2)
8, type 3 q(q- 1) (1-x/X+X2)I-t-4X+X2)

a, fl q/4 + x/q

Proof. The group H acts by conjugation on the set xHE t.)hn xhE and, by
Lemma 7.3 (1), H is transitive and regular on the sets appearing in the union.
Moreover, T acts by conjugation on the set xE tTxtA and Lemma 7.3 (2) shows
this action also, to be transitive and regular. Since conjugation preserves orders of
elements, only elements of xA need be considered.

Let y x (0, v, a) xA. By Lemma 7.3 (3), y is an involution if and only if v 0.
Hence, x and xz are the only involutions of xA. Moreover, p (x) and p (xz) are Mx and
-M in some order, by Theorem 5.2. Now, trace(M)=q-/2rFA(r2)=
--1/2q .rFA (r)= 0, so each of these two matrices have 1 and -1 as eigenvalues with

multiplicity q/2. The first line of both tables now follows.
Now suppose y x(0, v, a) has order 4. By Lemma 7.4 (3) and (4) we have v # 0

and v ker (tr). Hence, there are (q 2) elements of order 4 in xA. These elements are
conjugate to their inverses (by equation (5) of the same lemma) and when v 1,
Lemma 7.3 (6) shows that y is conjugate to yz, where z (0, 0, 1). Thus, when v 1,
the eigenvalues 1, -1, and -i appear with equal multiplicity in p(y). In this case
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det (I Xp (y)) (1 X4)q/4. When q is not a square, 1 ker (tr) so v # 1 is automatically
satisfied, and the second line of Table 5 follows.

Assume that q is a square. Then there are q- 4 elements of order 4 in xA which
satisfy det (I-Xp(y))= (1-x4)q/4o These correspond to the elements of order 4 in
xHE of "type 1" in Table 4. The remaining elements of order 4 in xA are y x(0, 1, 0)
and yz x(0, 1, 1), and these will correspond to the elements of order 4 in xHE of
types 2 and 3. Assume that p is chosen so that p(x)= M1, that is, c 1 in the situa-
tion covered by Theorem 5.2. From plE=pll, and Theorem 5.1, we have
p(y) p(x)p(O, 1, O) MIEI. Hence, trace (p(y)) r,seFq-1/21 (rs)6.h (r)
reFq-I/EA (rE)A (r) .rFq-1/2 qX/2. Let a, /3 and 3’ be the multiplicities of 1, -1
and as eigenvalues of p(y). Then a +/ + 2), =q and a-fl q/2.

Now y2-(1, 1, tr(1))=(1, 1, 0). By Theorem 5.1 the (r,r) entry of p(y2) is
6+l,A (r)/z0(0) 0, so trace (p (y2)) 0. Hence, a +
we have

q ? q / q

These equations imply det (I,--Xp(y))=(I+X2)’#4(1-X)’(I+X)) and det (I-
Xp(yz)) det (I +Xp (y))= (1 + X2)q/4(1-X)t (14-X) and the lines corresponding to
elements of order 4 in Table 4 are now verified.

Finally, suppose y x(0, v, a) has order 8. By Lemma 7.3 (3) and (4), we have
v ker (tr), and that there are q elements of order 8 in xA. As in the case of order 4, y
is conjugate to y-, and when v # 1, y is conjugate to yz.

Assume first that q is a square. Then 1 ker (tr) and v 1 is automatically satisfied.
Since p(y4) _/, the eigenvalues of p(y) are primitive eighth roots of unity, and, from
the previous paragraph, they appear with equal multiplicity q/4. The last line of Table
4 is now immediate.

Assume then q is not a square. Then there are q- 2 elements of order 8 in xA
which satisfy det (I-Xp(y))= (14-X4)q/4 and these correspond to the elements of
order 8 in xHE of type 1 in Table 5.

Consider now the elements y x(0, 1, 0) and yz x(0, 1, 1). These will corres-
pond to the elements of order 8 in xHE of types 2 and 3. If e exp (zri/4) then e is a

-1primitive eighth root of one, and the eigenvalues of p(y) are e and e (each with
-3multiplicity a, for example) and e 3 and e (each with multiplicity fl, say). As already

calculated, trace (p(y))= q/2 and this leads to the system

-)2t+2/=q, c(e+e +/(e +e q
3 --3 4) SO the solution is c q/4+x/-q/8 and-=x/ and e +eNow e + e

fl =q/4-x/. Hence, det (I-Xp(y))=(1-eX)(1-e-IX) (1-e3X)
(1 e -3X) (1 x/X +X2) (1 + x/X +X2). The last two lines of Table 5 now

follow, and the proof of Lemma 7.4 is complete.
Combining all of the above lemmas, the Molien series for G may now be written

down.
THEOREM 7.5. The Molien series for G is given as follows"
4q2(q 1)(X) (1 -X)-q + (1 +X)-’ 4- (q2 + q 2)(1 -X2)-/2

+ (qE-q)(1 +X2)-/2

+q2 2 (d){(1-xd)-(q-/d(1-X)-ld]q-1

+(1 +Xa)-(q-)/a(1 +X)-}+A,(X).
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Here Aq(X) is a rational [unction determined as [ollows. If q is a square, then

Aq(X) 2q(q 1)(1 -XZ)-/2 + q(q 1)(q -4)(1 -X4)-’/4

+ q(q 1)(1 + Xz)-"/4{(1 -X) (1 +X)-t + (1 -X)-t (1 +X) }

+qZ(q- 1)(1 +x")-"/4,
where a, q/4 + //2. If q is not a square, then

Aq(X) 2q (q 1 )(1 X2)-’vz + q (q 1 )(q 2)(1 X4)-’v4

+ q(q 1)(q 2)(1 + x4)-"/4

+q(q- 1){(1-,/x +x2)- (1 +,/x +x2)-+ (I -,/x +x)-(I +,/x +x)-},
where a, q/4 4-x/-/8.

8. Finite extensions of the linear group p (17). In this section G, p and q have the
same meaning as in 5. In particular, p(G) is a linear group of degree q which leaves
invariant the complete weight enumerator of a normalized self-dual code over G
GF(q). As in 5, q is a power of some odd prime p.

For q > 3, the unimodular subgroup of p(G) is p(t). The goal of this section is to
establish that the finite unimodular linear groups containing p(t) are all contained in
a unique largest such group (Theorem 8.11 below). If q 3, the commutator subgroup
of p(() is the unimodular subgroup of p(G), however a similar result holds for this
group (Theorem 8.12 below). The proof of this result is omitted here since it follows
from the classification of linear groups of degree three which was already known to
Blichfeldt [3].

Recall that 0 has the form SE, where E is a normal extraspecial p-group and
S SL(2, F) acts on E as a group of automorphisms, centralizing Z(E). The full
automorphism group of E which centralizes Z(E) is isomorphic to a split extension of
the symplectic group Sp (2n, p) by the inner automorphisms of E. Here q p". The
semi-direct product Gx Sp (2n, p)< E may be formed, and it is not hard to establish
that the representation p extends to G. A proof of this fact is contained in the proof
of [12, Thm. 4.7]. For q > 3, G is perfect and hence p(G) is a finite unimodular group
containing p (().

A further extension of G is necessary. Let 7/q denote a cyclic group of order q
and set G2 GIYT/q. This is a central product in which 7/(G) is identified with the
unique subgroup of order p in 7/q. Clearly, p extends to G2 in such a way that 7/q is
represented by scalar matrices. Notice that if q p then G2 G.

The linear group p(G2) will turn out to be the unique maximal finite subgroup of
SL(q, C) containing p((). For convenience, G2 and its various subgroups will be
identified with subgroups of SL(q, C) via the representation p. This notation will be
fixed throughout the section. We also assume for the remainder of this section that
q>3.

LEMMA 8.1. The group G SE is a primitive linear group.
Proof. By Theorem 5.1, E (and hence SE) is an irreducible linear group. Suppose

that it is not primitive, and that the representation is induced from the proper subgroup
R. Clearly R ___Z(0). Since E is irreducible, ( =ER and Ro=R file is a proper
subgroup of E containing 7/(E). Hence, RoE and clearly RoSR, so R05 t. Since S
acts irreducibly on E/Z(E), Ro must be either E or Z(E). However, Ro is a proper
subgroup of E with index =< q, and this contradiction proves the lemma. [3
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LEMMA 8.2. ff Z denotes the group of scalar matrices in GL(q, C) then
CL(q,c)(E/Z(E)) EZ. In particular CsL(q,c)(E/Z(E)) EZq.

Proof. Clearly, E7] <- C(q,c)(E/Z(E)). Let g C(,c)(E/7](E)). If xl, , Xk is
a basis for E/7I(E) then g-lxig (ixi for each i, where r 7/(E). For a given g then,
one of at most pg sequences (rx, sr2,..., Srk) is determined. However, since E acts on
itself as a group of inner automorphisms, and [E: Z(E)[ pk, every such sequence
actually appears. Hence, there exists e E such that g-xig e-axle for every i. Thus,
ge centralizes E and since E is irreducible, ge- " for some scalar matrix r. Hence
g e" ET/. If in addition det g 1, then, since det e 1, we must have " Z, and the
lemma follows.

LEMMA 8.3. [SL(q,c)(E)= G2.
Proof. Clearly, G2 normalizes E. Suppose g NSL(q,c)(E). Then conjugation by g

is an automorphism of E centralizing 7/(E). Now CAut(E)(Z(E))-----Sp (2n, p)E/Z(E) so
there exists h Sp (2n, p)E such that gh- centralizes E. Since det h 1, we have
gh- CsL(q,c)(E) Z, and so g G17]q G2, as desired.

LEMMA 8.4. LetX be a finite subgroup of SL(q, C) containing G and assume that
E <- Op(X). Then Op(X) <-_ EZ and E -X. In particular, X <-_ G2.

Proof. Neither the hypotheses, nor the conclusion is affected if X is replaced by
XZq. Hence, we may assume that Zq <_-X, and so Zq _-< Op(X). Thus EZq <-Op(X). If
EZ, < Op(X) thenEZq < op(x)(ET/,). NowS normalizes these last two groups. Choose
Y so that EZq < Y <- op(x(EZq), and Y/EZ is an S-composition factor. Therefore,
both Y/EZ and EZq/Zq are irreducible under the action of S. As Y is a p-group,
Y, E.q/7]q] ( EZ/q/Z/q and is S-invariant. Hence, Y, EZ/Z] is trivial, and Y, E7/q]

Zq. In particular, Y, E] _-< Y, EZq] f3 E _-< 7/q fq E 7/(E), and so Y -<_
Cs(,,c)(E/7](E)) EZq, where the last equality follows from Lemma 8.2. But this
contradicts E7]q < Y and hence Op(X)= ET/. Finally, E fx(EZq)= I)(Op(X))SX,
and X-<_ G2 follows from Lemma 8.3. [-1

THEOREM 8.5. IfX is a finite subgroup of SL(q, C) containing G and if the Fitting
subgroup g:(X) is not contained in Z(X) then X <-_ G2.

Proof. Let r be a prime divisor of the order of :(X). Now X is primitive (as t is,
by Lemma 8.1), so 7/(Or(X)) is represented by scalar matrices. But X is unimodular,
so Z(Or(X))_-<Zq, and hence Or(X)= 1 unless r p. Thus, :(X)= Op(X). The group
G SE normalizes Op(X), so SEOp(X) is a group. Hence, EOp(X) Op(SEOp(X)) <-

ET/ by Lemma 8.4. Since $ is irreducible and nontrivial on EZq/7/q, all X-composition
factors of EZq but one are trivial. By hypothesis, Op(X) :(X) 7/(X) and so we have
O(X) 77 =EZq. Therefore, E=[E, S]=<[E7/o, S]=[Op(X)7]q, S]=[Op(X), S]<-_
Op (X). By Lemma 8.4 again, X -< G2.

Notice that the main theorem of this section follows from the previous result, once
it can be established that the Fitting subgroup of any finite unimodular linear group
containing G is not central. Toward this end, it is natural to consider the following
situation.

Hypothesis 8.6. X is a finite subgroup of SL(q, C) containing G and :(X) <- 7/(X).
LEMMA 8.7. Assume Hypothesis 8.6 holds for X. Then the generalized Fitting

subgroup g:*(X) has the form 7/(X) Y, where Y is a quasi-simple group and E <= Y.
Proof. By definition, :*(X) is g:(X).(X), where :(X) is the join of all the quasi-

simple subnormal subgroups of X, say :(X)= YIY2"’" Yr. By hypothesis, :(X)<=
Z(X), and so it remains to prove that 1 and E <- Y.

Assume that at least one of the quasi-simple subnormal subgroups of X, say Y1,
is not normalized by S. Assume the notation is chosen so that { Y,. , Yt’} is the orbit
of $ containing Y. An irreducible constituent of Y Y2" Yt’ is a tensor product of t’
representations, each of degree at least two, and hence, 2c-< q. We assume that q > 3
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is odd, so by a theorem of Galois (see [10, Satz 8.28, p. 214]) either t’ _->q or t’= 6 and
q 9, and this contradicts 2t’=< q.

Hence, $ normalizes each of the groups Y1," , Yr. Therefore, S is in the kernel
of the action of X on { Y1, Y2," , Yt} and so E [E, $] is also in this kernel. Hence,
G SE normalizes each Yi.

Suppose there exists such that E; Y,.. Let E E7/q/7/q and Y,. Y,./:q/Zq. Define
the group Ki by Ki/7/q Ki l?,(E). Then [Ki, E]<= Yi f-)E= (YiZq EZ)/Zq. If
Y7/q fq EZq > 7’q, then this group must equal ET/q, as S is irreducible on EZq/Zq. But
thenET’ _-< YZ, andsoE [E7/, S]_-< [Y7/q, S] [Y, S]-< Yi, acontradiction. Hence,
Y fq E 1 and Ki centralizes ET’q/7/q. Now [K, E]_-< 7/q f’) E 7/(E), so that Ki -<
CsL,c)(E/7/(E)). By Lemma 8.3, then, Ki <-_ ETCh. However,K <-_ Yi so Ki <- ET/o f’) Y <-
ETq fq Y7/q 7/. Hence, K 1, proving that ,(E) 1.

In particular, pXl’il and hence I7i Yi2/7 Yi<7/q/7’q -Y. Now SEY is a
primitive group of degree q and Y - SEY, so Y has an irreducible constituent whose
degree is divisible by p. This contradicts PI YI and shows E -<_ Y for every i.

If t_->2 then 1 7/(E)=[E,E]<-[YI, Y2]= 1, a contradiction. Thus, t= 1 and
E <_- Y, completing the proof of Lemma 8.7.

The following is an improvement of Lemma 8.7.
LEMMA 8.8. Assume Hypothesis 8.6 holds for X. Then :*(X) 7/(X) Y, where Y

is quasi-simple. If " Y/Z(Y) and Aut (IT")/Inn (I7") is solvable, then ( SE <- Y.
Proof. By Lemma 8.7, it suffices to prove that S <_-Y. Now S acts on Y and

" Y/Z(Y), as a group of automorphisms. Since S is perfect and Aut (IT")/Inn (I7")
is solvable, $ acts as a group of inner automorphisms of Y. Let s S. Then there exists
y Y such that s-lxs =- y-lxy rood 7/(Y) for all x Y. Hence, [sy -, Y] <= 7/(Y), and so
[sy -x Y, Y]- 1 By the three subgroups lemma [10, Lemma p. 257], Y’, sy -] 1
But Y’= Y, so sy- CSLq.c)(Y) <- Cscq.c)(E) Zq. Hence, s yZq

_
YZq, so $ <- YZq.

Therefore, S S’ <- YZq)’ Y’ <- Y, as desired.
To complete the proof of the main theorem of this section, it suffices to show :*(X)

does not have the form given in Lemma 8.7 for every choice of the simple group
Y/7/(Y). We shall assume the classification of finite simple groups is complete and
consists of the alternating groups, the Chevalley groups and their twisted types, and
the 26 exceptional groups, as listed in [1] for example. Since the Schreier conjecture
holds for these groups, Lemma 8.8 is applicable. Moreover, notice that the conclusion
of Lemma 8.7 implies that Z(E) -<_ 7/( Y), since Z(E) consists of scalars. Hence, the
p-part of the Schur multiplier of the simple group Y Y/Z(Y) is nontrivial. A
complete list of Schur multipliers for simple groups appears in [8].

There are four infinite families of simple groups with the Schur multiplier divisible
by an odd prime p. These are

PSL(n, r), pl(n, r- 1),

PSU(n, r), pl(n, r + 1),

E6(r), p 3l(r- 1),

2E6(r), p 31(r + 1).

A bar denotes the quotient of the universal Chevalley group by its center. There are
twelve other exceptional groups. In each of these cases p 3.

A6, A7, M22, J3,

(72(3), PSU(4,3), McL, Suz,

$0(7,3), Fi22 M(22), Fi4 M(24)’.
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Each of these groups will be eliminated from occurring as Y/Z(Y) in hypothesis
8.6. The next result dispenses with the four infinite families first.

LEMMA 8.9. Let X satisfy hypothesis 8.6 and let Y be as in Lemma 8.7. Then

" Y/Z(Y) is not one of the groups PSL(n, r), PSU(n, r), E6(r), 2E6(r).
Proof. Assume that Y is one of these groups. Since S acts transitively on the

nonidentity elements of E/2’(E), it follows that S also acts transitively on the set of
Braver characters of E/Z(E) over GF(r), where pl(r-1). Therefore, any faithful
representation of SE/Z(E) over GF(r) must have degree at least ]E" Z(E)[- 1 q2_ 1.
Since SE/Z(E) embeds in Y by Lemma 8.8, the same result holds for Y. (In fact, a
similar argument shows that the degree of any nonprincipal character of Y is at least
q2-1.)

If I7 is PSL(n, r) or E6(r) then I7 acts as a group of automorphisms on the
associated Lie algebra over GF(r). In the first case, the Lie algebra consists of the n2- 1
dimensional space of n n matrices of trace 0, and in the second case, it is the
78-dimensional Lie algebra of type E6. Since pl(r-1) we have

and

2 2q -l_-<n -1, ifY=PSL(n,r),

2q 1 <- 78, if Y E6(r).

If I7 is PSU(n, r) or 2E6(r) then I7" is isomorphic to a subgroup of PSL(n, r2) or
E6(r2). Moreover, in this case p divides (r + 1) which in turn divides r2-1. Therefore,
the inequalities remain valid for PSU(n, r) and :E6(r).

If I7 is E6(r) or 2E6(r) then q2_ 1 -<_ 78 which implies q < 9. But for these groups
we have p 3, and since q 3 is a power of p, we must have q _-> 9. This contradiction
shows that Y is PSL(n, r) or PSU(n, r) and q _-< n.

Assume first I7 is PSL(n, r), where p[(n, r- 1). Let R

{(M )[MSL(n-1 r),v GF(r)"-1} and U= {(I 0)[v GF(r)"-} AsR does
V V 1

not contain any scalar matrices other than the identity, R is isomorphic to a subgroup
of both Y and Y. This remark is also valid when n-3 and r-4, where the
corresponding group has an exceptional multiplier. Moreover U-R, and since n 1 _>-
2, R acts transitively on the nonidentity elements of U. Hence, R is transitive on the
set of nonprincipal characters of U. In particular, any faithful character of R (and hence
of Y) when restricted to U must contain all of the nonprincipal characters of U as
constituents. Since Y is a linear group of degree q, this implies r-- 1 <_-q.

Combining this with the previous inequality gives r- 1 <_- n. However, pl(r- 1)
so r _->4, and the inequality forces n 1, a contradiction.

It remains to consider the case -PSU(n, r), where p[(n, r + 1). If k [n/2] then
the map which sends M to

(0 0()-)
is an embedding of SL(k, rE) in SU(2k, r), the unitary group being defined with respect

-(0 "10) As 2k < n, we have an embedding of SL(k, r2) into the form whose matrix is
_I

SU(n, r).
Assume first that n >-_ 6 so that k _-> 3. We already observed that SL(k, r2) contains

a subgroup R, which does not contain any scalar matrices other than the identity, and
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which has the property that any faithful character of R has degree at least (r2)k-l- 1.
Since R embeds in the linear group Y, we conclude r2k-2-1 <- q. However, q _-< n and
this implies 2n-3 --< rn-3 n + 1. This forces the contradiction n < 6.

Assume then n _-< 5. Now q _<-n and since q 3 this leads to the single case
p =q n 5. We still have an embedding of SL(2, rz) in SU(5, r) and the smallest
degree of any nonprincipal irreducible character of SL(2, r2) is (r2-1)/2, if r is odd
and (r2-1), if r is a power of 2. In any case, we have (r2-1)/2_-<q 5, which forces
r-< 3. But p 5[(r + 1) and this contradiction eliminates the groups PSU(n, r). U

LEMMA 8.10. Let X satisfy hypothesis 8.6 and let Y be as in Lemma 8.7.. Then
Y Y/Z(Y) is not one of the groups"

A6, A7, M22, J3, O’S’,

G2(3), PSU(4, 3), McL, Suz,

S0(7, 3), Fizz M(22), Fi4 M(24)’.

Proof. Assume that Y is one of these groups. Then Lemma 8.8 applies, so that
SE/Z(E) embeds in Y. Moreover, in each of these cases p 3 so that q -> 9. Since the
highest power of 3 dividing the order of any of the five groups in the first line is at most
5, SE/TI(E) cannot be embedded as a subgroup of any of these by Lagrange’s theorem.

The highest power of 3 dividing the order of any of the four groups in the second
line is 6 or 7. Hence, if SE/Z(E) is embedded in any of these, then q 9. The first
group, G2(3), may be eliminated as 5’[G(3)1. We have already noticed (first paragraph
to the proof of Lemma 8.9) that any faithful representation of SE/Z(E), and hence of
’, has degree at least q2_ 1 80. Now McL appears as a subgroup of Conway’s group
O and hence has a faithful representation of degree 24. Thus, SE/Z(E) cannot be a

subgroup of McL. Since PSU(4, 3) _-< McL, SE/TI(E) cannot be embedded in PSU(4, 3),
either. Suppose now SE is a subgroup of Su’ (the threefold cover of Suz). Now Suz
contains the chain

Moreover, as a Sylow 3-subgroup of R is cyclic, the 3-part of the multiplier of R is
trivial, so that R embeds as a subgroup of scU. We already have seen that the smallest
degree of a faithful representation of R is 42-1 15. Thus, Su" cannot be a linear
group of degree q 9.

The highest power of 3 dividing the orders of S0(7, 3) and Fi22 is 39, so if SE/7/(E)
is embedded in either of these, then q 9 or 27.

Suppose first that Y is the threefold cover of S0(7, 3), say ff,3). Now
SO(7, 3)_->SO/(6, 3)-SL(4, 3), and, since 3 does not divide the order of the Schur
multiplier of SL(4, 3), this last group appears as a subgroup of Y SO(7, 3). As usual,

R=(M’- "’v)[MSL(3,3),vGF(3)3. Then any faithful character of R (andlet
t\

hence Y) has degree -> 33-1 26. Thus q 27. Moreover, any faithful character of
SE/Z(E) (and hence of SO(7, 3)) has degree _>q2_ 1 728. However, the index of
SE/7/(E) in S0(7, 3) is 640, and this provides a faithful representation of degree < 728,
a contradiction.

Assume then that Y is the threefold cover of Fi22, say F’22. Then F22 has a faithful
character of degree q, say ,. Moreover, we know q is 9 or 27. The characterO contains
the principal character as a constituent, and (- 1) is irreducible, as its restriction to
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SE/7/(E) is irreducible. In particular, FiE: has an irreducible character of degree
qE_ 1 80 or 728. However, the entire character table of this group is known [9], and
there are no characters with these degrees.

Assume finally that Y is the threefold cover of Fi4, say F24. Then has a
faithful character of degree q, and since the 3-part of the order of Fi4 is 316, we know
q _-< 35. Now Fi:3 _-< Fi4, and 3 does not divide the order of the Schur multiplier of Fi:3,
hence FiE3 as well as FiE2 appear as subgroups of From the character table of Fi2:
again, 78 is the smallest degree for any faithful character of Fi::. Thus q-> 78, and
hence q 81 or 343. In either of these two cases q + 1 does not divide ]Fi41 so that
SE/7/(E) cannot be embedded as a subgroup of Fi4. [3

The last two lemmas establish that there is no linear group X satisfying hypothesis
8.6. When combined with Theorem 8.5 this yields the following theorem.

THEOREM 8.11. IfX is a finite subgroup of SL(q, C) containing where q is an
odd prime power and q > 3, then X <- Gg.

For convenience, we include the corresponding result when q 3.
THEOREM 8.12. IfX is a finite subgroup o.f GL(3, C) containing G where q 3

and if the scalar matrices ofX are contained in G, then X .
The proof of Theorem 8.11 relies on the classification of finite simple groups, a

profound result whose proof currently occupies several thousand journal pages. While
it is hard to imagine that such an enormous proof is absolutely free of errors, it is
generally believed that the underlying argument is correct. Nevertheless, if an oversight
in the proof should lead to the existence of one or several extra sporadic simple groups,
then presumably these can be eliminated by ad hoc arguments (perhaps similar to those
in Lemma 8.10).

As already noted in 2, the analogue of Theorem 8.11 is false for even q, at least
when q is 2 or 4. However, if q _-> 8 is a power of 2, then Go G is a primitive linear
group and hence there are only finitely many subgroups of SL(q, C) containing G. No
claim is made here however that there is a unique maximal such group containing the
others.

Appendix. The Molien series for Go and G with respect to p are denoted by
OGo(X) and OG(X) respectively, and are listed here for all prime powers q-< 9. For
even q, the groups Go and G coincide.

Unnormalized codes (odd characteristic)

q=3 Ooo(X)

q=5

q=7

q=9

(1 +4X1 +X24)
(1 X4)(1 -X12)2’

13 (5) x2i
tg A

Oo(X) E
i=0 (1-X4)(1-X6)2(1-xl)2’

(7) (4i21 ai+o(X)
=o (1-x’):’(1-x)(-x):(1-x)’

(9) t,-2i23 ai
o(X) Z

i=0 (1-X2)(1-X4)(1-X8)(l-Xl)2(1-X14)4"

Normalized codes (odd characteristic)

q 3 rbo(X)
(1 X12)2(1 -X36)
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q=5
8 b(5) t1i

(x) E o)(1 xO),=o (1 X X)(1

q=7
11 h (7) i("28i

(x) 2
i=0 (1-X28)3(1-X56)(1-X84)2’

q=9
(9) (-6i24 b

(x) E
i=o (1-X6)2(1-X12)(1-X18)3(1-X24)(1-230)2.

Characteristic 2 (G Go)

q 2 cI)(X)
(1 X2)(1 -X8)

q =4 (X)
(1 +X16)

(1 X2)(1 X4)(1 X6)(1 X8)

q=8
20 (8) x,.-2i

U A
(I)G (X) E _X2)3 X8)3 X14),=0(1 (1-X4)(1 (1-

TABLE 6
Table of coefficients.

al5) ai a. .i ci

0 1 1 1 1
1 1 0 0 -1 70 -1 -2
2 0 7 0 4 1791 5
3 0 38 2 9 9111 27 1
4 109 17 9 21868 127 5
5 4 246 36 19 33015 475 0
6 10 422 89 15 33015 1345 10
7 13 636 167 2 21868 3038 6
8 10 848 278 2 9111 5819 22
9 5 1048 428 1791 9606 11

10 6 1215 590 70 13858 18
11 5 1282 704 1 17777 11
12 3 1258 760 20414 22
13 1 1095 745 20940 6
14 903 643 19322 10
15 680 504 15949 0
16 473 365 11713 5
17 289 223 7582 1
18 137 118 4303 1
19 52 56 2070 -2
20 11 23 815
21 2 6 264
22 4 59
23 9
24 3
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BROADCASTING IN TREES WITH MULTIPLE ORIGINATORS*

ARTHUR M. FARLEY" AND ANDRZEJ PROSKUROWSKIt

Abstract. Broadcasting is the information dissemination process in a communication network whereby
all sites of the network become informed of a given message by calls made over lines of the network. We
present an algorithm which, given a tree network and a time, determines a smallest set of subtrees covering
sites of the network such that broadcast can be completed within the given time in each subtree. Information
developed by the algorithm is sufficient to determine a satisfactory originator and calling scheme within each
subtree.

1. Introduction. Broadcasting is the information dissemination process in a cQm-
rnunication network whereby all sites of the network become informed of a given
message by calls placed over lines of the network. We model a communication network
by a graph G (V, E) consisting of a set V of vertices (sites) and a set E of edges
(lines), each edge incident to a pair of vertices. We model processes of information
dissemination by the following constraints:

(1) information is disseminated in the form of messages;
(2) a message is transferred by a call between adjacent sites;
(3) no site can participate in more than one call at any time.

The length of a message determines an associated time unit, being the time needed to
complete a call transferring the message. As such, we will talk about the number of
time units required to broadcast a message.

Broadcasting can be defined more formally as a sequence of sets So
_

$1
_ _

St V, each set representing the sites informed of the broadcast message after time unit
i, 0 _-< <_- t. For each u in Si $i-(i > 0), there exists an adjacent site in S_, not assigned
to another site of Si- Si-1, which calls u during unit time i. The elements of So are
called the originators of the broadcast. The case where IS01 1 has received consider-
able research attention in recent years. The minimum value of for a given network
G over all broadcasts in G is called the broadcast time of G; a site from which such a
broadcast is possible is an element of the broadcast center of G. Slater, Cockayne and
Hedetniemi [10] have described an algorithm for determining both parameters in an
arbitrary tree network. A tree network is a connected, acyclic network.

Farley, Hedetniemi, Mitchell and Proskurowski [3] investigated networks having
the fewest lines which allow broadcasting to be completed in the minimum possible
time (i.e., log2 IV time units) from any site. Farley 1] discussed construction algorithms
for several such minimum-time broadcast networks requiring approximately the
minimum number of lines. The general problem of determining the broadcast time for
a given network G has been shown to be algorithmically hard (i.e., NP-complete) by
Garey and Johnson [5, p. 219]. This motivates approximate results as well as study of
restricted classes of networks. Proskurowski [9] has characterized minimum broadcast
trees, being rooted trees which allow broadcasting to be,completed in log2 IV[ time
units from the root. In [2], Farley considered broadcasting of multiple messages in
completely connected networks.

In this paper, we consider a generalization of broadcasting in which several sites
may originate the message (i.e., IS0]--> 1) within a network. This could arise within
practical situations in several ways. A subset of sites may be connected by a broadcast
medium (i.e., radio), with message broadcast to be completed by calls over lines. The
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situation may also arise from a hierarchical view of broadcasting within a network. A
message can be seen to be broadcast through a tree of sites, each such site also being
a member of a network at its "level" of the hierarchy. After broadcast in the tree is
completed, informed sites originate broadcasting within these level-based networks,
each such network having potentially more than one originator. The lines of the tree
may be of higher speed and capacity. Networks at each level may likewise have differing
communication characteristics.

We present an algorithm which, given a tree network T and a broadcast time t,
determines a smallest set of subtrees covering the sites of T such that the broadcast
time for each subtree is less than or equal to t. Information developed by the algorithm
is sufficient to also determine a satisfactory originator and calling scheme for each
subtree. A solution to our problem for t-_<2 has been given as a special case of
decomposing trees into paths by Hedetniemi and Hedetniemi [6]. Our algorithm solves
the problem for arbitrary > 0. The algorithm is efficient, requiring time and space
proportional to VI, with a constant of proportionality depending linearly on t.

2. Partitioning trees by broadcast time. Trees, being acyclic connected graphs,
have several properties which make them suitable for the design of efficient solution
algorithms. Most important is that each vertex (and edge) separates the graph into two
connected components. Therefore, there is an absence of influence between subtrees
of a given vertex other than that transmitted through the vertex itself. This allows
efficient algorithms to process a (current) leaf vertex, update information at its single
adjacent vertex, make globally correct decisions based upon this local information and
prune the leaf vertex, removing it from the tree and further consideration. We follow
this paradigm in our solution algorithm for partitioning trees according to broadcast
time.

The input tree is represented recursively by a father array [8, p. 354], which
assumes an arbitrary root vertex. The array contains, for each nonroot vertex, a pointer
to its unique father (of lesser index) on the path to the root. During execution of the
algorithm, certain edges of the input tree are cut, disconnecting the tree and forming
a subtree of the partition. At any time, the connected component of the input tree
containing the root is called the current tree. We also refer to the unprocessed tree, which
initially corresponds to the input tree. During each cycle of the algorithm a leaf vertex
of the unprocessed tree is processed. After being processed, the leaf is pruned (i.e.,
removed) from the unprocessed tree, though it will remain part of the current until a
cut disconnects it from the root. With each vertex v of the input tree, we associate the
following information"

(i) callees(v)ma list of previously processed, adjacent neighbors, ordered
according to the time that v would call them in a minimum time broadcast;

(ii) maxtime(v)--the latest time unit during which v can be called and still
complete broadcasting within the required time in the subtree defined by v
and subtrees of the current tree rooted by vertices on callees(v);

(iii) mintime(v)--the earliest time unit that v can be called from a (necessary)
broadcast originator within a previously processed subtree of v in the current
tree;

(iv) caller(v)--the adjacent, processed vertex capable of calling v with the
message during time unit mintime(v) from the predetermined originator.

For each vertex c, this information is initialized as follows: callees(c) and caller(c)
are set to nil (i.e., empty), maxtime(v) is set to (as each could potentially be called
during the last time unit), and mintime(v) is set to 0 (as each could potentially be an



BROADCASTING IN TREES WITH MULTIPLE ORIGINATORS 383

originator). A vertex v which has a nonnil caller(v) value (has a processed subtree
containing a necessary originator) is classified as heavy. Otherwise, v is classified as
light. All vertices are initially light.

The processing of a leaf vertex depends on whether it is heavy or light. If a leaf
vertex u is light, the attempt is made to insert u into callees(v) of its father v. If
successful, maxtime(v) is updated and processing of u is complete. If u cannot be
inserted, a necessary cut is introduced between u and v. If u is heavy (i.e., mintime(u) >
0), then a check is made to see whether a broadcast through u can reach all light subtrees
of u (by comparing mintime(u) and maxtime(u)). If not, the subtree rooted at caller(u)
is cut from the current tree; u becomes light and is processed as described above. If
the light subtrees of u can be accommodated, then consideration of the father v begins.
If v is light, it becomes heavy with caller(v) being u. If v is heavy, a cut is introduced,
disconnecting the subtree rooted by either u or caller(v) from the current tree.

Each site u has a set of potential timeslots (1 to t) during which it can call elements
of callees(u). A function emptyslots scans callees(u), determining the set of time slots
available below a given maximum time. The maximum or minimum value returned by
emptyslots is important in determining whether light subtrees can be accommodated
by heavy or father sites. This outlines the approach taken by algorithm BROADCAST,
which is formally defined as follows.

ALGORITHM BROADCAST
Input Tree T given by the array father, broadcast time t.
Output Partition of T into subtrees of broadcast time at most represented by

cut edges of T.
Method begin
{0. Initialize} for each vertex u do
{0.1} begin maxtime(u):= t;
{0.2} mintime(u) := 0;
{0.3} callees(u) := nil;
{0.4} caller(u) := nil end;
{1. Prune} for each leaf vertex u of unprocessed tree do

if mintime(u)> 0 {a heavy leaf}
{1.1} then if maxtime(u)< mintime(u) {u cannot be covered}
{1.1.1} then begin mintime(u):= 0; cut (caller(u)); {u is light now}

updatefather(u)
end

{1.1.2} else upminfather(u)
{1.2} else {a light leaf} updatefather(u)

end. {of BROADCAST}

procedure updatefather(u);
{of a light vertex}
begin if maxtime(u) 0 {root of a broadcast}

then {a vertex informed at time 0}
upminfather(u)

else upmaxfather(u)
end;

procedure upmaxfather(u);
{recompute maxtime requirements}
begin v := father(u);

s := max[emptyslots(callees(v), maxtime(u))];
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if s 0 then cut(u) {v cannot accommodate u}
else begin insert (u, callees(v), s);

if s < maxtime(v)
then maxtime(v):= s 1

end {v calls u at s}
end;

procedure upminfather(u);
{updates mintime info}
begin v := father(u);

s := min[emptyslots(callees(u), + 1)];
if mintime(v) 0 {a light node}

then begin caller(v):= u; mintime(v):=s + 1 end {v becomes heavy}
else if s < mintime(v) {a taller son}

then begin cut(caller(v));
caller(v) := u
insert(v, callees(u), s);
mintime(v) := s + 1
end

else cut(u)
end;

procedure cut(vertex);
{adds the edge between vertex and father (vertex) to the set of cut edges}
function emptyslots(list, min);
{returns a set of timeslots less than min at which another callee can be informed

(inserted into list), or 0 if no such slot exists}
procedure insert(vertex, list, slot);
{inserts vertex on the list at time slot maintaining the increasing time order of list}

3. Correctness and complexity of the algorithm. In this section we will state and
prove lemmas verifying correct computation of vertex (subtree) parameters during
execution of the algorithm BROADCAST. These are used to establish correctness of
the algorithm. In our arguments, we use the notions of light and heavy vertices, the
current tree, and the unprocessed tree, as defined in the preceding section. Addi-
tionally, by pruned subtree of a vertex v we understand a subtree rooted at a pruned
neighbor of v.

We first consider computation of the time parameters" maxtime and minti,rne.
LEtMA 1. In the current tree S, the value maxtime (v) of an unprocessed vertex v

equals the latest time unit (counted from the origination of the message) in which v must
be informed in order to complete broadcast in its pruned light subtrees in S by time t.
Callees(v) is the list of pruned light sons of v ordered by their maxtime values.

Proof. During initialization, the value of maxtime(v) for each vertex v of T is set
to t, which is correct for vertices having no pruned light subtree; callees(v) is initially
empty. Let us assume that the values are correct just before a leaf of the unprocessed
tree is pruned. If this leaf is heavy and no cut is made, then the values are left correct.
A heavy leaf vertex u of the unprocessed tree whose caller must be cut off (step {1.1.1})
becomes a light vertex of the new S. Both for such a vertex and for an originally light
vertex the procedure upmaxfather (called from updatefather) correctly updates the
values maxtime(v) and callees(v) of the father v. These values stay unchanged if the
light leaf vertex u has to be cut off. In this case, the disconnected subtree rooted at u
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does not influence the maxtime or callees values of the father. Otherwise, the vertex u
is inserted at an appropriate place in the list of callees of v and, if its calling time is
now the earliest, it redefines the maxtime of v. I!

LEMMA 2. In a current tree S, a heavy vertex cannot have two pruned sons which
are heavy or which have maxtime equal to zero.

Proof. The broadcast time for a subtree of pruned vertices of S rooted at vertex
u is greater than if u is heavy, or equal to if maxtime(u)= 0. Thus, the message to
be broadcast to u cannot originate outside of its subtree as implied by a heavy brother
in $. In the procedure upminfather such a situation is prevented,by cutting off one of
the two heavy vertices. I-1

LEMMA 3. In the current tree S, the value of mintime (v) of a heavy vertex v equals
the earliest time during which v can be informed of a message originated by a previously
determined vertex in a pruned subtree ofv. The heavy neighbor ofv supplying this message
is caller(v).

Proof. All vertices of T are initially light. A vertex v becomes heavy when one of
its pruned sons u in $ has maxtime equal to zero or is heavy. In both cases, the
procedure upminfather is invoked to update mintime(v) and caller(v) according to the
parameters of u. Let us assume that the values are correct just before u is pruned. In
upminfather, the earliest available timeslot of u is determined. If v is light, then
caller(v) is correctly set to u and mintime(v) is accordingly set. If v is heavy, then this
timeslot is compared to the current value of mintime(v) and a cut minimizing the
resultant value of mintime(v) is made. If the current caller(v) is cut, then the values
are appropriately updated according to parameters of u; otherwise they remain
unchanged.

LEMMA 4. In the current tree S, a pruned vertex v can have a heavy son u only if u
can call v at or before maxtime(v)

Proof. By Lemma 1, we know it requires t-maxtime(v) time units to complete
broadcasting from v to its light, pruned subtrees in S. Therefore, a broadcast cannot
be completed by time if v is not informed prior to or at maxtime(v). When heavy son
u cannot inform v prior to or at maxtime(v), the necessary cut is made in step {1.1.1}.

THEOREM 1. Algorithm BROADCAST computes a minimum-size partition oftree
T such that a message can be broadcast from a single originator in each subtree within
time t.

Proof. Let b(T, t) be this minimum size and c(T, S) be the number of invocations
of procedure cut in the algorithm on T, when the current tree is S. We have to prove
that c(T, )= b(T, t)-1. This will be shown by establishing the invariant value of
c(T, S)+ b(S, t) during the execution. Indeed, the current tree changes only when cut
is invoked in one of three cases: (i) when pruning a heavy vertex which cannot be
accommodated (called) from its heavy descendant in $, (ii) when encountering two
heavy sons in upminfather, or (iii) when a light vertex cannot be informed by its father
in the required time (in upmaxfather). In all these cases, a cut has to be made according
to Lemmas 2, 4 and 1, respectively. The cut results in a heavy vertex with smallest
possible value of mintime ((ii)), or in a light vertex with largest possible value of
maxtime ((i) or (iii)). This ensures that the new current tree, $’, has the minimum value
of b(S", t) over all subtrees $" of S such that the cutoff subtree $- S" has a broadcast
time at most t. Thus, b (S’, t) b (S, t) 1 and c (T, $’) 1 + c (T, S). Therefore,
c (T, $’) + b (S’, t) 1 + c (T, S) + b (S, t) 1 c (T, $) + b (S, t). Initially, S T, and this
constant value c (T, T) + b (T, t) b (T, t). After the final cut has been made, the
resulting current subtree S’" has broadcast time at most t, and thus it is the only
component in its optimal partitioning, b (S’", t) 1. Thus c (T, $’") + b (S’", t) b (T, t),
and as no more cuts are made, c(T, do) c(T, S’") b(T, t)- 1. [q
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The pruning strategy employed in the algorithm BROADCAST guarantees that
each vertex is processed exactly once, and thus the complexity of the algorithm is
defined by the complexity of upmaxfather and upminfather, which are executed at most
once per processed vertex. These procedures, in turn, involve at most one call of
emptyslots and/or insert which require number of operations in the order of length of
the relevant (callee) list. This list of light sons ot a vertex in u is never longer than t.
Hence, we have the following theorem determining the complexity of BROADCAST.

THEOREM 2. Given a tree T with n vertices and a broadcast time t, the execution
time ol algorithm BROADCAST is O(n t).

4. Conclusion. In this paper, we have presented a linear algorithm for decompos-
ing a given tree into subtrees, each subtree having a broadcast time less than or equal
to a given time. This algorithm can be seen as one of a family of linear tree partitioning
algorithms [4]. Partitioning techniques can be seen as alternatives to methods determin-
ing multiple centers (cf. [7] and [4]).

Partitioning based on broadcast time is well-motivated from an applications
perspective. Other models of the information dissemination process would lead to
different decomposition problems. For example, associating a call time with each line
to reflect average load (i.e., queue length) is a reasonable extension of our model.
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THE BANDWIDTH OF CATERPILLARS WITH
HAIRS OF LENGTH 1 AND 2*

S. F. ASSMANNS-, G. W. PECKt, M. M. SYSLOt AND J. ZAK

Abstract. In this paper we show that the bandwidth of any caterpillar with hairs of length and 2 is
given by the maximum over all subcaterpillars of [(n 1)/d], where n is the number of vertices and d is the
diameter of the subcaterpillar. We also give an n log n algorithm which produces a bandwidth labelling of
such a caterpillar.

Let G be a connected graph with vertex set V and edge set E. A labelling of G is
a 1-1 map f from V into N, the nonnegative integers. Let br(C)=max I/’(u)-f(v)l,
where (u, v) ranges over all edges of G. The bandwidth of G, denoted b(G), is defined
by b(G)= min br(G), where f ranges over all labellings of G. A labelling f such that
b(G) b(G) is called a bandwidth labelling of G. The paper of Chinn et al. [1] is a
general survey of bandwidth theory and its uses.

Finding the bandwidth of a graph has several practical applications. Suppose the
edges of G correspond to the nonzero entries in a symmetric n n matrix M. That is,
there is an edge from vertex to vertex ] if and only if Mij does not equal 0. Finding a
bandwidth labelling of G then corresponds to permuting the rows and columns of M
in such a way as to minimize the maximum distance from any nonzero entry of M to
the main diagonal. This distance will equal b(G).

Another application is the following. Suppose we wish to carry out some iterative
procedure on the vertices of a graph, where the new value associated with a vertex is
determined by the old values associated with its neighbors and itself. Then the
maximum number of old values we must keep in memory at one time will be 2b(G) + 1,
and we can achieve this if we process the vertices in the order given by the bandwidth
labelling.

Finding the bandwidth of an arbitrary connected graph is an NP-complete problem
[4]. In fact, the problem is NP-complete even if the graphs are restricted to trees with
maximum degree 3 [3]. However, Chung [2] gives formulas for the bandwidth of a few
special classes of graphs, such as the n-cube and the complete p-ary tree with k levels.

In this paper we give the bandwidth for another special class, the caterpillars with
hairs of length 1 and 2. That this bandwidth can be found in n log n time is interesting,
since the trees used in [3] to prove NP-completeness look very much like such graphs.

A caterpillar is a graph in which the removal of all pendant vertices results in a
path. These pendant vertices can be thought of as hairs attached to the body of the
caterpillar, that is, the path of nonpendant vertices. See Fig 1. We will also consider
caterpillars with hairs of length 1 and 2. In these graphs, paths of length 1, 2 or both
may be attached to any vertex in the body of the caterpillar. See Fig. 2. In these two
figures the bodies of the caterpillars are shown as black dots, the hairs as white dots.

One can easily show that inequality (1) holds, where G’ ranges over all connected
subgraphs of G, n’ is the number of vertices of G’, and d’ is the diameter of G’.

(1) max [(n’- 1)/d’] -< b(G).
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FIG. 1. A caterpillar.

FIG. 2. A caterpillar with hairs o]" length and 2.

The inequality in (1) cannot in general be strengthened to an equality, as the
example in Fig. 3 shows. In this graph, the lower bound is 2, but b(G)= 3.

FIG. 3. A counterexample to equality in (1).

We will now show that (1) is strengthened to an equality when G is a caterpillar
with hairs of length 1 and 2.

We present an algorithm which, given a graph G of this type and a positive integer
m, attempts to find a labelling f and G such that br(G)= m. We show that if the
algorithm fails to produce such a labelling, then there is a subcaterpillar G’ of G with
[(n’- 1)/d’] > m, so that by (1) we have b(G) > m.

The algorithm is as follows:

ALGORITHM 1.

Step 1. Label the points along a diameter of G by O, m 2m, , dm in order from left
to right.
Step 2. For k 1 to d- 1 label the hairs of point km in the following order, giving
each vertex the lowest possible label consistent with preserving bandwidth m. If a point
cannot be labelled, halt and return an error message.

Step 2A. As many hairs of length 2 as can be labelled so that the point further
from the point km is given a label between (k- 2)m and (k- 1)m.
Step 2B. All hairs of length 1.
Step 2C. As many hairs of length 2 as can be labelled so that both points receive
labels between (k- 1)m and km.
Step 2D. All remaining points at distance 1 from point kin.
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Step 2E. All remaining points at distance 2 from point kin, taken in the same order
as their associated points in step 2D.

As as example, the labelling the algorithm produces for the graph in Fig. 2 when
m 4 is given in Fig. 4.

10 11 14
3

2 6

18

13 19 21 22

FIG. 4. An example of the use of Algorithm 1.

The idea behind the algorithm is that no point at distance 2 from point km is given
a label between (k- 1)m and (k + 1)m unless, as in step 2E, there are no points at
distance 1 which need labels, or, as in step 2C, it is optimal to do so. (If we do not use
two labels within m of km to label this hair, we must use one between km and (k + 1)m
and one above (k + 1)m, wasting the one below km.)

(.) Note that, when the hairs of point kin, are labelled, no label between km and
(k + 1)m is assigned unless all labels between (k-1)m and km have been used,
and no label between (k + 1)m and (k /2)m is assigned unless all labels between
km and (k + 1)m have been used.

(**) Also note that each interval ]rn to (/" / 1)m is used in order from lowest to
highest label.

THEOREM 1. Let G be a caterpillar with hairs of length 1 and 2, and let m be a
positive integer. If Algorithm 1 fails to find a labelling f of G with bt(G)= m, then
b(G)>m.

Proof. Suppose the algorithm fails. We will then show that we can find a subcater-
pillar G’ of G with [(n’- 1)/d’] > m. By (1) we will then have b(G) > m.

The general idea of the proof is as follows. Let km be the point whose hairs we
have failed to finish labelling. Suppose that all the labels below km have been used.
Then (with a few exceptions) G’ will consist of all points with labels below km and all
points no further from km than the point we have failed to label. In the first part of
the proof we show that we can reduce any problem to the special case where all the
labels below km have been used by deleting all points with labels below the gap. In
the second part of the proof we explain in more detail how to obtain G’ and why
[(n’- 1)/d’] will be greater than m.

First, suppose that some labels less than km have not been used. Let be the
greatest such label. We will show that the algorithm would also fail on the subcaterpillar
G" obtained from G by deleting all points with labels less than i.

If < (k- 2)m, then any points with labels less than are too far from the point
km to have any effect on the labelling of its hairs, so we can delete them to form G"
without making it possible to label the unlabelled hair.

If (k 2)m < < (k 1)m, then by remark (.) no hairs from point (k 2)m or point
(k- 1)m can have labels between (k-1)m and kin. Before we started step 2 for kin,
then, there were m- 1 unused labels between (k- 1)m and km and at least 1 and no
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more than m 1 unused labels between (k 2)m and (k 1)m. Since there is still a gap
between (k- 2)m and (k- 1)m, point km must have no unlabelled hairs of length 2,
or we could have continued to apply step 2A. Furthermore, all points on the hairs of
length 2 which are at distance 2 from point km have labels below i, by (**). The gap
is too far away to affect the labelling of points at distance 1 from point kin. Thus, the
algorithm would also fail on G".

It is impossible to have (k- 1)m < because the algorithm will not fail until all
labels within m of km have been used.

By remark (**), fm- 1 for some/’, so the partial labelling Algorithm 1 would
give G" is the same as it gave G" as a subgraph of G except for a shift of fro. Thus the
labelling of G" would have no gaps.

We may therefore assume for the rest of the proof that there are no gaps in the
partial labelling that Algorithm 1 gives G before it fails.

G’ will depend on which step in the algorithm we fail in.
It is impossible for the algorithm to fail in step 2A because we have not exhausted

the possible labellings of hairs of length 2.
Suppose it fails in step 2B. There are 2 cases.
Case 1. We have not labelled any hairs in step 2A. Let G’ consist of all points

with labels no more than km and all points at distance 1 from point kin. G’ has diameter
k + 1. G’ includes the (k + 1)m + 1 points labelled 0 through (k + 1)m, plus at least 1
more point which we could not label. Thus n ’-> (k + 1)m + 2, so [(n’- 1)/d’] > m. See
Fig. 5 for an example of this situation.

7

11 q

2 4 8 10

(a) (b)

FIG. 5. (a) Failure in step 2B, where step 2A has not been used. (b) G’. Note [(14-1)/4] =4.

Case 2. We have labelled at least one hair in step 2A. Let G’ consist of the point
km and all points at distance 1 from point kin. Because there had been a label free
between (k-2)m and (k- 1)m which allowed us to use step 2A, by remark (.) no
labels above (k- 1)m were used to label any hairs of points below kin. Since we are
stuck in step 2B, all the labels from (k 1)m to (k + 1)m must have been given to points
at distance 1 from point kin, except for the label km itself. We also have at least one
more point at distance 1 from km which we could not label. Thus n ’-> 2m + 2. As d’= 2,
[(n’- 1)/d’] > m. See Fig. 6 for an example of this situation.

We cannot fail in step 2C, because we still have not exhausted the possible
labellings of hairs of length 2.

Suppose we fail in step 2D. There are again 2 cases.
Case 1. We did not label any hairs in step 2C. Then we are in essentially the same

situation as if we had failed in step 2B, with the same 2 subcases. See Figs. 7 and 8 for
examples of these situations.
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2

1578?

(a) (b)

FIG. 6. (a) Failure in step 2B where step 2A has been used. (b) G’. Note [(8-1)/2] =4.

7

5

2 4

(a) (b)

FIG. 7. (a) Failure in step 2D, where step 2C has not been used, and step 2A has also not been used. (b)
G’. Note [(14-1)/4] =4.

9 12

(a) (b)

FIG. 8. (a) Failure in step 2D, where step 2C has not been used, but step 2A has been used. (b) G’.
Note [(8-1)/2] =4.

Case 2. We did label at least 1 hair in step 2C. Let G’ consist of all points with
labels no more than km and all points at distance 1 or 2 from point kin. Because we
have failed in this step, G’ includes all the points labelled 0 through (k + 1)m, the point
labelled (k + 2)m, and the point we could not label. Also, at least the points labelled
km + 1 to (k + 1)m 1 and the unlabelled point each have associated with them a point
at distance 2 from point km which hasn’t been labelled yet. Thus n’=> (k + 2)m + 3. The
diameter d’= k + 2, so [(n’- 1)/d’] > m. See Fig. 9 for an example of this situation.

Suppose we fail in step 2E. Let G’ consist of all points with labels no more than
km and all points at distance 1 or 2 from point kin. If every point labelled in step 2D
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(a) (b)

FIG. 9. (a) Failure in step 2D, where step 2C has been used. (b) G’. Note [(19-1)/4] 5.

was given a label above kin, then its associated point could be given the label rn above
that label in step 2E, and we would not be stuck. Thus one point in step 2D was given
the label km 1, and the rest were given the labels km+ 1 to (k + 1)m 1. G’ includes
all the points with labels 0 through (k + 1)m, the point (k + 2)m, and rn points at distance
2 from point km which have not yet been labelled. Thus n’ (k + 2)m + 2. The diameter
d’= k + 2, so [(n’- 1)/d’] > m. See Fig. 10 for an example of this situation.

This concludes the proof of the theorem.

2

(a) (b)

FIG. 10. (a) Failure in step 2E. (b) G’. Note [(14-1)/4] =4.

THEOREM 2. The bandwidth of a caterpillar G with hairs ol length 1 and 2 is the
maximum over all subcaterpillars G’ of [(n’- 1)/d’].

Proof. Apply Algorithm I with m max [(n’- 1)/d’]. The algorithm cannot fail,
so b (G) _-< m. Now use (1).

COROLLARY. There is an n log n algorithm for finding the bandwidth of a
caterpillar G with an points and hairs of length 1 and 2, which also produces a labelling
achieving this bandwidth.

Proof. Clearly the bandwidth will be between 1 and n. We can find b(G) by binary
search in this interval, using Algorithm 1 to test whether b(G)> m. We will have to
use Algorithm 1 log n times. Algorithm 1 itself works in time proportional to the
number of points in G, so the total time used is n log n.

Note that once we have any bandwidth labelling of a graph, it can easily be changed
to a bandwidth labelling with range {1, 2,..., n} by ordering the vertices by label
and letting the new label of each vertex be its position in this ordering.
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The example of Fig. 3 showed that Theorem 2 is false for caterpillars with hairs
of length 1, 2, and 3. Figure 11 shows that the theorem is false for caterpillars which
have all their hairs of length 4. Here the lower bound is 2 but b(G)= 3.

FIG 11. A counterexample to equality in (1) where all hairs have the same length.

The following question remains open. Does there exist an efficient algorithm,
perhaps similar to Algorithm 1, which will determine whether a caterpillar with hairs
of length no more than k has a bandwidth below a given bound?

Another open question is how bad the lower bound max [(n’-1)/d’] can be in
comparison to the actual bandwidth of a graph.

Acknowledgments. One of the authors (GWP) thanks Jeff Kahn, Daniel Kleit-
man, and Jim Shearer for their help in providing his contribution to the paper.
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COVERING REGIONS BY RECTANGLES

SETH CHAIKEN’, DANIEL J. KLEITMAN, MICHAEL SAKS AND JAMES SHEARER

Abstract. A board 3 is a finite set of unit squares lying in the plane whose corners have integer
coordinates. A rectangle of is a rectangular subset of and an antirectangle is a set of squares in
no two of which are in a common rectangle. We prove a conjecture of Chvfital that if 3 is convex in the
horizontal and vertical directions, then the minimum number of rectangles whose union is equals the
maximum cardinality of an antirectangle. Our proof uses two analogous minimax theorems about covering
the corners and covering the edges of the board.

We quote examples that illustrate the necessity of the hypotheses, and give some conjectures and open
questions. The method of proof can give a polynomial running time algorithm for finding a minimum cover.

1. Introduction. Consider the plane covered by the unit squares whose sides lie
on the integer coordinate lines; we refer to these throughout as squares. A board 3
of size n is a (finite) set of n squares. A rectangle (in unless otherwise indicated)
is a subset of whose union is rectangular. A whole cover of 3 is a collection of
rectangles whose union equals . The rectangles of a cover may overlap, but each of
them must be wholly contained in the board. An antirectangle in 3 is a set of squares
in no two of which are contained in any rectangle. Any cover must contain at least
as many rectangles as any antirectangle has squares. Therefore, if 0 is the number of
rectangles in a cover (the size of the cover) and a is the number of squares in an
antirectangle (the size of the antirectangle) then 0-> a. We call a cover optimal if it
has minimum size and an antirectangle optimal if it has maximum size. If a board has
a cover and an antirectangle of equal size, then they are both optimal.

The problem of finding optimal covers and antirectangles is an example of a dual
pair of packing and covering problems, well known in combinatorics (see, for example,
Liu [5], Brualdi [2], Woodall [6] for more details). Chvfital originally conjectured that
the optimal 0 and a were equal. In general, this is false (see 3). Here we prove his
weakened conjecture that there is equality when 3 is convex" Whenever two squares
in 3 are on the same horizontal or vertical line, all squares between them are in 3.
This problem arose as an idealized special case of an operation used by the microelec-
tronics industry. A layer of an integrated circuit (consisting of arbitrary polygons) is
to be printed on a photographic plate that will become a photolithographic mask in
the manufacture of the integrated circuit. The printing is done by flashing rectangles
onto the photographic plate to produce an image equal to their superposition; this is
to be done using as few rectangles as possible. In the "real world problem" there are
additional constraints, including the discreteness of the rectangles available (which
limits the accuracy), not exposing a segment of a polygon boundary more than once,
and computation time and program and data space limitations. In retrospect, the
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theory here in part supports certain heuristics that have been used in such a program.
Another context (Masek [5]) is the construction of letters and other shapes on video
computer terminals.

Our method of proof can be used to obtain a polynomial time algorithm for
finding the optimal (9, but we omit the details. Masek [5] established that, in general,
for nonconvex boards, this problem is NP-hard. This is yet another example of a
combinatorial optimization problem with a rain-max theorem and an efficient
algorithm, and a problem without such a theorem that is NP complete.

For any subset S c , an S-cover of is a collection of rectangles whose union
contains $. An $-antirectangle of 3 is an antirectangle contained in $. Let 8’ (3)
be the set of edge squares, that is, those with at least one side lying on the boundary
of 3. Let c () be the set of corner squares, those with two adjacent sides on
the boundary. Nonedge squares are called interior squares. Our proof of the main
theorem relies on induction for certain boards (called reducible). For the remaining
(irreducible) boards, the proof uses an analogous min-max result for edge covers and
edge antirectangles, which holds for these boards. The proof of this edge result makes
use of a theorem about corner covers and antirectangles.

These problems can be restated in familar graph theoretic terminology by associat-
ing a board with a graph G G() whose nodes are the squares in and in which
two squares are joined by an arc if there is a rectangle in 3 that contains them both.
The following simple lemma, which is true for any board, is presented without proof.

LEMMA 1.1 The cliques of G() are the rectangles of 3.
Let S be any subset of and let Gs denote the induced subgraph of G on this

subset. A maximum $-antirectangle of 3 is, by definition, a maximum independent
set of Gs, whose size is written a(Gs). A minimum S-cover of 3 has size equal to

O(Gs), the minimum number of cliques needed to cover Gs.
Our main results, which hold for convex boards 3, are"

THEOREM I. The minimum size of a corner cover of equals the maximum size

of a corner antirectangle in i.e., O(G) a(G).
LEMMA. 6.5. If3 is irreducible (see 5), then the minimum size of an edge cover

of 3 equals the maximum size of an edge antirectangle in , i.e., O(G$)= a(G).
THEOREM II. The minimum size of a whole cover of 3 equals the maximum size

of an antirectangle in 3, i.e., O(G)= a(G).
It is shown ( 3) that the convexity hypothesis in these results is necessary. Figure

1 illustrates that the sizes of the optimal corner, edge, and whole covers may be
different.

Theorem I is proven by showing that G has a simple structure.

No optimal corner cover
covers all the edges.

No optimal edge cover covers the
whole board.

FIG.

The first author encountered this problem during his employment with Applicon, Inc.
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LEMMA 4.1. Each connected component ofG is either
(1) a 4 clique, or
(2) a graph in which every odd cycle contains a square ofdegree 2, whose neighbours

are adjacent.
To prove Lemma 6.5, we first show that irreducibility implies that in a corner

cover by maximal rectangles, the rectangle covering a corner covers all of the squares
on at least one of the edges incident to the corner. This fact enables us to construct
an arc-deleted subgraph G* of G which satisfies a(G*) O(G*) and whose indepen-
dent sets and clique covers correspond to 8’-antirectangles and 8’-covers.

Theorem II is proved in two steps. First, two reducible configurations are defined.
Each configuration involves a maximal rectangle that must be in every optimal cover,
and a reduction which produces a smaller board. The reduction is such that from an
equally sized cover and antirectangle pair for the reduced board (obtained by induc-
tion), we can construct an equally sized pair for the original board. The second step
involves analysis of irreducible boards. If some optimal edge cover covers the whole
board, Lemma 6.5 implies the result. If not, we show the board is so structured that
an optimal edge cover that covers a maximal set of squares provides an equally sized
antirectangle. To these, one more rectangle and one more square can be added to
yield an optimal whole cover and antirectangle.

In the next section are definitions and simple facts used in the rest of the paper.
Section 3 gives examples that indicate the necessity of the convexity hypothesis, and
some open problems. The remainder of the paper is restricted to convex boards.
Section 4 is about corner covering. Section 5 gives the reducible configurations. Section
6 presents the edge covering result. Finally, in 7 we finish covering the whole board
when it is irreducible.

2. Definitions and simple facts. We adopt the usual coordinate system in which
the positive x axis points to the right and the y axis points up. The defines for us the
everyday words for direction: top, below, horizontal, etc. The squares are the unit
squares bounded by integer coordinate lines. We identify a board or rectangle (set of
squares) with its union (a polygon). A board has vertices and edges on its boundary,
but the edges of a rectangle are called sides.

A vertex with interior included angle of 90 is called a corner vertex; a corner
square is one that touches a corner vertex. The integer coordinates divide each edge
into unit (boundary) segments. A square that is bounded on at least one side by a
segment is called an edge square. Every corner vertex is associated to a unique corner
square and every segment is associated to a unique edge square. Let and denote,
respectively, the sets of corner and edge squares.

Points, such as vertices, are referred to by their coordinates (x, y). We make the
special convention that the cordinates of a square or segment are those of its center.
The coordinates of z are denoted by x(z) and y(z). When z is an edge, >-_x(z) means
>=x(p) for all points p in z. This way, for example, we say square u is to the right

of vertical edge CD and left of vertical edge EF by x(CD)< x(u)< x(EF). Occasion-
ally, x + 0.5 is used to convert between coordinates of points and those of squares or
segments.

A rectangle is said to cover a corner, a square or an edge if it contains the
corresponding corner square, the indicated square, or all the edge squares on the edge
respectively.

An edge is called a support edge when both its ends are corner vertices. It is easy
to see every support edge has a unique maximal rectangle that covers it. This is called
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the associated or support edge rectangle. Any rectangle can be named by giving either
a point, segment, or square on two opposite corners. Thus Duv denotes the smallest
rectangle that contains u and v.

FIG 2. BC is the support edge rectangle ofAB EWis the support edge rectangle ofDE.

G G() is a graph whose nodes, called squares, are the squares in . Two
squares s and are joined by an arc, denoted (s, t) G, whenever st . An easy
way to check whether (s, t) G is to check whether the interior of Dst meets a boundary
segment or a square not in . The neighborhood of a square s, N(s)= N(s), is the
set of all squares that can be covered by some rectangle covering s:

N(s) {t [(s, t) G} LI {s}
Let R be the associated rectangle of support edge AB. The side of R opposite

AB must contain a boundary segment. Let e be the edge square on AB that meets
the perpendicular bisector of that segment. R is the unique maximal rectangle that
covers e. Furthermore, in any cover and antirectangle problem in which e must be
covered, there is always an optimal cover that contains R and an optimal antirectangle
that contains e.

All of our positive results concern convex boards as defined in 1. In other words,
for any s, S2fi , if x(sx)= X(S2) or y(Sl)= y(s2) then 13sis2_. /d. We make repeated
use of the following facts about convex 3"

Fact 2.1. Given a pair of squares, sx, s2 s 3, consider the other two squares at
the corners of ss2, S’l (x(sx), y(s2)), s’2 (x(s2), y(sx)). When (Sl, sz) is in G, then
s and s2 are in . Convexity means that the converse is true. Then, we need to look
at only two squares, s and s E, to see whether (sx, s2) G.

FIG. 3. Sufficient condition for (sl, s2) G for convex

Fact 2.2. A convex board has exactly 4 support edges. These divide the boundary
into 4 support edges and 4 possibly empty paths.
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FIG. 4. Note the four support edges of a convex board.

The arguments made in succeeding sections hold under rotations and reflections
of the board. For simplicity, the arguments are described and illustrated with the
board in a specific position.

3. Counterexamples and open questions. Chvfital’s original conjecture was dis-
proved by Szemer6di who found a counterexample with a "hole" (Fig. 5). Chung
(who informed us of the history of this problem) then found the simply connected
counterexample in Fig. 6 (Chung [3]).

One can see that optimal 0 and c in these examples are unequal by first observing
that a support edge rectangle R always contains some edge square such that R is the
unique maximal rectangle that contains that square. Thus one can assume that the
support edge rectangles are all in the optimal cover and that one edge square from
each is in the optimal antirectangle. Second, consider the squares S left uncovered
by these rectangles (not cross hatched in the drawings). In each example, Gs has an
induced 5-cycle (indicated by connected dots in the drawings). Hence at least 3 cliques
are needed to cover S. One can verify that 3 cliques suffice. Finally, one can verify
there are only up to two independent squares in S.

Similar analyses of Figs. 7 and 8 yield 7-cycles, and so show that the corner
covering result (O(G)=(G)) and the edge covering result (0(G)=c(G)) are
sometimes false for nonconvex boards.

A graph G is perfect if for all subsets S of vertices, O(Gs)=a(Gs) (see Berge
[1]). Figure 9 shows a board with a subset of squares that includes a 5-cycle in G;
hence G() is not always perfect, even for convex boards.

In this paper we show that O(G) a(G) for certain (irreducible) convex boards
( 6). One of the authors, M. Saks, has recently shown that for any convex board,
and any subset " of edge squares, O(G,)= a(G,); hence G is a perfect graph.

We have not yet fully investigated the implications of convexity in only one
direction.

Finally, for arbitrary boards , let 0 and a be the optimal cover and antirectangle
sizes respectively. Erd6s asked if O/a is bounded and we do not know the answer.

21Chung’s example has O/a . The largest value we could achieve for 0/a is -e,

FIG. 5. O(G) 8, a(G) 7.
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FIG. 6. O(G) 8, a(G) 7.

FI6. 7. 0(G)= 7, a(G)=6.

FIG. 8. O(Gf) 9, o(G) 8. FIG. 9. Induced 5-cycle in G.

4. Corner covering. A corner vertex of the board is designated as type (left,
upper), (left, lower), (right, upper), or (right, lower) according to its position with
respect to the board square it touches. A corner square has the types of its incident
corner vertices (it may have one or two for nontrivial boards). The types of two corners
c, c2 provide necessary conditions for (c, c) G.

If c, c2 have a common type, (c, c2) G (Fig. 11).
If c, c2 each have one type, and the types differ in both components, we say c,

c have opposite types. Whether (c, c2) G or not depends on the rest of 3 (Fig. 12).
If c, c have types that differ in one component (say the x, i.e., "left", "right"

component) and agree in the other, we say they have adjacent type. In this case, (c,
c2) G only if c and c2 have equal coordinates in the component in which their types
agree (say the y component). This condition is sufficient when is convex (Fig. 13).

FIG. 10. The four corner types. FIG. 11. Corners with common type.

FIG. 12. Corners with opposite type. FIG. 13. Corners with ad/acent type.



400 S. CHAIKEN, D. J. KLEITMAN, M. SAKS AND J. SHEARER

LEMMA 4.1. For a convex board/3, each connected component ofG is either
(1) a 4 clique, or
(2) a graph in which every odd cycle contains a square of degree 2 in G such

that its two neighbors are ad]acent (thus these three vertices from a 3 clique).
Proof. Let (cl,"" ,cn), n_->3, be a odd cycle in G(). Then at least two

successive squares in the cycle, say cl and c2, are of adjacent type.

FIG. 14

There is a unique maximal rectangle R that contains both c and C2o Convexity
implies the side of R opposite C and c2 meets a boundary segment at at least one of
its ends; assume that end is closest to c (Fig. 14). Therefore, R =NtT(Cl). Thus in
G, c is connected only to c2 and to whichever of a and b are corners. If both a and
b are corners, c, c2, a, b is a 4 clique that is not connected to any other corner
(Fig. 10). If only one of a and b, say a, is a corner, then c has degree 2 and a, c,
c2 is a 3-clique. If neither is a corner, then cx is not contained in a cycle.

THEOREM I. The minimum size of a corner cover of J equals the maximum size

of a corner antirectangle in .
Proof of Theorem I. We show that any graph satisfying the properties proved in

Lemma 4.1 has a clique cover and independent set of equal size. The cover consists
of all of the (disconnected) 4-cliques, all 3-cliques, and a minimum cover of the
subgraph H obtained by deleting all of these cliques. The independent set consists
of one square from each 4-clique, a degree 2 square from each 3-clique and a maximum
independent set in H. (This set is independent since every square in H is independent
of the degree 2 squares in each 3-clique.) Now H is bipartite, i.e., it has no odd cycles,
since otherwise H would contain a 3-clique by Lemma 4.1. It is a well-known
consequence of the K6nig-Egerviry theorem that the size of the minimum clique
cover of a bipartite graph equals that of the largest independent set. Thus the given
cover and independent set of G have the same size.

In subsequent sections, we will need the following stronger result.
LEMMA 4.2. Say H is a subgraph ofG obtained by deleting some arcs such that

whenever the arc ]oining the two neighbors of a degree 2 square s of a 3-clique is deleted,
an arc incident to s is also deleted. Then t (H) O(H).

Proof. It is easy to see that deleting any such arcs preserves the property of G
proved in Lemma 4.1 and thus the proof of Theorem I applies.

5. Reducible configurations. Assume is a convex board.
THEOREM II. The minimum size of a whole cover of J equals the maximum size

of an antirectangle in
This section comprises the part of the proof of Theorem II that treats some boards

by induction on the number of squares. Such boards, which are called reducible, have
"reducible configurations". A reducible configuration cannot occur in a smallest
counterexample to the theorem. Each reducible configuration is accompanied by two
constructions. The first produces a smaller "reduced" board ’ from the reducible
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board . The second produces an optimal cover and antirectangle for from such
a pair for 9’. We have two reducible configurations. Each involves a support edge
and its associated rectangle. Throughout, assume the relevant support edge is the
bottom one.

Tab reduction. Let R be the rectangle associated with a support edge. If the side
of R opposite the support edge lies entirely on one edge of the board then 9 has a
tab reduction (Fig. 15a).

’ is constructed by deleting all the squares in R. In other words, the top and
bottom sides of R are collapsed to points and then all pairs of vertical segments that
now coincide are deleted. Clearly, ’ is convex. Assume the undeleted squares in
retain their identity in ’. R itself is collapsed to vertical line in ’ (FIG. 15b).

V W VW

"1

(a) (b)

FIG. 15. Tab reducible configuration before and after reduction.

From a cover of ’ it is easy to construct a cover of . Take R and all the
rectangles from the former, after stretching horizontally any that cross I. From an
antirectangle in ’ construct one in by taking all squares in the former and adding
any edge square s on the bottom support. The antirectangle in ’ is an antirectangle
in 9 and remains such when s is added because N(s) R and 9’= 9 I,,J R.

This construction gives an optimal pair in /3 given an optimal pair for ’; by
induction the optimal sizes for ’ are equal, and so they are for .

Partial tab reduction. For convenience, the conditions for a partial tab reduction
are stated for AB the bottom, and GH the right support edge. They can apply to
any perpendicular pair of supports.

Conditions for partial tab reduction of at AB:
Condition 5.0. has no tab reduction.
Condition 5.1. All points in the rectangle associated with GH lie strictly to the

right of AB (Fig. 16).
In other words, (5.0) means that the side opposite the support edge of every

support edge associated rectangle does not lie entirely on the edge it meets. Condition
(5.1) can be restated as x(B)<x(left side of rectangle associated with GH) if we
assume x (A) < x (B).

Let R ABWV be the rectangle associated with AB. We examine the consequen-
ces of the no tab reduction hypothesis.

First, the top of R cannot be contained in an edge (Fig. 15). Neither can it cover
horizontal segments both at its left and right sides (Fig. 17a); otherwise, there would
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! |

H

FIG. 16. Condition for partial tab reduction. No relation between y(V) and y(G) is implied in this figure.

be a tab reduction at the top support (which must then lie strictly between A and B).
We assume without loss of generality that the top of R meets a horizontal edge along
UV on the left (Figs. 17b,c). Note that the left support is between A and V (vertically).

Second, we claim that W (upper right corner of R) cannot touch the boundary
at all. For if its does, either there is a tab reduction at the top support (Fig. 17b), or
BW is part of an edge (Fig. 17c). In the latter case, there is a tab reduction at the
left support.

v___l v

A B A I A b

(a) (b) (c)

FIG. 17. Cases eliminated by no tab reduction condition in condition for partial tab reduction.

We conclude that part of the board looks something like Fig. 18a. The top support
does not lie between x x(U) and x x(B). BC is the vertical edge at B and AD
is the vertical edge at A (D may equal V). Let y min (y(C), y(D)). ’ is constructed
by deleting all squares in A(x(B), y)LJ AU (Figure 18b). This is equivalent to
collapsing all vertical segments with y coordinate between y(A) and y; and all
horizontal segments with x coordinate between x (A) x (V) and x (U). Let Q
(x(U), y).

The construction of a cover for d from one for ’ is similar to that used for the
tab reduction. Take all rectangles from the latter, after stretching any that cross line
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V - W///

//AF//4.
F//,A

/ c
VU’

A
(a) (b)

FIG. 18. Partial tab reducible configuration before and after reduction.

QU, (which r-q AU was collapsed to), and add R. In this cover for , note QW is
covered by R and at least one other rectangle. (In Fig. 19 there is a board with no
tab reductions and in which Condition 5.1 fails. In it, the analogue of r’qQW contains
square d which is covered only once in the unique minimum cover. Thus Condition
5.1 is a necessary hypothesis for the above construction to yield an optimal cover.)

2r- o
I’

(a) (b)

FIG. 19. Example illustrating the necessity of the partial tab reduction condition (or something like it)
for the construction of an optimal cover of fl from that of the reduced board. (a) has a unique optimal cover
consisting of the support edge associated rectangles and 33’5, 22’0, 1’4 and 14’. This can be seen

from (b) which is the induced subgraph of G on the squares not covered by the support edge rectangles. Square
d is in the partial tab reduced board but is covered only by the support edge rectangle shown.

The construction of the antirectangle in @ is more complicated. Let A also denote
the corner square at A. Observe No(A)=R. Let t’ be an antirectangle in @’. If
’U {A} is an antirectangle, which means ’ has no square in QW, we are done.
Otherwise ’fq t:3QW {p} and we claim we can replace p in t’ by some other
square to produce a set that remains an antirectangle when A is added to it.

Case 1. y(D) y(Q)< y(p)< y(C), in other words, Q is below C and p r-aQC.
Let [ be the leftmost square in @ with y([)-y(p). The hypothesis and the board
structure (convexity) imply that f is left of A and N(f)_No(p). Hence
t’\{p} U{A, [} is the desired antirectangle (see Fig. 20a).

Case 2. y(p)> y(C). We prove we can replace p in ’ by at least one of two
other squares. Let e be the square (x(C)/0.5, y(p)). Move p right just beyond R.
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D!

A A

Ft

(a) (b)

FIG. 20. Two cases in construction of maximum antirectangles.

Let be the corner square at the top end of the vertical edge at U. We show the
assumption that neither ’\{p}U{e} nor ’\{p}U{t} is an antirectangle leads to a
contradiction (see Fig. 20b).

If’\{p} U {e} is not an antirectangle, then forsome e’ ’, (e, e ’) G but (p, e’) G.
Since y(p)= y(e), (x(e’), y(e))/3 so ] (x(p), y(e’)) 3. (We use Fact 2.1.)

If .’\{p} U {t} is not an antirectangle, then for some t’ ’, (t, t’) G but (p, t’) G.
The fact that the top support extends right of x- x(C) implies x(t’)> x(C). (For if
x(t’) < x(C) and still (p, t’) G and (t, t’) G, then x(t’) < x(p) and (x(p), y(t’)) 3.)
Therefore, (t, t’) G implies (x(p), y(t’))

Furthermore, y(e’)>y(t) and y(t’)-<y(t), so e’t’. Convexity implies
(x(e’), y(t’))3, so {e’, t’}_’ implies h =(x(t’), y(e’)) 3. Some squares in
(including t’) are between g and h, so the rectangle associated with the right support GH
must pass between g and h. The condition for partial tab reduction implies that this
associated rectangle cannot extend left as far as x x(e). By convexity, some square
k 3 has x(k)- x(e), and y(k)< y(H)< y(h)= y(e’). This contradicts (e, e’) G.

Hence, for at least one f {e, t}, t- t’\{p} U {A, f} is an antirectangle. Suppose
we started with an optimal cover and antirectangle for 3’. The induction hypothesis
(Theorem II) implies that the optimal sizes for ’ are equal, and our construction
increases both by one.

6. Edge covering. In this section, we prove c(G(B))= O(G(B)) for convex,
irreducible . More generally, we show c (G)- O(G) for convex boards that have,
at each corner, at most one incident edge that can be partially covered by a maximal
rectangle. We assume all rectangles are maximal.

DEFINITION. Suppose CD is an edge, and C is a corner. We say rectangle R
partially covers CD at C if R covers corner square C, but not every edge square on CD.

Our definition means an edge may be partially covered only at an end that is a
corner (see Fig. 21).

LEMMA 6.1. An edge cannot be partially covered at both of its ends.
Proof. If it were, convexity would imply one of the rectangles is not maximal. [3
Now, suppose edge CD is partically covered at C. Let R be the rectangle that

partially covers CD at C and that covers as much of CD as possible. Then the side
of R perpendicular to CD that does not touch C must cover a segment with an end
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point E closest to CD. The edge incident to E that is parallel to CD must reach at
least as far as D (see Fig. 21).

Let c’ be the edge square on CD closest to C but not in R.
Fact 6.2. Any maximal rectangle that covers c’ also covers all of CD (and all of

the other edge of C if the other edge cannot be partially covered at C).
Fact 6.3. N6(C) _N6(c’).
We call c’ a "proxy" for C.
LEMMA 6.4. Let be a convex board for which at each corner there is at most

one incident edge that can be partially covered at that corner. Then a(G())=
o(G()).

Proof. Let __. consist, of the unique proxy for each corner square at which
an edge can be partially covered, plus all corner squares at which neither incident
edge can be partially covered. Fact 6.3 implies that G*= Ge,() is isomorphic to an
arc deleted subgraph of G. We claim this subgraph of G satisfies the hypothesis of
Lemma 4.2. Consider any 3 clique T {a, b, c} in G. If b T is the square at the
right angle of a triangle of squares, that is, the degree 2 square of Lemma 4.2, it
cannot be a corner square that is replaced by a proxy. On the other hand, let c T
be a corner square that is replaced by a proxy c’; then neither (a, c’) nor (b, c’) is an
arc in G*, or else both are. Therefore, Lemma 4.2 implies O(G*)= a(G*). Fact 6.2
implies any set of maximal rectangles corresponding (using Lemma 1.1) to a clique
cover of G* covers all the edges. I-1

LEMMA 6.5. If is convex and irreducible, a(G())= O(G(Y3)).
Proof. Suppose the hypothesis for Lemma 6.4 were false for . If 9 were as in

Fig. 22, there would be a tab reduction between U and V. Hence must be as in
Fig. 23.

c

FIG. 21 FIG. 22

v

D

FIG. 23

Since there are no tab reductions in this , (by convexity) some of the right
support edge must be above y =y(D). Hence, the left side of the right support edge
associated rectangle R cannot be left of x x(D). Let B be the right end of the
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bottom support, x (B) < x (V) (again by convexity) and x (V) < x (D), so B is strictly
left of the left side of R. This is Condition 5.1 for partial tab reduction at the bottom
support, and so by contradiction, the hypothesis of Lemma 6.4 is true. ]

7. Whole covering of irreducible boards. This section concludes the proof of
Theorem II. We prove that if every optimal edge cover of an irreducible board
fails to cover every square, then an optimal whole cover can be obtained by adding
one rectangle to an optimal edge cover. Suppose is such a board. Consider an
optimal edge cover C (by maximal rectangles) that covers the maximum number of
squares. Let z be an uncovered square.

There are three steps. The first is to establish the structure of . The second is
to show the squares not covered by C can all be covered by one rectangle. The third
is to prove optimality by constructing an antirectangle that contains z and one square
for each rectangle of C.

Step 1. Structure o/. In each of the four directions, there is an edge square on
the same line as z. Let these squares be r, ri, 1, 2 as shown in Figs. 24-25. Consider

FIG. 25.

FIG. 24. Dotted lines indicate polygon boundary schematically. In this case, the board is reducible.
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a pair of rectangles in 12 that cover rl and r. We can assume without loss of generality
that the "inner" (right) side of the (left) rectangle covering rl meets a vertical segment
ql at its upper end, and the "inner" (left) side of the (right) rectangle covering r
meets a segment q at its lower end. Each inner side must meet a segment because
the rectangles are maximal. The two parallel inner sides could not each meet a segment
at the same end because this would violate convexity.

Apply the above argument to the rectangles that cover r2 and r. Now there are
two possibilities. The first, that the "inner" (bottom) side of the (top) rectangle which
covers r2 meets a segment on the right, is shown in Fig. 24. Here, convexity implies
the solidly drawn parts of the rectangle sides are parts of edges, so there is a tab
reduction at each support edge; this contradicts the assumption that g3 is irreducible.
Hence our four rectangles must meet the boundary of 3 as in Fig. 25. Taking into
account the general structure of convex boards, we conclude:

Let Ki(K) be the set of rectangles in 12 that contain squares that lie between z
and ri(r). Each rectangle in K (K) covers two segments q and pi(q and p) as the
rectangles shown in Figs. 25 and 28 do. Here, segments labeled q block extension of
the rectangle toward z and segments labeled p block extension away from q.

For example, any rectangle in K1 covers a horizontal segment like p at its lower
left corner and a vertical segment like qa at its upper right corner.

The boundary segments and vertices are cyclically ordered counterclockwise
(CCW). When e and ]" are two edge squares le, ]’] denotes all the edge squares
on any segment on the CCW path from a segment on e to a segment of ]’. [e,/)
[e,/]\{e}, etc.

Step 2. Covering uncovered squares with one more rectangle. Consider the four
support edge rectangles. The result of Step 1 and the irreducibility hypothesis imply
these rectangles must be as in Fig. 26. These rectangles "cross" at D and B and
intersect at A and C, as shown. By convexity, rABCD

_
3. We claim all squares

not covered by 12 lie in r-aABCD. To prove this, we note that the nonsupport (maximal)
rectangles in edge cover 12 also cover the region between the boundary and the support
rectangles. For example, again looking at Fig. 26, we see that any rectangle that covers
any corner square fx or f2 in [Ex, E2] or [E4, Es] covers fiD or r-af2A respectively.

FIG. 26. The support edge rectangles illustrating Step 2. The rectangle may overlap (as A) or touch (as
C) at A and C. All uncovered squares must be in raABCD.
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A rectangle covering edge square f3 in IF3, E4] covers all the squares on the horizontal
line from fa to DA.

Step 3. Constructing maximum antirectangles.
DEFINITION. Let C be a set of rectangles. A square s is critically covered

when it is in only one rectangle in C. Two squares are matched by R C if both are
critically covered by R.

We note that C is a minimum edge cover, so every rectangle in C critically covers
at least one edge square. If M is an antirectangle and IM] IC[, M consists only of
critically covered squares.

Let us choose one rectangle from each Ki, K that is closest to square z from
among all rectangles in Ki, K. These four rectangles and the two boundary segments
p, q on each we described in Step 1 and are displayed in Fig. 28. Let K K1U K2 U KK[.
We divide the proof into numbered assertions.

1) If an edge square e[sl, sz]U[s’,s’2] on edge E is critically covered, so is
the corner square c on E. For the maximal rectangle covering c is unique and
contains e. Let S be the set of corner squares in Is1, s2] U Is , s ].

2) Let $ {sis is an edge square and (z, s)6 G}. We claim that every rectangle
in K critically covers a square in . Every rectangle R in, for example, K1 critically
covers some edge squares. If R critically covers some squares in (r2, rl) we are done.
Otherwise, R must critically cover some edge squares E

_
[r, r[) and no edge squares

elsewhere. Now, if R did not critically cover any interior squares above line rlz, we
could replace R in C by a maximal rectangle R obtained as follows. Shrink the top
of R down to rz, then extend the right side as far as possible, and then finally extend
the top to make the rectangle maximal. The result is a minimum edge cover that
covers more squares than C. On the other hand, suppose R critically covered a set
of interior squares H above line rz. The same replacement process for R still produces
a minimum edge cover that covers z. If this new edge covers H, again the maximality
of C is contradicted. If not, the uncovered squares in H are squares not covered by
a minimum edge cover of maximal rectangles and so they lie (along with z) in E2ABCD
as we showed in Step 2. Therefore, there exists a rectangle R. covering E UH U{z}
(see Fig. 27).

,C

FIG. 27. The maximality o]: the set covered by C implies every R K critically covers a square in z. If
not, replace R by R1 or R2 (see Step 2).
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3) Define the sets of edge squares shown in Fig. 28,

R1 (r2, ql), R2 (q2, ra),

Ol [ql, S1) ()2 ($2, q2].

FIG. 28.

’t#/ ?-

We claim that every rectangle in Ki critically covers a square in S Qi. By 2), R e Ki
critically covers a square in S U Q U R. If it covered a square in R, however, this
would violate the assumption that Czplqx is a rectangle in Ki closest to z.

4). If R e C covers a square in R, then it must critically cover a square in
Ri, U Qi, U S, where i’= 3- i. Such R K. Otherwise, we can give a proof similar to
that in 2) to contradict the maximality of 12 or the choice of rqpiqi.

We conclude from 1)-4) that every rectangle R e C satisfies exactly one of two
possibilities and define a:C thereby:

i. R critically covers a square in SU Qx U Q2 or SUQ U Q. If it critically
covers some s e S, set a(R)= s, otherwise set a(R) to any square in Q critically
covered by R.

ii. If does not hold, then R matches a square a a(R) Rx with a square in
R2, or a a (R)e R with a square in R. This follows from 4. (Note the asymmetry.
a (R) is always chosen from R or R .)

Let M {a(R)IR C}. a(R) M is always critically covered by R so IMI ]CI.
As defined, M G zT, so as long as M is an antirectangle M U {z} is the desired maximum
antirectangle. Clearly, S, Oi 1.3 R, and O R are each antirectangles (consider corner
types). We conclude the proof that M is an antirectangle by showing each of the three
remaining possible ways for two squares in a common rectangle to be both in M leads
to contradiction.

5) Suppose {s, q} M with s S, q U Q) U U R), and (s, q) G. This cannot
happen because (by 1) s is a corner square and is contained in a unique maximal
rectangle, so q cannot be critically covered.
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6) Suppose say, q Q1, q’ Q2 and (q, q’) G. The board structure implies
(ql, q2) G. C\{rnplql, r"lpEqE}{r-’lplp2, [Zlqlq2} covers more than C, including z.
This contradicts the maximality of C.

7) Suppose say, {r, q}
_
M with r R 1, q Q2, and (r, q) G. Then (r, q2) G. r

implies r a (R) for some R rnrr’ that satisfies ii; that is, R matches r’ RE with r.
We do another switch, C\{r-nrr’, r-’lqEP2} I,.J {r-lr’p2, [zlrq2}. Again, the maximality of the
set covered by C is contradicted.
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MINIMEAN LOCATION OF DIFFERENT FACILITIES
ON A LINE NETWORK*

B. L. HULMEt AND P. J. SLATER"

Abstract. The m-mean median problem for a network N is introduced in the context of locating m
different facilities on m of the vertices in V(N). If we let d(v, w) denote the distance in N between vertices
v and w, the problem is to select an m-set $

_
V(N) with complement V(N)- $ so as to minimize the

sum Svgd(u, v). That is, one seeks to partition V(N) into two sets, a set $ of "facility vertices" and
a set $ of "customer vertices," so as to minimize the average distance between a facility and a customer.
Complete results are given for the special case of a line network.

1. Introduction. The center and median problems introduced by Hakimi [3] and,
more generally, the m-center and m-median problems of optimal facility location in
a network have been extensively studied. (See, for example, [1], [2], [4]-[8].) In these
problems the customers and their locations are perceived as given and fixed, and sites
for new facilities are to be selected with respect to these known customer locations
under various "optimality" criteria.

The architect for a factory or a city planner, however, may be able to preplan
both the service facility and customer locations. Here one problem of this nature is
introduced for arbitrary networks, and the solution is presented for line networks.
Specifically, assume there is a network N whose vertex set V(N) will be partitioned
into a set of size m for m different facilities and a set of V(N)I- m customer locations.
Upon each service facility an equal demand is placed by each customer, and each
customer places an equal service requirement upon each of the m facilities. We seek
to minimize the average distance between a customer location and a service location,
which is equivalent to minimizing the sum of the m (I V(N)I- m) distances of a customer
to a facility.

Let N be a simple connected network with vertex set V(N)= {Vo, vl,’’ ", vn}
and edge set E(N). If e (v, vj) is the edge connecting v and vj, then L(e) or L(v, vi)
will denote the (positive) length of e. A finite nonnull sequence P uoelue2u2" ekUk
whose distinct terms are alternately vertices and edges with ei (U-l, u) is called a

k
L(ek). The distance between vertices vi and vi,UO--Uk path of length L(P)

denoted d(v, vi), equals the smallest length of a v-v path. For each $

_
V(N), let

S V(N)-S, and let

(1) M(S)= E E d(vi,
vies

The m-mean median problem. For l_-<m _-< n, let

(2) M.,(N)=M.,(V(N))=min {M(S): S
_
V(N), JSI m}.

Find an m-set S V(N) for which M(S)= M.(N), where such a set S is referred to
as an m-mean median.

For example, if S is the set of darkened vertices in Fig. 1, then, for each edge
having length one, each value of ,vjgd(v, vj) is as indicated for each v $, and
M6(T) M(S) 102.

* Received by the editors May 27, 1980, and in revised form March 10, 1981.
5" Applied Mathematics Department, Sandia National Laboratories, Albuquerque, New Mexico 87185.
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18 18

FIG. 1. Tree T with M6(T) 102.

Observation 1. S is an m-mean median if and only if S is an (n + 1- m)-mean
median.

In [9], [10] competitive location theory problems were introduced for networks,
and the notation V(u, v)={w V(N)’d(w,u)<d(w, v)}-{u} was used. That is,
V(u, v) is the set of vertices in V(N), other than u itself, which are closer to u than
to v. Note that if T is a tree network containing edge (u, v) then T-(u, v) has two
components with vertex sets V(u, v)U{u} and V(v, u)U{v}. The fundamental result
to be used extensively in 2 is the next lemma.

LEMMA 2. If S is an m-set from vertex set V(T) of a tree T, (u, v) E(T), u S,
v S-, C(u) IS f’) V(u, v)l, (u)= [g f’) V(u, v)[, C(v) IS fq V(v, u)l and (v)
V(v, u)l, then M(S-u +v)=M(S)+L(u, v)((u)+C(v)-(v)-C(u)).

Proof. Let R S- u and O $- v. Then

M($)=d(u, v)+ Y. d(r, t)+ , d(r, v)+ , d(u, t)
rR tO rR tO

and

M(S-u +v)=d(u, v)+ , , d(r, t)+ , d(r, u)+ , d(v, t).
rR tQ rR tQ

Thus

M(S-u +v)-M(S)= (d(r, u)-d(r, v))+ (d(v, t)-d(u, t))
rR tQ

, (d(r, u)-d(r, v))+ , (d(r, u)-d(r, v))
rRfq V(u, v) rRfq V(v, u)

+ Z (d(v, t)-d(u, t))+ (d(v, t)-d(u, t))
tQCI V(u, v) tOCI V(v,u)

=L(u, v)(-C(u)+C(v)+C(u)-C(v)).

COROLLARY 3. For u, v, C(u), C(u), C(v) and C(v) as in Lemma 2, if S is an
m-mean median of tree T, then C(u)+ C(v) >-C(v)+ C(u).

2. The m-mean medians of line networks. In this section we restrict our atten-
tion to line networks P, with V(P,)={Vo, Vl, VE,...,v,,_l} and E(P,)=
{(Vi-l, vi)" 1-<_i-<_n- 1}. First to be considered will be line networks with an even
number of vertices, say n 2p. By Observation 1, it can be assumed that m _-< p.

THEOREM 4. If S is an m-mean median of PEp and m < p, then Vo and VEp- must
be in S. Furthermore, S is an m-mean median of P2p if and only if S is an m-mean
median ofP’= v, V2, /32p-2.

Proof. Assume S is an m-mean median with.vo e S, and let be the smallest value
for which vt S. With u.= vt- and v vt and the notation of Lemma 2, C(u) t- 1,
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C(u) 0, C(v)= m -t and C(v)= 2p-m- 1. Thus we have, by Corollary 3,

O+(m -t)>=(2p-m 1) + (t- 1),

2m_->2p+2t-2

and

2m _-> 2p.

Since this contradicts the fact that m < p, we have v0 S. Similarly, v2p-1 must be in $.

Let S
_

V(P’) be any m-set, and let S’= V(P’)-$ S-{vo, V2p-1}. If vi $, then
wgd(li, w) D + .weg, d(1)i, w), where D d(vo, /)2p-l) eE(P2,,)L(e). This
implies that M(S) in P2p equals M(S) in P’ plus m D. Consequently S is an m-mean
median in P’ if and only if it is an m-mean median in P2p.

THEOREM 5. If m p, then S is an m-mean median o] P2p if and only if ]’or
0 <- s <= m 1 each 2-set {v2s, v2s/l} contains one element in S and one element in S.

Proof. Suppose S is an m-mean median of P2p, and hence so is S. Assume Vo and
vl are both in one of these m-mean medians, say {v0, vl} S. As in the proof of
Theorem 4, letting be the smallest value for which vt S, by Corollary 3 one obtains
the inequality 2m _-> 2(p- 1 + t). Now, however, t-> 2 implies m >_-p + 1 which contra-
dicts the fact that m p. Thus IS f’){Vo, vl}l 1 {v0, v }l. A simple induction on
s will show that each {v2, v2s+l} contains one element in S and one element in .
To complete a proof of the theorem it must be shown that any S with IS

{v2, V2s/l}l 1 for 0 <=s =< m- 1 is an m-mean median, or, equivalently, that all 2
such m-sets S have the same value of M(S). Let Sl be such a set and assume that
/32r Sl for some 0 <- r <_- m 1. It will suffice to show that S2 Sl --/)2r -[-/)2r+1 satisfies
M(Sl) M(S2). Applying Lemma 2 with u =/)2r and v v2+1, we have C(v2)= r-
(v2) and C(v2+1) p r- 1 (v2+1), and so M(S2) M(Sl) +L(v2, v2+1) x
(p-l-(p-1))=M(Sl).

In contrast to the multisolutions for PEp, the m-mean median of PEp+l is unique.
Since arguments similar to those used to prove Theorems 4 and 5 would suffice to
prove the next theorem, its proof is omitted.

THEOREM 6. Let Q1 (l)p, l)p-2, /)p+2, /)p-g, /-)p+4,’ ’) and Q2
(vp-1, Vp+l, vp-3, vp+3.’" "). If 1 <--_m <--p then the m-mean median of PEp+l is unique
and consists of

1. the first m vertices of Q if m is odd, or
2. the first m vertices of Q2 if m is even.
Examples of the 4-mean medians of some line networks are presented in Fig. 2.

Recall that the 4-mean median of a line network with an even number of vertices is
not unique, and note that we have shown that the determination of the m-mean
median is independent of the edge lengths in the line network.

FIG. 2. 4-mean medians 01 the line networks Ps, P6, P7, P8, P9 and Plo.
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3. Computing the distance sum. In this section a recurrence relation is derived
for M,,,(P,,), the sum of the distances from an m-mean median to the other vertices
in an n-vertex line network with unit edge lengths. (Let Pn denote the line network
with vertices Vo, vl, ’, vn-1 and edges ei (vi-i, vi) with L(e) 1 for 1 =< -< n 1.)
The solution of the relation yields a formula for this distance sum in terms of m
and n.

The darkened vertices in Fig. 3 show m-mean medians for P2p- and Pap. The
first follows from Theorem 6 with p replaced by p-1, since for m odd the first m
vertices of Q1 are {vp-1, Vp-3, Vp+l, vp-5, vp+3,’’’, Vp-m, Vp+,,-2}, and for m even the
first m vertices of Q2 are {vp-2, Vp, vp-4, Vp/2," , Vp_,,, vp+,,-2}. The m-mean median
for P2p results from the fact that by Theorem 4 the pairs {Vo, v2p-1}, {Vl, v2p-2}, ,
{vp-,,,-1, Vp/,,,} do not belong to the m-mean median and by Theorem 5 we may choose
every other remaining vertex beginning with vp_,,,, i.e.,
to be the m-mean median.

Since S {vp_,,, vp-,,+2," ", vp+,-2} is an m-mean median for both P2p-1 and P2p,
and since P2p differs from P2p- only by having one additional vertex, v2p-1, we have

(3) M,,,(Pzp)-M.,(PEp-a) d(vzp-, vi)= rap.
vies

P2p in Fig. 3 has an alternate m-mean median obtained by shifting the darkened
vertices one place to the right (Theorem 5). Fig. 4 shows that P2p+l and P2p share
this new m-mean median S’. The same argument as before leads to

(4) M,,(PEp+I)-M,,,(P2p) d(v2p, vi) mp.
S’

Equations (3) and (4) may be summarized as

(5, M,,,(P,)-M,,,(P,,_I) mini, n _-> 2m.

Only n _-> 2m is considered here because Mk (P,) M,,-k (P,,), 1 -< k -< n 1.

For fixed m, (5) is a linear first-order difference equation in n. Accordingly M,, (P,)
must be the sum of a particular solution of (5) and a homogeneous solution h which
depends only on m. A particular solution will be m times a quadratic in In/21, and
inspection shows that m In [(n + 1)/2/ is such a solution. Hence

+h(m).
2

1)0 Up-m-I Op-m l)p-ra+l Up-m+2 l)p+m-3 Up+m-2 Op+m-I O2p-2

0 -0 , -0 , 0 -0
OO Up-m-I Op-m Op-m+l Up-m+2 Up+m-3 Up+m-2 Up+m-1 U2p-2

FIG. 3. m-mean medians of P2,_x and P2p.

Up-m- Op-m

DO Op-m Up-at

Op-m+l Up-m+2 Up+m-3 Up+m-2 1.p+m-1 I)2p-2 O2p-I

l)p-m+l Op-ra+2 )p+m-3 )p+m-2 l)p+m-I I)2p--2 l)2p-I )2p

FIG. 4. m-mean medians o1" Pzp and P2p+l.
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UO V 02 V3 V2m-4 V2m-3 V2m-2 V2m-1

FIG. 5. m-mean median ]:or PEru.

In order to determine h (m), an initial condition for Mm(P2m) is needed. P2, is
shown in Fig. 5. Summing the distances from each open vertex to each darkened
vertex starting with (v0, Vl) yields

M,, (P2,,) [1 + 3 +... + (2m 1)] + [1 + 1 + 3 +. + (2m 3)1

(7)
+[3+ 1 + 1 +3+... +(2m-5)]+..

+[(2m-3)+(2m-5)+... +3+1+1]

m(2m2+ 1)

Therefore, (6) and (7) imply that for n 2m

3 + h(m)=rn
m(2mZ+ 1)

so that

h(m)
m(1-m2)

Consequently, the solution of (5) and (7) is given by

(8) M"(P")=m(3[][n+l -mz 3,
n

l_<_m__<-.
2

The other values are obtained from (8) and

(9) M.,(P.)=M._,.(P.),
n

-<m<-n-1.
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INTEGER ROUNDING FOR POLYMATROID AND BRANCHING
OPTIMIZATION PROBLEMS*

S. BAUM" AND L. E. TROTTER, JR.

Abstract. Where matrix M->O and vector w->O have rational entries, define r*(w)=
max (1 y: yM <= w, y ->_ 0}, z*(w) max (1 y: yM -< w, y ->_ O, y integral}. Integer round-down holds for M
if, for all integral w->O, [r*(w)J z*(w). Similarly, when [r.(w)] z,(w) for all integral w->O, where
r,(w)=min(1 y: yM>-w, y->O}, z, (w) min (1 y: yM>=w, y->O, y integral}, integer round-up holds
for M. The integer round-down and round-up properties are shown to hold for certain matrices related to
integral polymatroids and branchings in directed graphs.

1. Introduction. Let M be a nonvacuous rn n matrix of nonnegative rationals
and consider the following linear and related integer programming problems para-
meterized by the nonnegative rational n-vector w"

P(w) {max 1 y: yM -<_ w, y ->_ 0}

P(w) {max 1. y: yM <-_ w, y >= 0, y integer}.

Here 1 and 0 are appropriately dimensioned vectors of ones and zeros, respectively,
and 1 y i%t yi. It is clear that P(w) and Pt(w) are feasible and that these programs
have bounded objective value if and only if M has no row consisting entirely of zeros.
We will assume that M has no zero rows and say that the integer round-down (IRD)
property holds forM if, for each nonnegative integral n-vector w, the optimal objective
value of the program Pi(w) is given by rounding the optimal objective value for P(w)
down to the nearest integer. Similarly, the integer round-up (IRU) property holds for
M if, for each nonnegative integral n-vector w, the optimal value of Ci(w) is obtained
by rounding the optimal value for C(w) up to the nearest integer, where C(w) and
Ci(w) are given by:

C(w) {min 1 y: yM >= w, y >= 0}
Ci(w) {min 1. y: yM_-> w, y _-> 0, y integer}.

Observe that C(w) and CI(W have bounded objective value and that these programs
are feasible for all w-> 0 if and only if M has no zero columns; when discussing the
IRU property we will assume this to be the case.

Packing and covering problems such as P(w), Pi(w), C(w), Ci(w) arise naturally
in combinatorial optimization (e.g., see [11], [12], [13]). Instances in which IRU or
IRD hold have been studied in [20], [14], [21], [18], [19], [3], [4], [1], [2].

In the present paper we establish the IRU and IRD properties for certain classes
of matrices arising in the context of polymatroid theory (see [7], [15]) and branching
theory (see [9]). The rounding results presented here were strongly motivated by
combinatorial packing and covering results for matroids due to Edmonds and Fulker-

* Received by the editors September 19, 1980.
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son (see [10]), especially by the well-known combinatorial min-max theorem of
Edmonds i-6] on covering the elements of a matroid by its independent sets.

2. Integral decomposition. Denote by R

_
the nonnegative orthant of Euclidean

n-space. A polyhedron P_R is called upper comprehensive if y ->x P implies y P;
similarly, P is lower comprehensive if 0 =< y _-< x s P implies y P. Fulkerson’s blocking
polyhedra (see [11], [12]) are of the form P={x sR?" Mx >= 1} where M is nonnega-
tive; clearly such polyhedra are upper comprehensive. Anti-blocking polyhedra (see
[12], [13]) are of the form P {x R?" Mx <= 1} where M is nonvacuous, nonnegative
and has no zero columns; thus anti-blocking polyhedra are nonempty, bounded and
lower comprehensive. Given any polyhedron P

_
R and any real number r_-> 0, let

rP denote the polyhedron {rx" x P}. The (integral) decomposition property holds for
P if, for each integer k _-> 1 and each integral vector x kP, there exist integral vectors
x P, 1 <-i <-k, for which x Eik__ xi" The decomposition property has been studied
for polyhedra defined by matrices related to network flow problems (see
[20], [14], [21]) and polyhedra defined by general totally unimodular constraint
matrices (see [19], [4]). We show below that integral decomposition for upper and
lower comprehensive polyhedra with integral extreme points is closely related to the
IRD and IRU properties for matrices whose rows are given by certain families of
integer points within the polyhedra.

Suppose polyhedron P R

_
is upper comprehensive with integral extreme points

and let M be the matrix whose rows are the minimal integral points of P. (An integral
vector x P is a minimal integral point of P if there is no integral vector y s P with
x y _-<x.) It is not difficult to see that M has finitely many rows and that M is
nonvacuous and has no rows consisting entirely of zeros if and only if 0
Alternatively, suppose P

_
R_ is a lower comprehensive polyhedron with integral

extreme points and list the maximal integral vectors of P as the rows of matrix M.
Here M is nonvacuous with finitely many rows if and only if P is nonempty and
bounded; thus when M is nonvacuous it follows that M has no zero columns if and
only if P has nonempty interior, i.e., x > 0 for some x s P.

LEMMA 1. Let rR+ and let PR be a nonempty polyhedron with integral
extreme points.

(a) Let the rows of matrix M be the minimal integral points of P. Then P(w) has
a feasible solution of value r il and only if x <- w for some x rP.

(b) Assume further that P is bounded and let the rows of matrix M be the maximal
integral points of P. Then C(w) has a feasible solution o] value r if and only if x >- w
for some x rP.

Proof. (a) If y satisfies yM _-< w, y _-> 0 with 1. y r, then yM s rP and yM <_- w, so
we take x yM. The converse is also clear for r- O, so suppose r > 0 and let I index
the extreme points of P and J index the extreme rays of P. We have x rP and x <_- w.
Thus x/rP and we may write x/r-EiihiX -bE]ejbl,jZ ], where X are (integral)
extreme points of P, Ai > O, EiI Ai 1, Z are the extreme rays of P and/xj >-0. Since
P is contained in R /, we must have z > O for each j thus we have x/ .i_IAiXi+Z
as above with z -> O. Hence x/r >= Y.iz Aix i. Furthermore, since the x are integral points
of P, for each there exists a row m of M so that x i>= m (not all the m need be
distinct). Thus x/r>-Y.itAim and since x<w we obtain that w>Y.iz(rA)rn
Associating weight rAi with the component of y corresponding to row m of M (and
summing such weights when distinct indices of I correspond to the same row of M)
and setting the remaining components of y to 0 now gives the desired solution of
P(w) of value r.



418 s. BAUM AND L. E. TROTTER, JR.

(b) The proof here is similar to that in part (a). For the necessity, assume yM -> w,
y => 0 and 1 y r. Then x yM satisfies x e rP, x >= w. For r 0 the converse is clear,
so let r > 0 and let I index the extreme points of P. Then x/r e P, and so x/r ,ii Aix
with YIA 1, A-> 0 for each e/, and each x an (integral) extreme point of P. To
each vector x there corresponds a row m of M for which rn >-x i. Thus we have
w<=x<-Y.z(rA)rn and we may use the weights rA, eL as in part (a) to define a
solution of C(w) of value r.

Using Lemma 1 we now establish for the present context an equivalence between
the integer rounding properties and the integral decomposition property.

THEOREM 1. (a) Suppose P is a nonempty upper comprehensive polyhedron with
integral extreme points for which P R; let the rows of matrix M be the minimal
integral points of P. Then IRD holds for M if and only if P satisfies the integral
decomposition property.

(b) Suppose P is a lower comprehensive polyhedron with integral extreme points
which is bounded and has nonempty interior; let the rows of matrix M be the maximal
integral points of P. Then IRU holds for M if and only if P satisfies the decomposition
property.

Proof. (a) Suppose IRD holds for M and let w e kP, where k => 1 is an integer
and w is an integral vector. By part (a) of Lemma 1, P(w) has a feasible solution of
value k, and thus IRD for M implies that P(w) has an integral solution of value k.
Thus there are rows m rn k ofM (not necessarily all distinct) such that
w. Now rn 1, m k are integral points of P, and since P is upper comprehensive,
there are integral points x of P, 1-< =< k, so that k=l X= W. This is the desired
decomposition of w.

For the converse, assume that the decomposition property holds for P, and for
the nonnegative integral vector w, suppose P(w) has value r*. If 0 =< r*< 1, then it is
clear that IRD holds for w(y 0 provides a feasible solution to P(w) of value [r*] 0),
so assume r*-> 1. By Lemma 1, part (a), there exists a vector x e r’P, x <-w. Thus
w e r’P, since P upper comprehensive implies that r*P is also upper comprehensive.
Now [r*J-<r*, so r*P_ [r*JP; thus we also have we [r*JP. The decomposition
property for P now implies that w Y.)L x , where the x are integral vectors of P.
Thus, by the definition of M, there are rows m of M such that m -<x for 1 < < [r*J
(the m need not be distinct). Hence w =>m +.. .+rn tr*j determines the desired
solution of P(w) of value [r*].

(b) The proof is similar to that given in part (a). I-1
As an application of Theorem 1, let P be the polyhedron whose extreme points

are the (0, 1)-valued incidence vectors of cliques in a graph G and let M have as rows
the incidence vectors of all maximal cliques in G. Now P is nonempty and bounded
with integral extreme points and it is well known (see [16], [13]) that if G is perfect,
then for any nonnegative integral vector w

min {1 y" yM >- w, y >_- 0, y integer} min {1 y" yM _>- w, y >_- 0}.

Thus part (b) of Theorem 1 implies that P satisfies the decomposition property.
Furthermore, where , denotes the size of a largest clique in G, decomposition for P
implies that the decomposition property also holds for the polyhedron P’=
{x e P" 1. x- ,}. Let M’ be the incidence matrix of maximum cardinality cliques in
G. Then it is clear that P’ is nonempty and bounded with integer extreme points given
by the rows of matrix M’. However, P’ is not upper comprehensive, and consequently,
IRD need not hold for matrix M’. To see this consider the example below.
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Example 1.

2 3 2 3 4 5 6 7 8 9 10 11 12

0 0 0
0 0 0
0 0 0
0 0 0

7 8 9 w=(1

0 0 0
0 0 0
0 0 0
0 0 0

13

Here the solution value of Pz(w)is 2, but y (1/2, 1/2, 1/2, 0, 21-, 1/2, 1/2, 0) gives a feasible solution
to P(w) of value 3. Thus IRD fails for M’.

The relationship between integer rounding and decomposition given in Theorem
1 is used in the sequel to establish integer rounding in certain instances. A general
recursive characterization of the decomposition property may be obtained as follows.
Let A be an m n rational matrix and let b be a rational m-vector; define the
polyhedron P={x R_" Ax-<b}. Now decomposition for the polyhedron P is
equivalent to the requirement that for each integral vector w kP, where k is a positive
integer, there must exist an integral vector x P for which (w-x) (k-1)P. That is,
the following system must have an integral solution:

(1) Aw -(k- 1)b <=Ax -<b, O-<x <- w.

For certain applications one may show the stronger result that the appropriate
polyhedron defined by (1) actually has all integral extreme points (see Corollary 2 of

3). This would imply the decomposition property, and the approach of Theorem 1
could then be used to establish integer rounding results. However, it is not always
the case that the rounding property implies, conversely, that the appropriate polyhe-
dron of the form (1) has all integral extreme points. This is illustrated in the following
example.

Example 2. Let matrix M be defined as follows:

1 0 1 1 0 0

10 1 0 0 1 01M= 1 1 0 0

O1 0 0 1 1
1 1 0 0

IRU holds for matrix M. In [5] we show that in order to verify the IRU property for
M it suffices to consider the programs C(w), C,, (w) for integral vectors w in the range
0 -< w-<(2, 2, 2, 1, 1, 1). Thus it is tedious, but straightforward, to check that IRU
holds for M. From Theorem l(b) we can then conclude that the polyhedron P
{x R 6+. x -< AM where h _-> 0, 1 h 1} satisfies the decomposition property. Now let
w (1, 1, 1, 1, 1, 1) and k 2. Then it is easy to see that the only integral vectors x
satisfying x P, (w-x) P are rows 4 and 5 of matrix M. However, the vector
x (1, , , 1/2, 1/2, 0) clearly satisfies x P, (w-x) P, but this vector is not a convex
combination of rows 4 and 5 of M. Hence the bounded, nonempty polyhedron {x" x P,
(w-x) P} cannot have only integral extreme points.
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3. Polymatroid optimization. In [7] (see also [15]) Edmonds has characterized
polymatroids as polyhedra of the form

P(E, f) {x R 7+." x (S) <- f(S), S
_
E},

where E ={1, 2,..., n}, x(S) denotes the quantity Y.isXi and f is a real-valued
function on subsets of E satisfying three conditions"

(i) f(S) >= O, S
_
E (nonnegativity),

(ii) R c_ S f(R) <- f(S), R, S
_
E (monotonicity),

(iii) f(R U S) +f(R f’) S) <= f(R +f(S), R, S
_
E (submodularity).

When f is also integer-valued, P(E, f) is an integralpolymatroid. A well-known instance
of an integral polymatroid is obtained by taking f as the rank function of a matroid
defined on E; then P(E,f) is the familiar "matroid polyhedron", whose extreme
points are the incidence vectors of independent sets in that matroid (see [8]). It is
also the case that general integral polymatroids have integral extreme points (see [7],
[15]).

We now show that integral polymatroids satisfy the decomposition property. Our
development of this result, culminating in Theorem 2, is algebraic and it follows closely
the development in [7] used in obtaining the polymatroid intersection theorem.

A family F of subsets of E satisfies property(.) when

(.) R fq S # ( => R f-I S F, R, S s F.

The following three lemmas on property(.) are taken directly from [7].
LEMMA 2. Let Fbe a family of subsets orE satisfying property(.) and letM =(mii)

be the incidence matrix of F with E, i.e., where F {T, T2, Tm} we have mii= 1
for j Ti and mii= 0 otherwise. From Mone can obtain the incidence matrix of a family
of disjoint subsets ofE by subtracting certain rows ofMfrom others.

LEMMA 3. Let Fx, F2 be two families of subsets of E each satisfying property(.)
Mand let M [t:], where Mi is the incidence matrix of F with E, for i= 1, 2. From M

one can obtain a totally unimodular matrix by subtracting certain rows ofMfrom others.
LEMMA 4. Let x* {x R x T) <- f T), T

_
E}, where f is a submodular real-

valued function. Then F {T E" x*(T) f(T)} satisfies property(.).
PROOF OF LEMMAS 2--4. One proves Lemma 2 by the recursive subtraction of a

minimal row of M from the remaining rows of M which dominate it. Lemma 3 then
follows by applying Lemma 2 to both M and M2, which transforms M into the
incidence matrix of a bipartite graph. Lemma 4 follows from the following relations,
where R, S F and R (’l S # "

f(R (’l S) <- f(R) +f(S)-f(R US)
<- x*(R) + x*(S)-x*(R U S) x*(R (l S) <- f(R (’l S). []

When k is a positive integer, z s R" and f is a submodular real valued function on
subsets of E, the function defined by (k-1)f(T)-z(T), T _E is also submodular.
Thus Lemma 4 implies

COROLLARY 1. Let x* {x R" z (T) (k 1)f(T) <- x (T), T
_
E}, where f is

real-valued and submodular, z R and k is a positive integer. Then F=
{T E" z(T)-(k 1)f(T) x*(T)} satisfies property(.).

A further family of subsets of E satisfying property(.) is given by
LEMMA 5. Letx* {x R" x(T) _<-min {f(T), z (T)}, T E}, wherefis real-valued

and submodular and z R . Then F {T E: x*(T) min {f(T), z(T)}} satisfies
property(.).
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Proof. Suppose R, S e F with R f’)$ . We consider 3 cases.
(i) x*(R) f(R) and x*(S) f(S). Here Lemma 4 applies.
(ii) x*(R)=z(R). Now x*(R’)<=z(R ’) for all R’_R and hence x*(R’)=z(R’)

for all R’ _R. Thus x*(R f’) S) z(R f’l S)-> min {f(R f’)S), z(R f’) S)}. But by assump-
tion x*(R f’) S)-<min {f(R fqS), z(R f’) S)}. Thus we have x*(R f"l S) min {f(R fqS),
z(R f3 S)}, as required.

(iii) x*(S) z(S). The argument is similar to that in case (ii). !-!
THEOREM 2. Let P(E, f) be an integral polymatroid and let z kP(E, f) be an

integral vector, where k is a positive integer. Then there exist integral vectors x 1,
2 k 2 kx ,’’’,x eP(E,f)forwhichz=x +x +...+x.

Proof. The proof is by induction on k; since the result clearly holds when k 1,
suppose it true for 1, 2, , k 1. To establish the result for k it suffices to determine
an integral vector x eP(E, f) so that (z -x)e (k- 1)P(E, f); such an x would serve as
kx and then induction could be applied to the integral remainder (z x) (k 1)P(E, f).

Hence we seek an integral vector in the polyhedron

P= {x e R_" z(T)-(k 1)f(T) <=x(T) <=min {f(T), z(T)}, T _E}.

Note that (z/k) P, so that P . Thus we complete the proof by showing that P
has integral extreme points.

Suppose x* is an extreme point of P and define F0={{j}"x =0}, FI=
{T_E: z(T)-(k-1)f(T)=x*(T)}, F2={TE: x*(T)=min{f(T), z(T)}}. Let
be the incidence matrix of F, 1, 2, and let J be the incidence matrix of F0. Since
x* is an extreme point of P, it is the unique solution to the equality system

X

where the value of the component of vector b corresponding to subset T e F1 is
z(T)-(k-1)f(T) and for TeF the corresponding component of b has value
min {f(T), z

By Corollary 1 and Lemma 5 we see that F1 and F satisfy the hypothesis of
Lemma 3. Thus x* is also the unique solution to

x--

where Ni and c are obtained from M and b , 1, 2, by subtracting certain rows
from others, and [] is a totally unimodular matrix. Thus

is also totally unimodular. Since k, z and f are integral, it follows that b 1, b are
integral vectors and hence c 1, c are integral vectors. Thus x* is also integral.

A byproduct of the proof of Theorem 2 is
COROLLARY 2. Suppose is an integer-valued submodular [unction on subsets
{1, 2, , n}, z is an integral n-vector and k is a positive integer. Then each extreme

point of the following polyhedron is integral:

{x e R?+" z(T)-(k l)f(T) <-_x(T) <-_min {f(T), z(T)}, T E}.
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A generalization of Theorem 2 to the context in which k integral polymatroids
are defined on E was established independently (and earlier) by Giles .(see.[ 15, Thm.
4.6.6]). We can now use the integral decomposition of Theorem 2 to establish integer
rounding results for integral polymatroids.

THEOREM 3. Suppose P(E, f) is an integral polymatroid with # P(E, f) {0}
and let matrix M have as rows the maximal integral vectors in P(E, [).

(a) The IRD property holds ]or M.
(b) The IRU property holds for M, provided/({i}) > 0 ]or all E.
Proof. Clearly P(E, ]) is nonempty and lower comprehensive. Since [ is integral,

P(E, ]’) is bounded and has integral extreme points; furthermore, when ({i})> 0 for
E, P(E, ]) has nonempty interior. Thus Theorem 2 and part (b) of Theorem 1

combine to establish (b). To prove part (a), let w -> 0 be integral and suppose y* solves
P(w). When [1. y*J 0, the result is clear, so suppose [1. y*J => 1 and denote by P
the convex hull of the rows of M. The maximal integral vectors of P(E, t), i.e., the
rows of M, are those integral vectors x P(E, f) for which x(E)= ](E) (see [7]). Thus
P=P(E, te)f’l{x x(E)=f(E)}. Applying Corollary 2 to the integral polymatroid
[1.y*JP(E,/) with k large and z=w shows that [1.y*JP(E,l){x’x<=w} has
integral extreme points (which may also be seen directly from the polymatroid
intersection theorem). By intersecting with the supporting hyperplane {x" x(E)=
[1. y’if(E)}, we obtain that the polyhedron [1. y*JP{x’x<=w} has integral
extreme points. The latter polyhedron is nonempty, as it contains the point
([1. y’J/1, y*)y*M. Thus there exists an integral vector z [1. y*IP
[1. y*JP(E,/), O<=z<=w. Theorem 2 shows that there exist integral vectors
P(E,f), l<=i <- [1. y’J, with z =xl+x2+ .+x tl"*. Since z [1 ..y*JP, it follows
that each x P. Thus the vectors x i, 1 < < [1 y’J, are rows of M, and hence they
determine a solution to Pi(w) of value [1 y*J. [-1

Theorem 3 may be used to derive combinatorial min-max and max-min theorems
involving integer rounding in the following way. Fulkerson (see [12], [13]) has shown
that if M is a nonnegative matrix without zero columns and A is an anti-blocking
matrix for M, then the following min-max relation holds for all w -> 0"

min {1 y" yM _-> w, y -> 0} max {w t" is a row of A}.

Now suppose, as above, that the rows of M are the maximal integral vectors in an
integral polymatroid P(E, ]’) which is loopless, i.e.,/(T) > 0 for all T

_
E. Then

M has no zero columns and the work of Edmonds (see [7], [8]) shows that an
anti-blocking matrix for M is given by matrix A with rows {17,/f(T): 3 T

_
E},

where 17- is the incidence vector of subset T. Thus combining the min-max relation
above with part (b) of Theorem 3 yields the following integral opimization result: for
any integral w -> 0,

min(1, y’ yM>-_ w, y_>0, y integral}=max ([w(T)/t(T)]" f TE}.

When f is the rank function of a matroid on E and w 1E, this becomes the well-known
theorem of Edmonds [6] that the smallest number of independent sets in a matroid
required to cover its elements is equal to max { [I TI/f(T)] T

_
E}. Combinatorial

max-min results may be similarly derived by combining the max-min equality for
blocking pairs of matrices [11], [12], the matroid and polymatroid results of [7], [10]
and part (a) of Theorem 3.

4. Branchings. A branching in a directed graph is a subgraph which is a forest
(i.e., acyclic) no two of whose edges are directed toward the same vertex. Thus the
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branchings of G are the common independent sets of two matroids defined on the
edges of G" the forest matroid whose independent sets are given by acyclic edge sets
in the undirected graph underlying G and the partition matroid whose independent
sets are given by sets of edges of G directed at different vertices of G. Thus, where
1 and f2 denote the respective rank functions of these two matroids, it follows from
i-7] that for graph G with edge set E, the polyhedron

P(G)={xRI" x(S)-< min {fl(S), f2(S)}, S _E}

has extreme points which are precisely the incidence vectors of branchings in G.
A branching in G is said to be rooted at a vertex v of G if each vertex of G

except for v has a branching edge directed toward it. In order to establish rounding
results for branchings, we first prove a decomposition theorem for P(G) using the
following well-known result on branchings. We assume throughout this section that
G has a nonempty edge set.

THEOREM 4 (Edmonds [9]). Let G be a directed graph with vertex set V and edge
set E; ]:or X

_
V let X V\X and let (X, X)= {e (u, w) E" u X, w X}. Then

the maximum number of edge-disjoint branchings of G rooted at v V equals the
minimum of ](X, ,)[ taken over all X with v X V.

We will also require the following result on polymatroid intersection.
THEOREM 5 (McDiarmid [17]). Suppose p and q are integer scalars, u and w are

nonnegative integral n-vectors and P(E, fl) and P(E, f2) are integral polymatroids on
E ={1, 2,..., n}. Then the following polyhedron is the convex hull of its integral
elements"

P(E, ]:I)P(E,/2) f’) {x Rn" u <-_x <- w; p <=x(E)<-q}.

THEOREM 6. Let G be a directed graph and let z kP(G) be an integral vector,
where k is a positive integer and P(G) is as defined above. Then there exist integral
vectors x ,x ,...,x sP(G)forwhichz=x +x +...+x.

Proof. Suppose G has vertex set V and edge set E -{e, e,. , ell}. From G
we construct the graph G* with vertices V* and edges E* as follows. Define V*=
VLI{v*} where v*g V. For each ei=(u, w)sE, E* contains zi copies of the edge
(u, w), and for each v s V, E* contains k-Y (zi" ei =(u, v) for some u V)>-0 copies
of the edge (v*, v), where nonnegativity follows because (z/k) P(G) and the extreme
points of P(G) correspond to branchings in G.

Let v*sX V*. By Theorem 2, z is the sum of k incidence vectors of forests
in G and so G* has at most k([[- 1) edges with both endpoints in . V*\X. But
since each vertex in X has exactly k edges of G* directed toward it, we must have
](X, ..’)[ _-> k. Thus by Theorem 4 G* contains k edge-disjoint branchings of G* rooted
at v*. Restricting these branchings in G* to V*\{v*} determines k branchings of G
whose incidence vectors sum to z.

From Theorem 6 and part (b) of Theorem 1 we obtain
THEOREM 7. Let matrix M have as rows the incidence vectors of maximal branch-

ings in the directed graph G. Then the IRU property holds for M.
Now let matrix M have as rows the maximum cardinality branchings of G and

denote by P’(G) the polyhedron which is the convex hull of the rows of M. Since
P(G) satisfies the decomposition property, it is not difficult to see that P’(G) also

The authors are indebted to Rick Giles for providing this proof.
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satisfies the decomposition property. Using this fact we can establish integer rounding
results for P’(G), though P’(G) is neither upper nor lower comprehensive.

TI-IEOREM 8. Let matrix M have as rows the incidence vectors ol maximum
cardinality branchings in the directed graph G.

(a) The IRD property holds tor M.
(b) The IRU property holds ]:or M, provided M has no zero columns, i.e., each

edge o] G appears in some branching o] maximum cardinality.
Proo] We prove part (a); the proof of (b) is entirely similar. Let w _-> 0 be a given

integral vector and suppose y* solves P(w). For 0-< 1. y*< 1, the result is clear, so
suppose [1. y*J => 1. By Lemma l(a) there is a vector y (1. y*)P’(G) such that
y <-w, and so there exists a vector z [1. y*]P’(G) with z <-w. By Theorem 5 we
may assume that z is an integral vector, and since the decomposition property holds
for P’(G), we may write z x + x2 +. + x tl. Y’J, where each x i, 1 <= <= [1 y*] is
an integral vector in P’(G). This integral decomposition of z determines the desired
solution to Pi(w) of value [1 y*].
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Abstract. We consider two group testing problems involving a set of n items. In the first problem
extactly d defectives, and in the second problem at most d defectives, are distributed arbitrarily in the set.
We show that any procedure for identifying all defectives in the first problem can be easily adapted to the
second problem, with an increase of at most one in the maximum number of tests required. Some related
problems are also described.

1. Introduction. In a group testing problem we are concerned with a finite
population P of n items each of which can be classified either as good or defective.
A group test is a simultaneous test on an arbitrary subset X

_
P with two possible

outcomes’ X is pure if all items in X are good, X is contaminated otherwise. The
group testing problem is to find all the defectives in the population (hence all items
are classified) by means of a sequence of group tests, with the aim of minimizing the
number of such tests.

When the number of defectives d in the population is known exactly and the
defectives are distributed arbitrarily in the population, the problem is known as the
hypergeornetric group testing problem and is denoted by (n, d). Due to the mathematical
simplicity of its assumptions, the hypergeometric group testing problem has attracted
a great deal of attention from research workers. On the other hand, in most practical
situations the exact number of defectives is rarely deducible, though an upper bound
on it is usually available. When our prior knowledge consists of an upper bound d
instead of the exact number of defectives, the problem is known as the generalized
hypergeornetric group testing problem and is denoted by (n, d).

It is desirable to establish a general method such that any procedure for the
hypergeometric group testing problem can be modified to apply to the generalized
version. Such an attempt was made in [1], which showed that if we only consider
procedures of a special but important class called "nested," then procedures for one
problem can be immediately translated to procedures for the other problem with
essentially no effect on the maximum number of tests required. In this paper we
remove the restriction to nested procedures and prove a similar result. Some related
open problems are assembled in the last section.

2. Some preliminary remarks. A group testing procedure can be represented by
a binary tree (see [1] for terminology) where each internal node is associated with a
group test and its two outlinks are associated with the two possible outcomes of the
test. The test history Hv at node v is the set of tests and outcomes associated with the
nodes and links on the path from the root to v, excluding v itself. Let D, called the
defective set, denote the set of defectives in the population. In the (n, d) problem, D
can be any d-subset of the n items, and in the (n, d) problem D can be any k-subset
with 0-< k-< d. Suppose S is the set of possible solutions for D and r is a procedure
for S. We associate S with the root of r. For any other node v of r, we define So to
be the set of elements in S which are cons&tent with Ho. Namely, let s So and be
a group tested in H. Then s if and only if is pure. Thus if v is an internal
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node, the test at v partitions $o into two smaller sets consistent with the two possible
outcomes respectively. If v is a terminal node, then So consists of a single element,
which we denote by so.

The number of tests in Ho is clearly identical to the length of the path from the
root to v. Let Mr(S) denote the maximum path length over all terminal nodes in the
procedure r where $ is the initial set of possibilities for D given in the problem. Define
M(S) mint Mr(S), called the minimax number for S.

LEMMA 1. Suppose $ c $’. Then M(S) <-M(S’).
Proofi Any procedure for S’ is clearly also a procedure for S, with certain tests

possibly being redundant. Lemma 1 follows immediately.
LEMMA 2. Let $ consist of all (n 1)-subsets o1 an n-set. Then M($) n 1.
Proof. There is no need to test any group of cardinality greater than one since

the outcome must be contaminated. Therefore the optimal algorithm is that which
tests the n items one by one, which requires n- 1 tests when the outcomes of the
first n- 2 tests are all contaminated. 1-1

3. The main results. Let r denote a procedure for the (n, d) problem. Let v be
a terminal node of r and So {so}. Partition the d items in so into two categories, the
fixed items and the ]:ree items. o so is a fixed item if there exists a group tested in
Ho such that the group does not contain any other element of so; otherwise, w is a
tree item. A free item is identified as defective through the identification of n- d
good items.

LEMMA 3. Suppose that v is a terminal node with 1>- 1 free items. Let u be the
brother node of v, i.e., u and v are associated with the two outcomes of a test. Then u
is the root of a subtree whose maximum path length is at least [- 1.

Proof. Let denote the last group tested betore v. Since whenever n- d good
items are identified the (n, d) problem is necessarily solved, free items can be identified
only at the last test. Therefore ]’-> 1 implies that .v corresponds to the pure outcome
of t. Hence cannot contain any item of so.

Let s denote a free item of so and o t. Then so {s} t.J {o } $,. To see this, note
that any test group containing s must contain another element ot so or s would be a
fixed item. Therefore changing s from defective to good does not change the outcome
of any test in Ho. Furthermore so-{s}Ll{o} is consistent with the contaminated
outcome of t, hence it is in

Let $’ denote the set {so-{s}t.J{o}’s so and s is free}. Then M($u)>=M($’)
[$’1-1 [-1 by Lemmas 1 and 2. !-I

THEOREM. For each procedure r for the (n, d) problem, there exists a procedure r’
for the (n, d) problem such that

Mr(n, d)+ 1 >-Mr,(n, d).

Proof. Let r’ be obtained from r by adding a subtree To to each terminal node
v having a positive number of free items. To is the tree obtained by testing the free
items one by one. Since free items are the only items at v whose states are uncertain
when we change from (n, d) to (n, d), r’ is a procedure for the (n, d) problem. From
Lemma 3, the brother node of v is the root of a subtree with maximum path length
at least f-1 where f is the number of free items of so. The theorem follows immedi-
ately. [-I

COROLLARY. M(n, d)+ 1 >-M(n, d)>-M(n + 1, d).
Proof. The first inequality follows from the theorem. The second inequality follows

from the observation that the (n + 1, d) problem can be solved by any procedure for
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the (n, d) problem, provided one of the n + 1 items is put aside. But the nature of
the item put aside can be deduced with certainty once the natures of the other n items
are known. I-1

4. Some concluding remarks. We here list a number of related problems.
(i) The determination of M(n, 2). That M(n, 1)= [log2 hi, where [x] denotes

the smallest integer not less than x, is trivial. But one step further leads to the incredibly
hard M(n, 2) problem (see [3] for a good algorithm). A conjecture related to this
problem was finally solved in [1], [2]: "Given two disjoint populations of m and n
items each containing exactly one defective, [log2 toni tests suffice as the maximum
number of tests to find the two defectives."

(ii) The relation between n and d such that M(n, d) n 1. This is a longstanding
problem with but little progress. The conjecture that M(n, d)= n- 1 for n-< 2d + 1
was floating around in 1970 and proved in [6]. It took a ten-year span for the next
result [5], M(n, d)= n 1 for n <- [(5d + 1)/21, where [xJ denotes the largest integer
not exceeding x. Recently [4], this result has been further improved to M(n, d) n 1
for n <_- [21d/8J. On the other hand, it was proved that M(n, d) < n 1 for n _-> 3d
and conjectured that M(n, d)- n 1 for n < 3d in [5].

(iii) A monotonicity property in binomial group testing. The setting of the problem
is slightly different from the other problems in that the population consists of n
stochastically independent items each with probability p of being defective. When
probabilities are involved, the maximum number of tests is no longer a suitable
criterion. Instead, we are concerned with the expected number of tests. Let E(n, p)
denote the minimum expected number of tests for such a population. The conjecture
is that E(n, p) is monotone increasing in p for 0-< p < 1.

REFERENCES

G. J. CHANG AND F. K. HWANG, A group testing problem, this Journal, (1980), pp. 21-24.
[2],A group testing problem on two disioint sets, this Journal, 2 (1981), pp. 35-38.
[3] G. J. CHANG, F. K. HWANG AND S. LIN, Group testing with two defectives, to appear.

(m+n)k+l )A k[4] D. Z. Du AND F. K. HWANG, Minimizing (+t(+),,/(,,+,)/ over k, to appear.
[5] M. C. Hu, F. K. HWANG AND J. K. WANG, A boundary problem for group testing, this Journal, 2

(1981), pp. 81-87.
[6] HWANG, F. K., A minimax procedure on group testing problems, Tamkang J. Math., 2 (1971), pp. 39-44.
[7],A note on hypergeometric group testing, SIAM J. Appl. Math., 34 (1978), pp. 371-375.



SIAM J. ALG. DISC. METH.
Vol. 2, No. 4, December 1981

1981 Society for Industrial and Applied Mathematics

0196-5212/81/0204-0009 $01.00/0

ACYCLIC DIGRAPHS, YOUNG TABLEAUX AND
NILPOTENT MATRICES*

EMDEN R. GANSNERS"

Abstract. A nilpotent matrix is associated with an acyclic digraph in such a way that the Jordan
invariants of the matrix correspond to the maximum size of certain families of paths in the digraph. This
allows one to associate an integer partition and a standard Young tableau with the digraph, extending the
Robinson-Schensted map on permutations. The associated partition is characterized using matrices whose
rows are paths in the digraph. This leads to a proof of a conjecture of Greene concerning the entries in
the associated Young tableau. When the digraph is transitive, a second characterization is given for the
partition. Most of the arguments used are algebraic in nature.

1. Introduction. Recently, a number of combinatorial properties of posets have
been proved using the tools of linear algebra [17], [20], [21], [24]. One looks at the
vector space V over, say, the complex field, freely generated by the vertices of the
poset, and finds that certain properties of the poset translate into properties of certain
linear maps of V into itself, which can be verified algebraically. The maps thus involved
are essentially elements in the incidence algebra [18] of the poset.

The present paper continues in this spirit, while at the same time generalizing
the focus from posets to acyclic digraphs. Given such a digraph F, we associate with
it a nilpotent matrix, and show that the invariants of the Jordan canonical form of
the matrix correspond to the maximum size of certain families of paths in the graph.

Using this result, we see how to associate a partition A’ of an integer and, more,
a standard Young tableau Y with F, thereby extending and rederiving results of Fomin
[5] and Greene [9]. In addition, we note a generalization of a theorem of Greene and
Kleitman [8] concerning k-saturated partitions of posets to acyclic digraphs. This is
used to follow Greene’s lead [10] and characterize N in terms of matrices whose rows
are paths in F. We are then able to prove a conjecture of Greene [11] concerning the
entries in Y. As a corollary to this characterization, we find that Y gives us a
generalization of the well-known Schensted correspondence [22].

Using strictly combinatorial arguments, but directed by the above-mentioned
characterization of A’, we obtain a second characterization of A’ when F is a poset,
based on matrices whose rows are antichains in F. It is also noted that an obvious,
second characterization of Y does not work.

Throughout this paper, we assume a basic familiarity with linear algebra and
fields (rank, nullity, Jordan canonical form, algebraic independence), graphs, matroids,
and posets, as can be derived from such texts as [1], [12], [13], [25]. More detailed
results will be cited as needed.

2. Generic matrices, k-paths, and partitions. Let F be a finite acyclic digraph (or
A-digraph) on g vertices, with the vertices labeled from 1 to g. A vertex is a sink if
no edge proceeds from it; a vertex is a source if no edge leads into it. The ordered
pair (i, ) represents an edge from vertex to vertex ].
A path in F is a sequence of vertices il, i2,’" ’, in such that (ij, ij/l) is an edge in F

for 1-< ]-< n- 1. We do allow a path to consist of a single vertex. A k-path in F is a
subset of the vertices that can be partitioned into k or fewer disjoint paths. We let
dk k(F) be the largest cardinality of a k-path in F, with d0 0 by convention. In
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addition, we define ?k =?k(F)=dk--dk-1 for k_->l. Let , denote the infinite
sequence ’1, ,2, ,3, ". Clearly, we have dk <= dk/, so the k’S are nonnegative.

Our main tool throughout this paper will be the ability to give a linear algebraic
interpretation to the ,k’S. To this end, we define a generic matrix as a square matrix
with entries from the complex numbers C whose nonzero entries are all algebraically
independent over the rational numbers . Given an A-digraph F, with g vertices,
define a g g matrix Mr (rnij) such that rnij 0 if (i, f) is not an edge in F and such
that the rest of the entries of Mr are complex numbers algebraically independent over. Since Mr is generic, we call it a generic matrix of F. And, since F is acyclic, Mr is
nilpotent. Conversely, it is easy to see that, given any generic, nilpotent g x g matrix,
it corresponds in the above fashion with a unique labeled A-digraph on g vertices.
Note also that any nilpotent generic matrix has only O’s on the main diagonal.

For any nilpotent matrix M, its Jordan canonical form, or, identically, its rational
canonical form, will consist of, say, s Jordan blocks of sizes n _-> n2 _>-" _-> ns > 0, with
O’s on their main diagonals. For convenience, let nk 0 for k > s. The nk’S are the
invariants of M. We now come to the result (obtained independently and through
different techniques by Saks [21, Thm. 6.2]) that will allow us to use the machinery
of linear algebra in our investigations.

THEOREM 2.1. Let F be an A-digraph. Let Mr be a generic matrix of F with
invariants nk, k >- 1. Then nk k(F) for all k >-_ 1.

To prove this, we will first need a good handle on the canonical form of a nilpotent
matrix. If H is a matrix whose entries are polynomials in the variable x over C, let
pk(H) be the greatest common divisor, with leading coefficient 1, of all the k x k
minors of H. Let pk(H)- 1 for k _-< 0. In addition, if q is any polynomial in x, let 6q
be the degree of q.

LEMMA 2.2. Let M be a g x g nilpotent matrix, with invariants rig, k >- 1. Then,
]’or 1 <- k, x pg-k+X(xI--M)/pg-k(XI-M), where I is the g x g identity matrix.

This lemma follows from a direct application of the theory of the rational canonical
form, as developed in, for example, [6, Chapter VI], to a nilpotent matrix. It follows
immediately from this lemma that each pk(XI--M) is some power of x. Since pg(xI-
M) x, we obtain the next result by multiplying the first k x""s together.

LEMMA 2.3. With the same hypotheses as above, for 1 <-k, pk(xI--M) is a power
k

of x and ,i= ni g--tpg-k(xI--M).
Proof of Theorem 2.1. Let g be the number of vertices in F. Let M xI-Mr,

and let tpk tpk(]). The proof of the theorem rests upon the claim that, for 0_-< k,
Pg-k g- k. For, combining this with Lemma 2.3, we have

k k

E ni g--(Pg-k (. . fi
i=1 i=1

for 1 <= k. From this, nk --zk follows immediately.
As for proving the claim, since Pg-k(/) must be a powder of x, we are looking

for the largest power of x that divides every g- k minor of M, which must equal the
smallest power of x appearing as a term in some g- k minor. Since M is generic,
this smallest power of x will equal the smallest number of x occurring among all
choices of g k nonzero elements of 2f/with no two of them in the same row or column.

Suppose it takes at least A paths to partition F into disjoint paths. If A g, F
can contain no edges and the claim is easy to verify. We can therefore assume that
A < g. The claim is also clear when k 0 so, for the moment, let us also assume that
O<k<=A.
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Let S be a maximum size k-path in F, so Isl k. Since k-<A, $ must require
precisely k paths to be partitioned. Fix a partition of S into k paths. If a, b, c, ., d, e
is one of these paths on at least two vertices, we associate this path with the nonzero,
non-x elements of /in positions (a, b), (b, c),. ., (d, e). If we do this for each path
in the partition of S with at least two vertices, we end up with dk- k such entries of
/. Since the paths are disjoint, no two of these entries lie in the same row or column.
Now, add to these the g- ak entries in the positions (, ), where/" is a vertex not in
$. This gives us a collection of g- k nonzero entries of M, no two in the same row
or column, among which are g dk X’So Hence, t3pg-k <- g-

Conversely, suppose we are given g- k entries of M, no two in the same row or
column, with 6Pg-k X’S among them. The g k 6 off-diagonal entries correspond,
reversing the process used above, to, say, disjoint paths in F, each containing at
least two vertices. These paths will use g-k- + vertices of F. The 6 diagonal
entries will correspond to other vertices in F. Thus, we must have (g k + l) + $ _-<
g, or <-_ k. Besides the g k 6 + vertices of F in the paths, there remain k +
vertices in F. Adding any k- of these, each considered as a path with 1 vertex, to
the paths above, we obtain a k-path of size g- 6. This quantity can be no more than
rig; hence, g dk -< t3. Thus, for 0 _-< k _-< A, we have g dk 6Pg-k.

From this, we see that 6pg-A g--dA =0 and Pg_A01r) 1. By Lemma 2.2,
p^g_k(37/)^divides pg-A(l/l) for k > A. Thus t3p-k 0 for k > A. In addition, since
dA g, dk =g for k >A. Hence, 6Pg-k g--dk for all k >A as well, completing
the proof of our claim and the theorem.

We note that, as might be expected, any two generic matrices of F are similar.
As a somewhat unexpected result, we have the following corollary.

COROLLARY 2.4. (cf. [9]). For all k >-_ 1, k /k+l.
At this point, we would like to introduce some definitions from the theory of

partitions (cf. [2]). A partition A is an infinite, nonincreasing sequence of nonnegative
integers A ->_ A2 -> A3-->’’" with at most finitely many nonzero terms. The A’s are the
parts of the partition, and A is said to be a partition of n, where n =x A. The Ferrets
graph F(A) of A is the set of all ordered pairs (i, ) such that 1-<_/"-<_ A. The conjugate
partition is the sequence tra _>-tr2 _-> tr3 _->" ", where tri equals the number of A greater
than or equal to ].

Thus, Corollary 2.4 asserts that the sequence , is a partition of g. Let A’= A’(F)
denote the sequence A EAts’= za3At , that is the conjugate partition of ,, and let
d, -d,(F)=’1 A for k _-> 1. At present, we can give an algebraic interpretation to
d,. A combinatorial interpretation has been given by Saks in [21]. Later, in 6, we
shall mention the special case of this interpretation that holds when F is transitive.

COROLLARY 2.5. The nullity ofM equals d,(F) ]:or k >- 1.
Proof. It can be easily shown (cf. [20]) that, if M is nilpotent with invariants rig,

k ->_ 1, the nullity of Mk equals Y=I min {k, n}. This expression is the same as the sum
of the first k parts of the conjugate partition of n, hE, n3," ". Adding these remarks
to Theorem 2.1 and the definitions given above, we arrive at the corollary.

3. The Young tableau of an A-digraph. Let A be a partition of n. A (standard
Young) tableau of shape A is an array (mij), indexed by all the pairs (i, j) in F(A),
whose n entries consist of every integer from 1 to n, and such that mij < mii+l and
mi < mi+l. Tableaux play a significant role in several areas of combinatorics [3], [7],
[14], [22], [23] and in the representation theory of groups [15], [16].

In the preceding section, we have seen that an A-digraph on g vertices can be
associated with a partition z of g. For certain labeled A-digraphs, arising from
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permutations (cf. 6), it is known that one can, in fact, associate the graph with a
tableau of shape ,, using a construction due to Schensted [22]. We now want to
show that one can associate a tableau of shape z(F) with any naturally labeled
A-digraph F. (An A-digraph is naturally labeled if i<] whenever (i,/’) is an edge).
We begin with an algebraic lemma.

LEMMA 3.1. (cf. [16, p. 91]). Let V be a finite dimensional vector space. Let
T: V V be a nilpotent linear map on V with invariants nk, k >-_ 1. Let W be an invariant
subspace of V, so that TW

_
W. We can then view T as a nilpotent map T: V/W V/W

with invariants rag, k >-_ 1. Then nk >= Ink for all k.
Proof. Let n and In, k _>- 1, be the respective conjugates of nk and ink, k >-_ 1,

viewed as partitions. It then suffices to show that n _-> In for all k. As noted in the
kproof of Corollary 2.5, the nullity of Tk equals Y’.i=ln*. Hence, n=

nullity (Tk)-- nullity (’I’k-l) (dim V-dim Tkv)-- (dim V-dim Tk-av)= dim
Tkv). Similarly, In dim (Tk-(V/W)/Tk (V/W)).

To complete the proof, we note that we have the canonical onto maps Tk-Iv
Tk-X(V/W) and Tk-I(V/W) Tk-X(V/W)/Tk(V/W). These combine to give the onto
map b: Tk-lv- Tk-a(V/W)/Tk(V/W). In addition, Tkv is contained in the kernel of
b. This induces an onto map of vector spaces

Tk-lv/’I’kV Tk-XV/kernel b -Tk-I(v/W)/Tk

Since the map is onto, we must have n k* ----> In k*, as required.
THEOREM 3.2. Let F be an A-digraph, and let x be a source or sink in F. Let

F’ be F with x deleted. Then Zk (F)-_> k (F’) for all k.
Proof. Let M be a generic matrix for F. Let M’ be M with the row and column

corresponding to x removed. Then M’ is a generic matrix for F’. Let V be the vector
space over C generated freely by the vertices of F, and let T be the nilpotent linear
map on V corresponding to the matrix M. Define V’ and T’ similarly, using F’ and M’.

For the moment, assume that x is a sink. Then Tx--0 and the subspace (x),
generated by x, is invariant. It is easy to see that V/(x) is isomorphic to V’, and that
T acts on V/(x) in the same manner as T’ on V’. Hence, the invariants of T’ are the
same as the invariants of T acting on V/(x). If we now invoke Theorem 2.1 and
Lemma 3.1, we obtain the desired result.

If x is a source, reverse the edges in F and F’. This does not affect z(F) or z(F’),
but x is now a sink and we can apply the previous case.

This theorem was originally given in terms of posets by Fomin [5], though the
proof presented here is entirely different from his, which used network flows.

COROLLARY 3.3. If a source or a sink occurs in every maximum-sized k-path, it
occurs in every maximum-sized h-path for all h >-k.

Proof. Using the notation of Theorem 3.2, since x occurs in every maximum-sized
k-path, we must have k(F)> dk(F’). By the theorem, j(F)->_ zj(F’) for all ]. Thus,
dh(l’) dk(I’)q-’]h_-k+ /](l’) > dk(r’)+’=k+ //(1TM) dh(r’). This strict inequality
forces x to be in every maximum-sized h-path. [

As suggested by Fomin, we can use Theorem 3.2 to construct a tableau from an
A-digraph. Let F be a naturally labeled A-digraph on g vertices. Let F’ be F with
vertex g removed. Assume we have constructed a tableau Y(F’) of shape (F’). By
Theorem 3.2, F(/(F)) contains F(,(F’)) plus one more pair, say, (i, f). Define Y(F)
to be Y(F’) with g adjoined in position (i, ]). Y(F) will have shape z(F) by construction.

In 6, we shall show that this construction extends the Schensted construction
mentioned above.
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How much information about F is contained in Y(F)? Certainly, many different
labeled graphs are sent to the same tableau. For each natural labeling of F, we obtain
a (possibly new) tableau. However, the set of tableaux obtained in this manner still
does not determine the graph. The graphs shown in Fig. 1 both have the same
associated set of tableaux. If, instead, we consider the multiset of such tableaux, we
can distinguish the graphs. Does this hold in general? Given the multiset (or a special
subcollection) of tableaux associated with the natural labelings of an A-digraph, does
this distinguish the graph from any other or, even better, can we easily reconstruct
the graph from the tableaux?

FIG. 1

At present, we can only offer a small step in answering these questions. If n
occurs in position (i, ) of Y(F) and n 1 occurs in position (i’,/"), we must have either
i’ -> and/" < ], or i’ < and ’ ->/’. If (n 1, n) is not an edge in F, we cannot tell which
possibility occurs. For example, consider the graphs and their associated tableaux
shown in Fig. 2.

02
1 2 3

3
2

2
3

FIG. 2

However, we do have the following.
TI-IEOREM 3.4. Using the above notation, if (n- 1, n) is an edge in F, we must

have i’ >= and ]’ < ].
Proof. By the construction of Y(F), we can assume that F has n vertices. Let F’

be F with vertex n deleted. Assume that i’ < i. Then ri,(F) dv(F’). Now, n 1 occurs
in every maximum-sized/’-path in F’. Let $ be such an/’-path, so IS[ dv(F’). Then
S U {n} is an/’-path in F, since F is naturally labeled and (n-l, n) is an edge in F.
This implies a,(r) _-> IS LI (n}l Isl + 1 d,,(r’) + 1 d,,(r) + 1, a contradiction.
Hence, i’ >_- i, forcing ]’ < ]. 1]

4. On k-saturated partitions. For a given naturally labeled A-digraph F, it is
possible to give an alternate construction for Y(F). Before we can get to this consruc-
tion, we need a result that is significant in its own right and that generalizes a known
result concerning posets. As usual, we begin with some algebra.

If A (aij) and B (bj) are two matrices of the same size, we order them by
letting A < B if bi 0 implies that aii--O.
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LEMMA 4.1. Let A and B be two n x n matrices with complex entries such that
A <B and B is generic. Then nullity A k >_ nullity Bk for all k >- 1.

Proof. Let B’ be a singular submatrix of B k. Since B is generic and det B’ is a
polynomial in the nonzero entries of B with rational coefficients, the polynomial must
be identically zero. This forces det A’= 0, where A’ is the submatrix of Ak correspond-
ing to B’ in B k. Hence, a nonsingular submatrix of Ak corresponds to a nonsingular
submatrix of B k, and rank Ak __< rank B k. Equivalently, nullity B k <= nullity A k.

Let F be an A-digraph on g vertices, and let be a partition of F into paths.
Let Bk()= min {k, IPI}, the sum being taken over all paths P in . Using , we
can define the following g x g matrix. Let M- (mij) with mij 1 if (i, j) is an edge
occurring in some path in and mi 0 otherwise. Clearly, M <Mr and hence,
d,(F)- nullity M- _-< nullity Mk. In addition, it is easy to see that the nullity of Mk

equals Bk(). Thus, Bk() provides an upper bound for d,(F). We call k-saturated
if d,(r) B(N).

The main result of this section is that, for any given k, there exists a k-saturated
partition. To demonstrate this, we will mimic proofs used by Saks ([19] and [21, pp.
78-81]) to prove related results.

Let e(F)= rain {B()}, the minimum taken over all partitions of F into paths.
We want to show that e(F)= d,(F). This definitely holds if k 1, for then both sides
count the smallest number of paths necessary to partition F. As noted above, we also
have d, (F) _-< e, (F).

For the next piece of the proof, we need the following lemma.
LEMMA 4.2. LetM be a nilpotent n x n matrix. For k >- 1, letM be the matrix o]

order kn with k copies ol Mdown the main diagonal, k 1 copies o] the order n identity
matrix I down the superdiagonal and O’s elsewhere. Then nullity M nullity M.

Pro@ We first assume that M is an n x n Jordan block, with n- 1 l’s down the
superdiagonal and 0’s elsewhere. To compute the rank of M, we can use elementary
row and column operations. First, use the n-1 l’s in the first M block to eliminate
the first n- 1 l’s in the first I block. The remaining 1 in this I block can be used to
eliminate the last 1 in the second M block. The remaining n- 2 l’s in this block can
then be used to eliminate the first n- 2 l’s in the second I block. The remaining two
l’s in this block can then be used to eliminate the last two l’s from the third M block.
If k-<_ n, this alternating elimination process ends at the kth M block, with n- k l’s
remaining in this block. At this stage, all the l’s lie on different rows and columns,
and a simple count shows that there are k(n- 1) of these l’s. Hence, if k _-< n, the
rank of M, equals k (n 1).

If k > n, this alternating elimination process ends at the nth M block, which will
have all of its l’s eliminated. At this point, we can use the l’s in the nth I block to
eliminate all the l’s in the (n + 1)th Mblock. Then we can use the l’s in the (n + 1)th
/block to eliminate all the l’s in the (n + 2)th Mblock. This process can be continued
until all the l’s are eliminated from the kth M block. All the l’s in this final matrix
lie on different rows and columns. The first n columns contribute n(n 1) l’s, while
each successive n columns contributes n more l’s. Thus, we end up with n(n- 1)+
(k -n)n n(k + 1) l’s. Hence, if k _->n, the rank of M equals n(k 1).

Now it is easy to compute that the rank of M is n -k if k -_< n and is 0 if k _-> n.
These results imply that n (k- 1)+ rankM=rankM for all k. Hence, nullity M
nk rankM n rankM nullityM, and the lemma holds if M is a Jordan block.

Next, let A and B be two nilpotent matrices, and assume the lemma holds for
them. Let C A ( B, the direct sum of A and B. Then C is nilpotent and C A (
B. Hence, nullity C= nullityA+nullity B *. On the other hand, it is easy to see
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that Ck is similar, via a permutation matrix, to Ak Bk. This implies that the nullity
of Ck equals nullity (Ak Bk)-nullity Ak 4-nullity Bk. Since the lemma holds for A
and B, we see that it also holds for C. Combining this result with the preceding result,
we find that the lemma holds if M is in Jordan canonical form.

Finally, given any nilpotent M, let N A-1MA be its Jordan canonical form.
Let B be the direct sum of k copies of A, so that B-1 is the direct sum of k copies
of A-1. It is easy to verify that B-1MkB Nk. Hence, we have nullity Mk nullity
(B-1MkB) nullity Nk. But this we know to be nullityNk nullity (A-1MA)k nullity
A-1MkA --nullity Mk. Thus, the lemma holds for all nilpotent M.

To apply this lemma, given an A-digraph F on g vertices, let Ik be the A-digraph
on the set of vertices (x, i), where x is a vertex of F and 1 _-< _-< k. The only edges in
Fk go from (x, i) to (x, + 1), or from (x, i) to (y, i), where (x, y) is an edge in F. If x
is labeled/" in F, label (x, i) by j + g(i- 1) in Fk.

Now, let M be a generic matrix of F, and let N be a generic matrix for 1-’k. Then
Mk < N. Using the previous two lemmas, we obtain nullity N-<_ nullity Mk nullity
Mk. This gives us the next piece in our proof.

LEMMA 4.3. d (Fk) ----< d:(F).
Next, we need the following result of Saks, whose proof can be found in [21, pp.

78-81].
LEMMA 4.4. ek(F) el(Fk).
To put the pieces of the proof together, we recall Lemma 4.3, which, along with

some earlier remarks, gives us el(lk) d (Fk) d(F) _-< ek(F). Adding this to Lemma
4.4, we obtain the desired result. [3

THEOREM 4.5. For all k, d’k (F)= ek (F).
COROLLARY 4.6. d[ (Fk) d:(F).
Another proof of Theorem 4.5 and its corollary is given in [21, Chapter VI].

5. A characterization of Y(F). We can now proceed apace to the promised
variant construction of Y(F) for a given naturally labeled A-digraph F on g vertices.
We have already seen that g-d is the rank of Mrk. This new construction will be
based on another interpretation of g- d.

A k-matching in F is a k-columned matrix X (xij) with, say, m rows, in which
the xij are labels of the vertices of F, (xii, x+l) is an edge in F for all and , and the
entries in a given column are distinct. The set {Xlk, XEk,’"", Xmk} we call a k-source
and the source of the given k-matching. The terminology here is due to Greene [11].

Let be a partition of F such that Bk()-" d:(F). Let xl, x2,"’, Xl be a path
in with _>- k + 1. Then the sequences xl, X2, Xk+l’ X2, X3, Xk+2; "; Xl-k,

Xt-k/l,’’’, Xt form the rows of a (k + 1)-matching. If we do this for each such path
in and combine all the rows together, we obtain a (k + 1)-matching with g--Bk()
g--d rows, as first noted by Greene. Hence, the size of the largest source of a
(k + 1)-matching in F is at least g--d’k. We shall now show that these two quantities
are equal.

THEOREM 5.1. Let F be an A-digraph on g vertices. The largest size of a (k +
1)-source in F equals g- d’k.

Proof. Let X (x/) be an m-rowed (k + 1)-matching in F. Let N be a generic
matrix for Fk. N contains k g g blocks along the main diagonal, each a generic
matrix for F. Call these blocks C1, C2,’", Ck, ordering them from bottom to top.
(Thus, C1 is the bottom rightmost block.) In addition, N contains k- 1 g x g blocks
along the superdiagonal, each a nonsingular diagonal generic matrix. Call these blocks
I1, 12, , Ik-1, again starting at the bottom right, and labeling up and to the left.
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Consider the following nonzero entries in N. For all and/" with 1 <-i-< m and
1-<f =< k, take the (xij, xij/l) entry in C. In addition, for 1-< f < k, take all the (z, z)
entries in/. for which z does not appear in column + 1 of X. We leave to the reader
the easy verification that no two of these entries lie in the same row or column. We
have mk+(g-m)(k-1)=m+g(k-1)chosen entries and, since N is generic, the
rank of N is at least m + g(k 1). Hence, m _-< g -nullity N g d (Fk) g d (F), by
Corollaries 2.5 and 4.6. Since we have already seen that m >-_g-d’, the proof is
complete.

The restriction of this theorem to posets was first proved by Greene in [10]. The
theorem says that the largest size of a source of a k-matching in F equals the number
of elements in F(A(F)) in columns k through I(F), or, if F is naturally labeled, the
number of entries in Y(F) in the same columns. Greene conjectured that, in fact, the
entries in the last columns of Y(F) form a special, maximum-sized source, and proved
this for the graphs covered by the Schensted construction. We will now verify his
conjecture for general A-digraphs.

We order the collection of all maximum-sized k-sources in F lexicographically,
that is, if A and B are such k-sources, we have A <B if and only if the least element
that occurs in only one of A and B appears in A. Thus, the collection is a chain and
possesses a unique minimum.

THEOREM 5.2. Let F be a naturally labeled A-digraph. For 1 <-_k _-<Zl(F), the
union of the entries in columns k through ? of Y(F) equals the minimum maximum-
sized k-source in F.

Proof. For any naturally labeled A-digraph 4’, let Ck(4,) be the entries in columns
k through ,(4) of Y().

Let F contain g vertices. We use induction on g, the case g 1 being clear.
Assuming g > 1, let F’ be F with vertex g deleted. By induction, Ck(F’) equals the
minimum maximum-sized k-source in F’. In addition, if g occurs in position (i,/’) of
Y(F), Y(F) is formed by adjoining g to Y(F’) in position (i,/’).

It will be useful to note that the k-sources of F form the independent sets of a
matroid, and thus, any k-source can be extended to a maximum-sized one. To see
this, define a k-partite undirected graph on the vertex sets V, {1,, 2,,. , g,,} for
1 =< rn =< k, with an edge joining rt to s,, if and only if rn + 1 and (r, s) is an edge in
F. Then a k-matching in F, whose last column consists of the vertices {x, y,..., z},
corresponds to a matching of {Xk, Yk,’’’, Zk} with certain vertices in Vk-1, which are
in turn matched with certain vertices in Vk-2, etc. It is well known [1, pp. 276-281]
that all such sets {Xk, Yk," ", Zk} form the independent sets of a matroid, generalizing
the transversal matroids.

Now, if/" < k, we have Ck (F)= Ck (F’). In addition, Theorem 5.1 tells us that the
maximum size of a k-source in F equals the maximum size of one in F’. Let
{g, x, y,..., z} be a maximum-sized k-source in F containing g. Then {x, y,..., z}
is a k-source in F’ and can be extended to a maximum-sized one {w, x, y,..., z} in
F’ and hence, in F. We thus have {w,x, y,..., z}<{g, x, y,..., z}, and the former
does not contain g. From this, we see that the minimum maximum-sized k-source of
F equals the minimum one in F’, which equals Ck (F’)= Ck (F), as required.

Finally, for >= k, Ck (F)= Ck (F’)(_J {g}, and, from Theorem 5.1, the maximum size
of a k-source in F is one more than the maximum size of one in F’. Because of this
difference, every maximum-sized k-source in F must contain g. Then, if {g, x, y, , z}
is a maximum-sized k-source in F, {x, y,. , z} is one in F’. Conversely, if {x, y,. , z
is a maximum-sized k-source in F’, it is a k-source in F and can be extended to a
maximum-sized one in F, which must necessarily be {g, x, y,..., z}. Hence, the
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minimum maximum-sized k-source in F equals the minimum such source for F’ with
g added. By induction, this is Ck (F’)t_J {g} Ck (F), completing the proof. I

As noted by Greene, since sources are independent sets in a matroid, to find the
minimum maximum-sized k-source, one can use a greedy algorithm, picking the least
vertex that is a source, then continuing to add the least vertex that allows the set to
remain a k-source.

6. Transitive A-digraphs. In this and the next section, we consider some intere-
sting results that occur if we assume that F is transitive, that is, a poset. What we
have been calling paths in a digraph become chains in a poset. In addition, we have
the important notion of an antichain as a set of vertices all of whose elements are
unrelated in the poset.

The definitions of dk, /k, d,, A, remain the same. However, we now have a
combinatorial interpretation for d: as well as rk. For k _-> 1, we define a k-family in
a poset F as a set of vertices containing no chain of size k + 1. Thus, a 1-family is the
same as an antichain. The subject of k-families has been extensively researched by
Greene and Kleitman [8], Greene [9] and others. We shall be content with noting a
couple of known results as they occur in the present context.

Let dk ----dk(F) be the maximum size of a k-family in F for k _-> 1 and let do 0.
Let Ak --dk--dk-1 for all k _>-1, and let A represent the sequence A, A2, A3, of
nonnegative integers. We saw in 4 that ek(F) d(F). But, for posets, it is well known
(e.g. [8], [19]) that ek(F) also equals dk(F). This leads us to the following results.
Theorem 6.1 was essentially proved by Saks in [20], (cf. also [21]).

THEOREM 6.1. Given a poset F, we have d:(F)= dk(F) for all k.
COROLLARY 6.2. (Greene and Kleitman [8]). For all k >-_ 1, Ak >= Ak+1.

COROLLARY 6.3. (Greene [9]). The partition A is the conjugate partition of .
Thus, for a poset F, we have two combinatorial methods for arriving at the same

partition. This would seem to indicate that the partition z and, if F is naturally
labeled, the tableau Y(F) are natural objects to associate with the poset. This relation
is even stronger when we consider certain special posets with certain special labelings.
Let zr be a permutation of the set {1, 2,..., g}. Using this permutation, we can
construct two naturally labeled posets. Define FI by letting vertex be less than vertex

-1] in F1 if i<] and r(i)< r(]). Define F2 similarly, using zr instead of zr. We then
have two tableaux Y(F1) and Y(F2) of the same shape.

Using an entirely different approach, based on an easy, efficient algorithm,
Schensted [22] gave a one-to-one correspondence associating 7r with a pair of tableaux
P(zr) and Q(zr) of the same shape. For the interested reader, there is an extensive
literature on this correspondence, its properties and its applications. (See [7], [23],
and the references cited there). Here, we simply remark that P(zr)= Y(F1) and
Q(zr) Y(F2). This can most easily be seen by noting that Greene (Theorem 3 and
the following remarks in 11 ]) has characterized P and Q in precisely the same manner
in which we characterized Y in Theorem 5.2.

When F is derived, as above, from a permutation, it is a two-dimensional poset
[4] with a special labeling. It is not surprising, therefore, to find properties of Y(F)
that hold in this case, but not for arbitrary posets, or arbitrary natural labelings. With
this in mind, one can ask, with little optimism, for a way to extend the sleek Schensted
construction of P and Q to arbitrary posets, thereby replacing the rather tedious ways
of constructing Y(F) given above.

7. Posers and k-scatters. In Theorems 5.1 and 5.2, we were able to determine
the number of entries and the entries themselves in the last columns of Y(F). We
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now want to consider whether analogous results hold, when F is a poset, for the last
rows of Y(F). As shown by Greene [11], such analogues do exist when F and its
labeling are derived from a permutation. For general posets, we must answer with a
yes and a no.

Let F be a naturally labeled poset. A k-scatter is a k-columned matrix X (xij)
in which the xij are labels of the vertices of F; for all and/’, x <x+l as integers;
the entries in any given column of X are distinct; and there exists no sequence Xar,

Xas Xbt, Xbu Xco, ", Xaw Xey, Xez such that r =< s, _-< u, , y <- z and vertex x,,r is
less than vertex Xez in F. In particular, the last condition implies that the vertices
corresponding to a row in a k-scatter form an antichain.

THEOREM 7.1. Let F be a naturally labeled poset on g vertices. The largest number
of rows occurring in a (k + 1)-scatter is g-

Half of the proof of this theorem requires an easy imitation of half of the proof
of Theorem 5.1. However, the other half requires some combinatorial groundwork,
to which we proceed and postpone the theorem’s proof until later.

Let rn and k be positive integers, and let T be a finite subset of the positive
integers. Consider an rn k matrix A (a) with the following properties:

(a) The entries of A come from T t_J {0}.
(b) For ] => 1, ] appears at most once in any row or column.
(c) In each row, the nonzero entries appear in increasing order.
A segment in A is a subsequence of a row in A. A string in A is a sequence

Sl, S2, Sr of disjoint segments such that the last entry in S is nonzero and equals
the first entry in Si+ for 1 _-< _-< r- 1. S is the final segment of the string. The weight
of a string is the number of O’s occurring in it. A row is long if its rightmost entry
occurs in the final segment of some string of weight >_-k.

LEMMA 7.2. If TI <= m, A contains at least m -ITI long rows.

Proof. The lemma clearly holds if lTI- 0. We now use induction and assume that
the lemma holds if 0 <--ITI--< n < m. Let ITI-- n + 1. Without loss of generality, we can
assume that T {1, 2,..., n + 1}. In addition, we can assume that, if A contains
r n + l’s, they occur in the first r rows and, for < ], the n + 1 in row occurs to the
left of the n + 1 in row ].

Define A’- (ai) by replacing the n + l’s in A by O’s. By induction, A’ contains
at least m-n long rows. If A contains no n + l’s, A=A’ and we are done since
m n > m (n + 1). Otherwise, insert n + 1 into the first row of A’ in the same position
it occupies in A. This might prevent row 1 from being long, but it cannot affect the
status of any other row. Hence, we have at least m-n- 1 long rows, ignoring the
first row.

Assume we have inserted n / l’s into the first s rows of A’ in the same positions
they occupy in A, and that we have at least m n 1 long rows, ignoring row s. Now,
insert n / 1 into row s + 1 to make the row agree with row s / 1 in A. If row s + 1
was not long, we still have m -n 1 long rows, now ignoring row s + 1. If row s + 1
was a long row, after inserting n + 1, it may or may not be.

However, row s definitely is. To see this, let as+ be the first entry in the last
segment of a string of weight _->k that exists before n + 1 is inserted into row s + 1.
We can assume that the final segment is as+at, as+ll+l," as+lk. If n + 1 is inserted
in row s + 1 in position ], and n + 1 occurs in position in row s, replace this final
segment by the two segments a+x,. ., a,+xj and a,, , ask. This drops the k-/" / 1
O’s as+li, as+k and adds the k-i O’s as+,’", ask. Since ]> 1, the new string
has weight at least k and row s is long, as claimed. As row s was not used in the
previous count of long rows, we still have at least m-n- 1 long rows, now ignoring
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row s + 1. Hence, after we have inserted all of the n + l’s and obtained A, we still
have m-n 1 long rows, as required.

Proof of Theorem 7.1. A theorem of Greene [9, Thm. 1.4] guarantees that we
can partition F into antichains A 1, A2,’ At, for some r, such that Yi--1 min {IAI, k)
dk. Now, suppose IAI -> k + 1, and the vertices of Ai have labels cl < c2 <’ < ct.
We can then create a (k + 1)-scatter with rows cl, c2," , Ck/l; C2, C3," , Ck/2; ";

Ct-k, Ct-k/l, ", Ct. If we do this for every A, 1 =< -< r, with IAI -> k + 1 and put all
the rows of the (k+l)-scatters together, we obtain a (k+l)-scatter with
g--=l min{[A[,k}=g-dk rows. So, the maximum number of rows in a (k+
1)-scatter is at least g--dk.

Let C be a k-path (a collection of at most k disjoint chains) of maximum size in
F, so that Icl-  , Let S =F-C. We claim that every (k + 1)-scatter with m rows
contains at least m distinct elements of S. This is certainly true if m 0. For m > 0,
let T be the set of elements in S which occur in a given (k + 1)-scatter. In the
(k+l)-scatter, replace the labels of elements in C by O’s. We then have an array of
the type discussed above, using k + 1 instead of k. If IT] < m, by Lemma 7.2, the array
contains a long row and hence a string of weight k + 1. Such a string corresponds in
the (k + 1)-scatter to an antichain in F with at least k+l elements in C. But C is a
k-path and contains no antichain of size k + 1. This contradiction forces m =< TI, as
claimed.

From the claim, we have m_<-ISl-g-Ifl-g-d. This, combined with the
previously derived inequality, completes the proof.

It follows from the proof of Theorem 7.1 and the Marriage theorem (cf. [1, Thm.
6.25]) that the rows of a (k + 1)-scatter can always be matched into the set $ as defined
in the proof. That is, if a (k + 1)-scatter Xhas m rows, we can find m distinct elements
sl, s2, ", Sm in S such that si occurs in row of X for 1 =< =< m.

Theorem 7.1 provides a row version of Theorem 5.1. To obtain a row version
of Theorem 5.2, we could define the source of a k-scatter in the same way in which
we defined a source for a k-matching. We can also order the maximum-sized sources
as before. It can easily be seen that, if the sources of all k-scatters form the independent
sets of a.matroid, we can imitate the proof of Theorem 5.2 and show that the entries
in rows k through AI(F) in Y(F) make up the minimum maximum-sized k-source.

However, it is possible that the sources are not the independent sets of a matroid.
For example, the poset shown in Figure 3 has the 2-sources {2, 4, 6} and {2, 3, 5, 6},
but the former cannot be extended to a 2-source of size 4.

4 5 6

2 3

FIG. 3

In the above example, the analogue of Theorem 5.2 holds, despite the failure of
the independent set criterion. In general, however, the analogue fails, as with the
poset shown in Fig. 4. The entries in rows 4 and 5 of Y(F) are {4, 7}, but the only
maximum-sized 4-source is {6, 7}. Empirical evidence suggests that, if a poset is
"properly" labeled, the analogue does hold, but we are unable to conjecture precisely
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6 5 7

2

3 4

FIG. 4

what "properly" means in this case. Perhaps it would be best to simply look for a
"correct" row version of Theorem 5.2.
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EXPECTED NUMBER OF VERTICES OF A
RANDOM CONVEX POLYHEDRON*

D. G. KELLY," AND J. W. TOLLE

Abstract. Given m points on the unit sphere in n-space, the hyperplanes tangent to the sphere at the
given points bound a convex polyhedron with rn facets. If the points are chosen independently at random
from the uniform distribution on the sphere, the number V,,, of the vertices of the polyhedron is a random
variable. We obtain an integral expression for EVm, and asymptotic bounds of the form

/otnn (n-6)/2m <-- EVmn <-- inn (n-5)/2m.

1. Introduction. This paper deals with random convex polyhedra having rn facets
in n-dimensional Euclidean space Rn. We define the term "random m x n polyhedron"
(omitting "convex" throughout the paper) by the following chance experiment: choose
m points Pl, P2,’", P, independently from the uniform distribution on the unit
sphere Sn-1 in In; at each pi, construct the hyperplane tangent to S,-1 at pi and let
D be the half-space bounded by this hyperplane and containing the origin; let P be
the polyhedron f’)i"=l Di. The random polyhedron P has, with probability one, m
facets; the number of its vertices is a random variable V,,,.

In this paper, we derive the integral expression (3.3) for the expected value EV,,
of this random variable, the upper bound (4.1) and consequent asymptotic upper
bound (4.2) on this expression, and also the asymptotic lower bounds (4.7) and (4.8).
The asymptotic results can be summarized by saying that there exist constants a and
/3 independent of m and n such that, for any sufficiently large fixed value of n, as rn
increases we have eventually

(n-6)/2m n(n-5)/2a n <EV,,,n<-fl m.

In the concluding section, we give some of the values of EVm,, for moderate m and
n, computed numerically from (3.3), and we compare these to known upper and lower
bounds on the possible number of vertices of an rn n polytope.

This study is motivated by attempts to investigate average-case behavior of
pivoting algorithms for linear programming problems. Because of the difficulty of
analyzing directly the number S of pivots needed for a random problem, it seems
useful to consider other quantities associated with linear programs and related to S.
Quantities that come to mind in this connection are the number V of vertices (basic
feasible solutions) and the number F of facets (effective constraints) of the feasible
region of a random linear program, which is a random polyhedron. The probability
distribution on polyhedra induced by the chance experiment described above guaran-
tees that F will have a given value m; we are then finding a certain conditional
expected value of V given F m. It is conditional on other assumptions as well,
however, for our random polyhedra are all circumscribed on the unit sphere, and
many combinatorial types of polyhedra cannot be realized as polyhedra so circum-
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scribed. Experiments like those in [2] may yet show, however, that polyhedra as
generated here represent a statistically large and typical class of polyhedra. In [2], a
more general scheme for generating random polyhedra is considered, in which the
points li are chosen from various different distributions on R rather than the uniform
distribution on the unit sphere. (The hyperplane at li is then not tangent to the unit
sphere in general, but is the hyperplane through li and orthogonal to the vector from
the origin to 1.) Other authors, notably Renyi and Sulanke [9], W. Schmidt [10], and
Mattheiss and B. Schmidt [6], have considered random polyhedra from various
viewpoints.

The reader is referred also to the paper of A. Pr6.kopa [8], in which he finds
expected numbers of vertices for random polyhedra generated in a manner different
from that used here. It will be noticed that the expected values found there are much
smaller than those obtained here; indeed, for any fixed value of n they approach zero
as m increases. The reason is that Pr6kopa’s method of generating random polyhedra
produces the empty polyhedron (which has no vertices) with high probability
(approaching 1 as m increases).

2. Formulation. Given an n-vector a and a real number b, the inequality a’x-<_ b
defines a half-space n with bounding hyperplane H {x: arx b}. The nonempty
intersection of a finite number, say k, of such half-spaces defines a polyhedron in "with at most k facets. A random polyhedron is a polyhedron generated by choosing
the k n-vectors a,..., ak and the k real numbers b,..., bk from some probability
distribution. Obviously the structure of random polyhedra will depend on the choice
of the probability distribution from which the data are drawn. For examples of certain
distribution schemes, the reader is referred to [2], [4].

In this paper, it is desired to consider only random polyhedra in " with a fixed
number m of facets. The general scheme given above for generating polyhedra will
lead to redundant constraints, especially in the case where k is large relative to n.
This difficulty can be avoided if bl,’ bk are chosen as appropriate functions of the
al," ak. In particular, if each b satisfies

(2.1) bi lal a
i=1

then the random polyhedror: generated by the vectors al,"’, a,, is circumscribed
about the unit sphere S,-1 and has exactly rn facets. The facet corresponding to aj
lies in the hyperplane {x" afx= and is tangent to S,_1 at pj- The
polyhedron is thus completely determined by the unit vectors 1,’", 1,,. Con-
sequently, an alternative generating scheme for this type of random polyhedron is to
choose the vectors p,..., p, from some distribution on S,_.

Of special interest here will be the case where 1,’ ",P,,, are independently and
uniformly distributed on Sn_l. As is well known [3], this choice of the tangent points
can be effected by choosing the components of the vectors a, j 1,.. , m, indepen-
dently from the standard normal distribution on the real line and the bi according to
(2.1).

Let l,’" ’, l, be independent and identically distributed points on S_. As
discussed above, these points determine a unique polyhedron in , containing S,_
and having exactly m facets. Let V,,(pl,’’’, p,,) denote the number of vertices of
this polyhedron. The function V,,, is a random variable on the space of m-tuples of
n-vectors, with values in the non-negative integers. The purpose of this paper is to
investigate the expected value of V,n, specifically when the pi have the uniform
distribution on S_.
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3. Integral expression for EVm,,. Fix integers m and n, 2=<n <m, and let
pl, ’, p., be independent random points chosen from some distribution with density
g(p) on S._1. Let Hi be the hyperplane tangent to S.-1 at pi, 1,..., n, and let
P(Pl,’"", P,.) be the polytope bounded by H,..., H.,. Then, with probability 1,
any n of H1, , H., intersect in a point of 0"; there are (’) such points of intersection,
among which are the vertices of P(pl, ", p.,).

Denote by M,.,, the family of all n-subsets of {1,2,...,m}. For any A=
{i,. , i.} M,.., let VA be the event that the point of intersection of Hi1," , Hi. is
a vertex of P(p, , p.,). Then V.,. is the sum of the indicator functions of the events
VA, and so

EV.,/1= Z Pr(VA).

Because the Pi are identically distributed, we have by symmetry

EV.,,, =(m)Pr (V),
n

where V,, denotes V{,....,,}.
Now, with probability 1, pl,..., p. lie on a unique small hypercircle on

which divides S._ into two unequal caps. Let C(p,..., p/l) be the smaller of these
two caps. Then V. occurs if and only if none of p./l,"" ", Pm is in C(pl," "’,

Given p,. ., p., therefore, the conditional probability of V. is

(Pr (v.lpl,..., p.) \1- g(p) dp
(pl,’",p.)

To get Pr(V,), we multiply by the joint density of Pl," Pn and integrate; thus

(m) Is Is(3.1) EV,,/1 h (p). dpl dp/1,
n m--1 rn--1

where

h (P) (1 Ic(p,....,p.,) g(p) dp) g(pl)

Now we assume that the common distribution of Pl,’", P/1 is the uniform
distribution on S,,-1. In this case,

areaof C(p,. ., p.)_ I,-2(r)
g(P) dp

(Pl,’",Pn) area of Sn--1 2I,,_2(r/2)’

where r= r(pl, , p.) is the angular radius of C(p1, ", p,,), O< r <zr, and where

I(r)= sinxdx, 0<r<5-, k=0,1,2,.’.,

so that 2r(//I(r)/F(1/2(k + 1)) is the area of a cap of angular radius r on &/l. Thus
(3.1) can be rewritten

(m) ( /.-2(r) ."-"EV.,,,= E 1-
n 2I,,_2(7r/2)1

where the random variable r is the radius of C(pl, ", p/l).
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Now it follows from results of R. A. Miles [7, Thm. 4, p. 368] that sin2r has
the beta (1/2(n 1)2, 1/2) distribution whose density is proportional to <<’-12/2>-1 (1 t)-1/2

on (0, 1). From this, it follows that the density of r is ’n<n-2>(r), where

and

fk(r) c(k) sink r, 0<r<gzr,

2r(1/2k + 1)
(3.2) c() r(1/2)r(1/2 +1/2), =0, , 2,. .
Notice that

2 2.4 k
k=2,4,6,...,

zr 1.3 (k- 1)’
c(k)

1.3 k
k=3,5,7,....

2.4 (k- 1)’

Moreover, the distribution function of the density fk is

Ik(r)
Fk (r)

Ik (1/2) 0 < r <

Using the above notation, we obtain the expression

(3.3) Eg,n (m) f/2(1-1/2F,,_2(r))m-f(_2, (r) dr.
II JO

Although we will not use it, the following alternative expression may be of interest.
If Bk and bk denote the distribution function and density of the beta(El-k, 1/2) distribution,
then the substitution sin2r in (3.3) gives

EV.. (1-1/2Bn_(t))’-"b(_l(t) dr.
n

4. Upper and lower Iounds. The evaluation of (3.3) is not difficult in case n is
2or3:

"n’/2 -2

EV.9. (7) f (1-) --2dr=m(1 (1/2)’-)
,0 77"

and

EVm3 (m) fo (1 2x-(1 cos r))m-3" sin3 r dr

2m 4- (2x-)"-l(m + 1)(m -2).

Notice that a bounded polyhedron (polytope) with m facets in R2 has m vertices;
in R3, is has 2m 4 vertices (because of Euler’s formula and because, with probability
1, each vertex is adjacent to three edges). The above expected values are less than
these numbers because of the positive probability that a polyhedron is unbounded,
i.e., that Pl,"" ", P,, all lie in one semicircle or hemisphere. Indeed, because m and
m- 1 are the only possible values of Vm2, the latter occurring only when pl,""",

lie in a semicircle, the above expected value implies the well known value of m(1/2)"-1
for the probability of this event.
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The above calculations suggest that, for fixed n, EV,,, is asymptotically of the
form K,m. This section is devoted to finding upper and lower bounds on EV,,,, which
establish this asymptotic growth rate and bound the growth of K, for large n.
(Unfortunately, the tempting conjecture that K, n- 1 is false" K, is approximately
of order (fin)n as we have noted.)

First, we will establish an upper bound by showing that, for 2 <-n < m,

(4.1)

where

EV,,,,,<=A,,m(1-B.,,,),

A. =c(nZ-2n)( 2 i’"-x,] (n 1)"-3

c(n -2 n

"- m 1 (c(n -2)’ i.

Before proceeding, we remark that B,,, is negligible"

B,,,, < 1+
m-1

and since (c(n 2)/(n 1))< when n _->3, B,,, <__ (),-1.
We observe also that Wallis’s formula [1, p. 238], viz.

implies

and

r( + 1 -d+

c(n 2n /-/ 7r n

asa ->,

Thus

)n/2(2zr (n-5)/2A, 1/4n
7re

and so if m > n, then asymptotically as n ,
(2"rr)"/2 (n-5)/2(4.2) EV.,. N 1/4 n
e

m.

The proof of (4.1) begins with (3.3), which says that

(m)(4.3) EV,.. c(n2-2n)Tn_2.m-n..(n_2)
n

where

(4.4) T/.k., f (1-1/2Fi(r)) k sinlrdr.
,0
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If _-> ] + 1, an integration by parts using

yields

2
U slnl-ir," dv (1--1/2Fi(r))k(--1/2c(]) sin r) dr

and hence

-2 1 ()k+l 2 l--Jlo’/2c(]) k + 1 - c(]) k + 1
(1 1/2Fi(r)) k+l sin’-i-lr cos r dr,

2 1 /1k+ 2 l-j
(4.5) Tl’kl -) + Tjk+l,l-]-I for I>1+1c(])k+l c(])k+l

Iterating (4.5) gives, for >- v(] + 1),

(4.6)

2 1 ()c(/) k + 1

,=2 ((])) i(l-’,(l-2’-1,’’’-0--2-)::(1-{i1,’-(i-2,,()
+

(k + 1)(k + 2).. (k + v)
T,/,_(/.

In particular, this is valid for/" n- 2, k m- n, n(n- 2), and v n- 2. In this
case, for 2, 3,. , n -2 we have

(l-])(l-2]-l). (l-(i-1)]-(i-2))

[(n 1)(n 2)][(n 1)(n 3)]... [(n 1)(n i)]

(n 1)’-
(n -2)!

(n-i-l)!’

and also by a simple integration,

Ti,k+,,l_v(i+l) Tn_2,m_Z,n_2
.rr/2

lF I1"m-2(1 . n-2, )1 sin"-2 r dr
.0

2 1
=(1 (1/2)-’).
c(n-2) m-1

Putting the two expressions above into (4.6) yields

2 ))"-l(n-2)l(m-n)!Tn-2,m-n,n(n-2)
c(n-2 (m- 1)!

(n- 1)"-2

_nl( 2 )i (n--2)!(m--n)!
i=a c(n-2) (n-i--1)!(m--n+i)!

(n 1)i-x() m-"+/.

Multiplying by c(n2-2n)(’) gives an upper bound on EV,,,; simplifying and letting
the sum run over n 1 then gives (4.1).
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Next we show that, for any n >-2 and e (0, 1),

(4.7) EV,,,, >
d((n 1)2) 2"-1e"
d(n 1)"-x n !e --i

(n asymptotically as m -,where
F 1. +

d(I)=F,,F,t) t + 1)

Before proceeding, we notice that Wallis’s formula implies

d(]) 42/r] as j o.

This and Stirling’s formula provide that

d((n-1)2) 2"-1"e
,,-1 (n 1)"-1(2zr)"-l)/2e"n"-6)/2 as n -.

Therefore, for fixed large n, (4.7) implies that for any e (0, 1) we have, asymptotically
as

(4.8) Em,V>
(2zr)("-1)/2

8 nn (n-6)/2m.

’tr),To prove (4.7), we begin again with (3 3). For any a (0,

EV,,, >= (1 1/2F,-z(a ))"-"f,,-2)(r) dr
n

(4.9)

m) (1 1/2F,,_2(a ))"-"F.(.-2)(a).
n

It can be checked that, for 0 _-<

Fk(a) COS a(d(k + 1) sink+l a + d(k + 3) sink+3 a +. .)

by writing Fk (a) as incomplete beta function (through the substitution s sin2 r) and
then using a series expansion like that in [1, p. 944]. Moreover, d(O)>=.d(1)>=d(2)>=... Therefore,

1 F,-2(a) > 1 - cos a(d(n 1)(sin"-la + sin"+la + ...))

d(n 1)sin"-1

and

2 cos a

F.(.-z)(a)>-d((n 1)) cos

for any r (0, 1).

So, writing r for sin a, we have

EV,.. >- (m) d (n -1)2)r("-1)2/i +72(1n

d(n 1) 7""-1 m-.
Let e be an arbitrary number in (0, 1); then we have

(m) _1)2e( d(n- 1)EV,,,, _-> d ((n 1)2)’/’(n 1 r
n 2e

if0<e<l and0<r<x/1-e 2.
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If we now write tr for (d(n 1)/2e) z"-1, then this inequality becomes

EV,,,, -> d((n 1)2)
n d(n-1)]

n-1

if 0<e <1 and 0<o-<
d(n- 1)
2

(1_ e2)(n-l)/2"

Notice that the value of tr maximizing the right side of the above inequality is
2)(n-1)/2(n-1)/(m-1). So if (n-1)/(m-1)<(d(n-1)/2e)(1-e then

(nm__) d((n-1)2
.-1EV,.,,,, >-

d (n 1)"-12 e \rn 11
1

Since () ->_ m(m n)"-l/n !,

d((n 1)2) 2"-1 "( n-11)"-"e
1- (n-l)"-1

d(n 1)"-1 n! m-
and (4.7) follows from this.

5. Comparison with known extreme values. The values of EV,, can be compared
to the maximum and minimum numbers of vertices for an n-dimensional polyhedron
with m facets. For bounded polyhedra, these numbers are (Klee [5]):

max V,,n

min V,,,,=(rn-n)(n-1)+2.

For unbounded polyhedra, the minimum is significantly smaller, namely m-n + 1.
However, for our generation method, the probability that a random polyhedron is
bounded is greater than 1/2 when rn > 2n and, for any fixed value of n, increases rapidly
with rn [6]. For the choices of m and n in the tables below, the larger minimum
provides a better comparison.

Unfortunately, the integral formula (3.3) for EV,.,,,, is difficult to evaluate numeri-
cally, even for moderate rn and n. Therefore, the larger values of EV,,,,., in the
accompanying tables may be somewhat inaccurate and should be taken to indicate
the order of magnitude of EV,,,, rather than the precise value. The numerical integra-
tion was done by means of Gaussian quadrature routine.

In Tables 1 and 2, values of EV,,.,,, are given with n fixed at 4 and 7, respectively.
The essential asymptotic linearity in m, predicted by the estimates (4.2) and (4.8), is
evident. Note that the maximum number of vertices has the asymptotic growth
max V,,,,, m n/2 for fixed n.

In Tables 3 and 4, values of EV,, when m 2n and m 5n are given as n varies
between 2 and 15. These figures illustrate the rapid increase of EV,, with n, although
the increase is slower than that of max V,,,. Asymptotic estimates of EV,,,, as n c
for various fixed rates of growth of rn as a function of n would provide greater insight
into the structure of randomly generated polyhedra.
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TABLE
Values for the case n 4

m min Vm4 EVA4 max Vm4

10 20 25 35
20 50 79 170
30 80 137 405
40 110 197 740
50 140 259 1175

100 290 574 4850
110 320 638 5885
120 350 703 7020
130 380 767 8255
140 410 832 9590
150 440 897 11025

500 1490 3204 124250
510 1520 3271 129285
520 1550 3337 134420
530 1580 3404 139655
540 1610 3470 144990
550 1640 3537 150425

1000 2990 6540 498500
1010 3020 6607 508535
1020 3050 6674 518670
1030 3080 6741 528905
1040 3110 6808 539240
1050 3140 6875 549675

TABLE 2
Values ]’or the case n 7

20 80 658 1120
30 140 2040 5200
40 200 4033 14280
50 260 6518 30360

100 560 23982 285760
110 620 28205 385840
120 680 32614 506920
130 740 37193 651000
140 800 41926 820080
150 860 46802 1016160

m min Vm7 EVA7 max V,,,7
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TABLE 3
Values ]:or the case m 2n

n m min V,,, EV,,, max Vm

2 4 4 3.5 4
3 6 8 7.1 8
4 8 14 15.5 20
5 10 22 35 42
6 12 32 79 112
7 14 44 180 240
8 16 58 416 660
9 18 74 966 1430

10 20 92 2251 4004
11 22 112 5267 8736
12 24 134 12359 24752
13 26 158 29080 54264
14 28 184 68581 155040
15 30 212 162073 341088

TABLE 4
Values ]’or the case m 5n (rounded to 3 significant digits)

n m min Vm,, EV,,,,, max V,,,,,

2 10 10 10 10
3 15 26 26 26
4 20 50 79 170
5 25 82 258 462
6 30 122 867 3250
7 35 170 2970 8990
8 40 226 10300 65500
9 45 290 36000 183000
10 50 362 127000 1360000
11 55 446 450000 3810000
12 60 530 1600000 34400000
13 65 626 5730000 80900000
14 70 730 20600000 615000000
15 75 842 74000000 1740000000
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WEIGHT ENUMERATORS OF SELF-ORTHOGONAL CODES OVER GF(3)*

c. L. MALLOWS AND N. J. A. SLOANE"

Abstract. The Hamming and complete weight enumerators of maximally self-orthogonal codes over
GF(3) of lengths 12m 1, 12m and 12rn + are characterized. The results for length 12rn + are believed to
be new, while those for length 12m- and 12m have been considerably simplified.

1. Introduction. Professor Marshall Hall, Jr., recently pointed out to us (in
connection with his work on the hypothetical projective plane of order twelve) that
there is an omission in [6]: the maximally self-orthogonal ternary codes of length
12m + 1 are not mentioned. An important example of this class is the dual of the code
generated by the incidence matrix of the projective plane of order 3, denoted by p13 in
[1] and [10]. In fact it is incorrect to say (as we do in [6, p.655]) that if C is a maximally
self-orthogonal In, 1/2(n 1)] code over GF(3) with 1 C+/- then the extended code (C+/-)+
is self-dual and n is congruent to -1 modulo 12. We shall see that the correct conclusion
is that either n ---l(mod 12) and (C+/-)/ is self-dual, or n +l(mod 12) and (C-)/ is not
self-dual. The present paper gives the weight enumerators for the missing case. While
determining these we were able to considerably simplify the weight enumerators in the
case n -l(mod 12) and also when C itself is self-dual and n -=0 (mod 12). One might
say that this is an error-correcting paper.

2. Weight enumerators. Let C be a code of length n and dimension k over GF(3).
The complete weight enumerator (cwe) of C is

Ec (x, y, z) Z x"()y"()z

where hi(U) is the number of components of u that are congruent to modulo 3. The
ordinary or Hamming weight enumerator of C is

We(x, y)= Ec(x, y, y).

From the MacWilliams theorem the complete weight enumerator of the dual code C- is
given by

(1) EC X y, Z) k Ec X "[" y -Jr" Z, X "Jr" (.Oy dr" O.)
2
Z X + t02y h- toz),

where to e 2’i/3 (see [4], [6]).
A code C is called self-orthogonal if C

_
C+/- and self-dual if C C+/-. The

maximum dimension of a self-orthogonal code of length n is 1/2n if n 0 (mod 4), 1/2(n 2)
if n---2 (mod 4), and (n- 1) if n is odd (see [8], [9]). We wish to characterize the
Hamming and complete weight enumerators of self-orthogonal codes of maximal
dimension. However our method will only work when we can express the cwe of C+/-

in
terms of the cwe of C. There are two general cases when we can do this:

(i) when C is self-dual, so that

(2) Ec-(X, y, z)= Ec(x, y, z),

* Received by the editors October 27, 1980.

" Bell Laboratories, Murray Hill, New Jersey 07974.
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(ii) when C is maximally self-orthogonal of odd length and the all-ones vector 1 is
in C+/- but not in C.
In case (ii) we have

dim C+/-
dim C + 1 =1/2(n + 1),

which implies

(3) C+/- C J (l + C) l,J (2 + C)

and

(4) Ec-(x, y, z) Ec(x, y, z) + Ec(y, z, x) + Ec(z, x, y)

(since the cwe of 1 + C is Ec(y, z, x), etc.).
In case (i) the length must be a multiple of 4, and if we make the additional

assumption that the all-ones vector is in C then n ---0 (mod 12). Without this assump-
tion the results are far more complicated (see [6]). In case (ii) it is a consequence of
Theorem 3 below that n -= + 1 (mod 12). If n 1 we can add an overall parity check to
C+/- so as to make C- self-dual, but if n --+ 1 (mod 12) this is impossible.

In order to describe the weight enumerators of these codes we introduce the
following polynomials. We apologize for the length of this, but it is essential for our
method that we work with homogeneous polynomials in six variables. As far as possible
we use the same notation as [6].

First the polynomials in x, y, z"

3 3 3a =x +y +z

f X2y + yzZ + Z2X,
2 2 2g xy + yz + zx

p 3xyz,

t4 X (X 3 -1" 8 y3),

4 Y(X 3 y3),

4 x(y3-- Z3),
b x3y 3 .-I-. y3z3 .if- z3x 3,

B6=a2-12b
6 y6 6 3y3 3Z3 3),=x + +z -lO(x +y +z3x

07 X(2X6-7y6-7Z6+7x3y3+7x3Z3-56y3Z3),
7r9 (X 3 y 3)(y 3 Z3)(Z 3 X3),

ot l2 a (a3 + 8p3)

,,) ) ,3)(3)
12

X
9 3 X6y6 6 3 3=Y.x +4 y +6 +228Y. x y z,

7"13 Xy6(X3- y3)(2X3 -b y3).



454 C. L. MALLOWS AND N. J. A. SLOANE

The second set are polynomials in u, v, w, x, y, z"

A2 ux + vy + wz,

"’5 ux(y3-- Z3) + I)Y(Z3-- X3) + WZ(X3-- y3),

Y8 ux(2x6- 7Y6- 7z6 + 7x3y 3 + 7x3z3- 56y3z 3)
+ vy(2y6- 7z6- 7x6 + 7y3z 3 + 7x3y3- 56x3z 3)
+ wz(2z6-7x6-7y6+7x3z 3 +7y3z3-56X3y3).

Note that

7’/’9 g3 f3,
243r13 xO] 37xb43 -1/2/36o7 [y=z,

:4-- Zs(u 1, v w --0),

o7 Y8(u 1, v w 0).

We can now state our results.
THEOREM 1 (Complete weight enumerator). If C C+/- and 1 C, then n =-0

(mod 12) and

Ec(x, y, z) R f167rR,(5)

where
4R C[, o12, 7/’9 ].

In other words the cwe ofCcan be written uniquely as a polynomial in fl, a 12 andr, plus
[67"1" times another such polynomial.

COROLLARY 2 (Hamming weight enumerator--Gleason [3]). With the same
hypotheses as Theorem 1,

(6) Wc(x, y) C[O], b43].

THEOREM 3 (Complete weight enumerator)./f C c C-, 1 C-\C, and dim C+/-

dim C + 1 then n +/- 1 (mod 12).
(a) ff n 12m + 1 then

(7) Ec(x, y, z) xR t607R )4"n’9R O)077rR xf167rR sc46"n’93R,
where R is defined in Theorem 1.

(b) If n 12m 1 then

(8) Ec(x, y, z) ft. IER -66R -’6"n’R 6#97r9R 3
7’/’9/’9 )67r92ff 12R

where the bar denotes partial differentiation with respect to x.
COROLLARY 4 (Hamming weight enumerator). With the same hypotheses as

Theorem 3,
(a) if n 12m + 1 then

(9) W(x, y) xC[034, 6]c[,4, 4],
and

(b) if n 12m 1 then

(10) Wo(x, y) t/4,42 C[443, t43 ])t442 C[/t43, t43 ].
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Extremal weight enumerators. Let us consider the extremal weight enumerators
(as defined in [5] and [7]) corresponding to Theorem 3(a) and Corollary 4(a). The first
nontrivial ength is 13, and for simplicity we begin with the Hamming weight enumera-
tor. By Corollary 4(a) the Hamming weight enumerator of any [13, 6] self-orthogonal
code (with 1 in the dual code) has the form

(11) W(x, y) cxg,] + cx64 +c.

for appropriate constants cl, C2, 173. Suppose these constants are chosen so that the
minimum weight of the corresponding code (if there is one) is as large as possible. We
obtain

W(x, y)= xO43 24xb43 132’x3
13 9=x +572x4y +156xy

W* (say).

12

Since W* has nonnegative integral coefficients, it could indeed be the weight enumera-
tor of some [13, 6] code C* with minimum weight 9. On the other hand from Theorem
3(a) the complete weight enumerator of C* has the form

(12) Ec.(X, y, z) blxfl + b2x12 4- b311607 4- b44"/r9

for appropriate constants b. The condition that C* has minimum weight 9 determines
the b uniquely and we find

Ec*(X y, Z) X
13

4- 286X4(y6Z 3 + y3Z6)
286 6 6---x(yl2+ Z2)+-2--x(y9z 3 + y3zg) +-5-xy Z

Since this does not have nonnegative integral coefficients, C* does not exist.
In this case we already knew from the enumeration in [1] that the highest minimum

weight attainable is 6, and furthermore that there is a unique code with minimum weight
6, namely the projective plane code p3 mentioned in 1. For this code

Wpl3(X, Y) X
13

_
156x7y6 + 494x4y9 + 78xy x2

(13)
X43 24xb34 54z13,

and

(14)
Epl3(X y, Z) X

13 4- 156X7y3Z 3
4- 13X4(y9

4- 18y6Z 3
4- 18y3Z 6

4- Z9) 4- 78Xy6Z6

17X62 4- ’XO12 4- -607 4- 3:4"rr9
(which are of the forms (11) and (12)). Although the extremal weight enumerators did
not tell us anything new in this example, it is nevertheless interesting to find a situation
where the cwe leads to a contradiction not apparent from the Hamming weight
enumerator.

For codes of greater length the extremal cwe will probably always contain a
negative coefficient (compare [5] and [7]).

Relationship with [6]. The basis for cwe’s given in Theorem 1 is simpler than that
given in [6, Thm. 1]. The old basis is expressed in terms of the new one by

3 3 2
’18 --6 4- ’6012 4- 216r9,
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and

256t36 --f166 + 6/46012 9/3a2 + 4a 32
+ 864/zr92 2592/6-rra x2 1866245r.

The syzygy 3/9‘x8 tx 2 -64836 has been replaced by the trivial identity

3. The proofs.
Proof of Theorem 1. Since this is parallel to the proofs given in [11] and [12] our

treatment will be brief. Suppose C is a self-dual code of length n 12m containing 1.
Let G be the subgroup of GL(3, C) of order 2952 generated by the matrices

and all 3 3 permutation matrices. The matrices in G are listed below, in the proof of
Lemma 6. In [11] and [12] it is shown that the cwe Ec(X, y, z) is invariant under G. If an
denotes the number of linearly independent homogeneous invariants for G of degree n,
it is also shown in [11] and [12] that the Molien series Y.n=o anA is equal to

1 -I-A 24
(15)

(1--A 12)2(1 A 36)"

To find a basis for the invariants we proceed as follows. Let s e
of M we have

2i/12. Under the action

M M 3 3 M 2g
M 3[6 ---> --16, O 12 -"> O 12, X y --> S (f-- (.O "--> (Z 3

X ),

3 3 MS3 M
3)y-z --, (/-g)--(y-z 3 3 M M

3).Z X --’> S7(f- tog) --> (x 3 y

Therefore

7r9 (x 3 y3)(y3 z3)(z 3 x 3) g3_f3
M
---> i’rr9.

All of 6, "/7’9 and a 12 are invariant under J, and the permutations fix 6 and a 12 and send
zr9 to +rg. Thus/3, a2,/36zr9 and r are indeed invariant under G. It only remains to
show that/3, a 12 and 7r94 (or equivalently/36, a 12 and zrg) are algebraically independent.
This is verified by computing the Jacobian of/36, a x2 and zrg, which is

-2592x2y2z2+....
Since this does not vanish, the polynomials are indeed algebraically independent [2,
Thm. 2.3]. Therefore the ring of invariants of G has the form shown on the right-hand
side of (5). This completes the proof of Theorem 1.

Proof of Corollary 2. We set y z in Theorem 1, making zr9 vanish, and then
replace/326 and a a2 by the equivalent but simpler pair q,] and b34.

(n-1)] self-orthogonal code withProof of Theorem 3. Suppose C is an In,
1 C+/-\ C. This implies that the ewe of C is a polynomial in x, y3 and z 3, and also satisfies
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(4). From the MacWilliams identity (1) we have
2 2MEc(x,y,z)=3-/Ec(X+y+z,x+toy+to y,x+to y+toz)

(16) 3-1/2Ecx(X, y, z)

3-1/2{Ec(X, y, z)+Ec(y, z, x)+Ec(Z, x, y)},

using (4). Also

(17)

M El+c(X, y, z) M Ec(y, z, x)
23-’/2Ec(X + toy + to2z, x + to y + toz, x + y + z)

23-1/2Ec+/-(X, toy, to z) (from (16))
2 23-1/2{Ec(x, toy, to2z)+Ec(toy, to z, x)+Ec(to z, x, toy)}

2n3-1/2{Ec(X, y,z)+to"Ec(y,z,x)+to Ec(Z,X, y)},

where in the last step we used the fact that no(u)=-n (mod 3) and nx(u)--n2(ll)----0
(mod 3) for all u e C. Similarly,

(18) MoEc(z,x, y)=3-/E{Ec(x, y,z)+to2"Ec(y,z,x)+tonEc(z,x, y)}.

Since n is odd we have to consider the possibilities n --:el, +3 and +5 (mod 12).
Case 1. n --+/-3 (mod 12). The last expressions in (16) and (17) are now identical,

implying Ec(x, y, z) Ec(y, z, x). Since C always contains 0, this implies that 1 C, a
contradiction. Thus n +/-3 (mod 12).

Case 2. n =-+1 or-5 (mod 12). Now (17) becomes

M Ec(y, z, x) 3-/2{Ec(x, y, z) + toEc(y, z, x) + to2Ec(z, x, y)}.

We introduce new indeterminates u, v, w and define

F(u, v, w, x, y, z) uEc(x, y, z)+vEc(y, z, x)+ wEe(z, x, y).

Let G* denote the group of 6 x 6 matrices

of order 2592, whereA acts on the variables u, v, w andA acts on x, y, z. From (16), (17)
and (18) it follows that F is invariant under M* and thus under all of G*. (Compare the
proof of I-6, Thm. 9].) We indicate this by writing

(19) F(Au, Ax) F(u, x) all A G.

At this point we need the following analogue of [6, Thm. 8]. (The proof is
essentially the same and is omitted.)

THEOREM 5. Let G be any finite subgroup of GL(m, C), and let bd denote the set o]
all polynomials F(u, x) F(u, , u,, x, , x,) which are

(i) homogeneous of total degree d,
(ii) linear in the ui, and
(iii) satisfy (19).
Let a, denote the number ol linearly independent polynomials in dd. Then a

generating function ]’or the numbers ad is

A tr (A)
(20) , adA cl

d=0 ’ aG det (I- AA)’
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The next step is to compute the sum on the right-hand side of (20) for our group.
LEMMA 6. IfG is the subgroup ofGL(3, C) oforder 2592 defined at the beginning of

this section,

(21)

3‘ tr (A)
IGI det (I A)

A+A 13

---3‘
(1 X 12)3
a + 2A 13 + 2A 25 + a 37

(1 3‘ 12)2(1 3’ 36)

Proof. We know from [11] and [12] that there are (I) 1944 elements of G of the
form

and (II) 648 elements of the form

where 0 =< u =< 11, 0 =< a, b, c, d =< 2, e 1 or 3 and P is any 3 x 3 permutation matrix.
Instead of (20) we shall work out

1 tr (A) tr (3‘A)-1-adet (I 3,a) adet (!

(since G is a unitary group). Our strategy is to keep u 0 as long as possible, finally
summing over v by replacing 3, by 3,s and adding. For type (I) we can ignore c and d
(and just multiply the final sum by 9) since c can be combined with a and d with b in
both tr (3,A)-1 and det (/-3,A). The sum on a, b and e is equal to

2 2x//a + 6* + 43, + 33‘ 2 2x//a + 4* + 2x/a 3 + 23‘ 4

1 -b’3’ 6
q-

(1 -b3’2+3’4)(1--3’2-b3’ 4)

(1-3,2+3,4)(1 q--3, 6)

We replace 3, by 3,s and sum over u; to do this we put everything over powers of 1 3,12
and ignore all terms that are not powers of 3,12 (those not marked with an asterisk). This
gives

24 72 48 12(6+63,12+63,12+63,12)
1 3, 12 "+"

1 3,12
q-

1 3‘
..].2 -[-

(1 3,12)2

and multipling by 9 to account for the summation over c and d we find that the
contribution from the type (I) terms is

(22)
9. 144 108(6+83,12)
1 3,12 + (1 3,12)2
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Next we consider the type (II) terms. When P ! the sum on a and b gives

(23)
9 1+2h
A (1-h)(1-h3)2"

For

the contribution is

(24)

and for

we get

(25)

Finally

9 1
X (1 X)(1--/6)

0 or 1
0 0

(1-A3)(1-A 6) (twice).

P 0 and 1 0 0
0 0 1 0

have trace 0. Adding (23)-(25) we obtain

9 2+4h -2A2+2A 4

h (1-A)(1-A3)(1-A6)
and we sum over , as before, by multiplying top and bottom by (1 + A + A 2)(1 + A 3)2(1 +
/ 6)3, to get

9.12 12 24)(26) (1-12)3(6+36X +6X

The grand total is the sum of (22) and (26):

I+A 12

2596
(1 A I2)3.

We multiply by h 2/2596 to obtain (21). The final step is to multiply the top and bottom
by 1 + h 12+ h 24 to make the denominator agree with that of (15). This completes the
proof of Lemma 6.

Since only exponents of the form 12m + 1 appear in (21), we see that n cannot be of
the form 12m- 5. It remains to find a basis for the sets a defined in Theorem 5. We
compute

M M
.5 -Es, Y8 -Y8

and deduce the following theorem from (21).
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THEOREM 7. The solutions of (19) that are linear in u, v, w belong to

AER
Finally, setting u 1 and v w 0 in Theorem 7, we obtain (7) and thus prove

Theorem 3(a).
Case 3. n -1 or +5 (mod 12). Now F(u, v, w, x, y, z) is invariant under

G** {( );A G}.
The proof in this case is essentially given in [6, p. 657].

This completes the proof of theorem 3.
Proof of Corollary 4. We set y z in Theorem 3, making 4 and 9 vanish, and

replace B607 by
Remark. The Taylor series expansion of (21) is

m=0

Therefore the number of linearly independent homogeneous polynomials of degree
12m + 1 in the right-hand side of (7) is (m + 1). Similarly the number of degree 12m 1
in (8) is m (m + 1).

Aeknolegmens. We are grateful to Professor Marshall Hall Jr. for pointing out
the omission in [6] which led to this work. During this investigation we have made use of
two computer programs for symbolic manipulation: the MACSYMA system at the
Massachusetts Institute of Technology Laboratory for Computer Science, and the
ALTRAN system at the Bell Laboratories Murray Hill Computation Center.
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STRONG CONNECTIVITY IN DIRECTIONAL NEAREST-NEIGHBOR
GRAPHS*

B. E. FLINCHBAUGH" AND L. K. JONES

Abstract. A Directional Nearest-Neighbor graph is defined on a finite set of points in the plane by
drawing an arc from each pointX to its nearest neighbor in each of divisions of the plane relative to X. We
prove that Directional Nearest-Neighbor graphs having 4 are strongly connected.

1. Introduction. The problem of representing geographic information for
subsequent analysis by computer has motivated an interesting class of graphs which we
call directional nearest-neighbor graphs. Potential applications of the representation lie
in problems in forestry, dynamic monitoring of water table levels, and other environ-
mental studies requiring a representation of geographic locations together with rela-
tionships between those locations. We define Directional Nearest-Neighbor graphs,
prove a lemma asserting positive in-valence for all vertices and then prove strong
connectivity for an important subclass of the graphs.

2. Definitions. Let Ri (v) be the ith region of r equal divisions of the plane relative
to the point v, as in Fig. 1. Let ball (v, w) be the interior region of the circle with center v
and radius d (v, w), where d is the standard Euclidean metric. For v w, let dir(v, w) i,
where w eR (v). Define pie(v, w) to be the intersection ofR (v) and ball (v, w), where

dir(v, w). Then a Directional Nearest-Neighbor graph with r divisions of the plane
(DNNr) is a directed graph for which the vertex set V is a finite subset of 2 and the edge
set is E {(v, w)lv, w V and/! u V s.t. u pie(v, w)}.

FIG.

The following results are for DNNr graphs having r 4. However, the properties
also hold for DNN4k graphs, k > 0, since every DNN4k has a DNN4 as a subgraph.

3. Strong connectivity o| DNN4 graphs. Let D, denote a DNN4 graph having n
vertices and let v-(x) be the in-valence of a vertex x.

* Received by the editors March 25, 1981.
t Department of Computer and Information Science, Ohio State University, Columbus, Ohio 43210.
t Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, Massachusetts 02173.
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LEMMA. V-(X) > 0 for all x V(D.), n > 1.

Proof. Let D. be the smallest graph (with respect to n) containing a vertex p such
that v-(p)= 0. Then if any vertex is removed from D., the resulting D.-1 must have
v-(x) > 0 for all x V(D_1). Therefore, for every vertex xi p in V(D.), there must be
a vertex xc p such that (xc, xi E(D.) and (x, p) E(D. {xi }). That is, there must be
an edge (x, xi) that is "changed" to (x, p) when xi is removed. It will now be shown that
the existence of such an x leads to a contradiction by choosing a particular x,, namely
x.,, defined as follows.

LetM(x) max {Ix- component of x [, [y- component of xi 1} and let x,, be such that
M(x,,) is a maximum over all x, p in V(D,). Without loss of generality, assume that p
has coordinates (0, 0), that x,, (-u, -v), u, v > 0, and that v -> u, as illustrated in Fig. 2.
It will now be shown that xc cannot lie in any of the indicated regions.

m:(-u,-v)

p:(O,O)

FIG. 2

Region A1. x cannot lie in this region, since x,, has the maximum component in
any direction and, hence, in the y-direction.

Region A2. Any edge from an x in this region to x,, could not be changed to
(x, p) when x,, is removed, since x,, and p are not in the same R (x). Therefore, xc
cannot lie in this region.

Region A3. For any x in this region, pie(x, x,,) contains p. Hence edge (x, x,,)
would not be in D, and, therefore, x is not in Region A3.

Region A4. The argument for Region A2 also excludes xc from Region A4.
Region A5. Suppose x is in this region. Then x (-s, t), s, t > 0, as illustrated in

Fig. 3. Since (xc, x,,) E(D,), d (xc, x,,) < d (x, p) must be the case. Consider the
distance from x to x,,"

d(x,x,,)=((-s + u)2+(t +v)2)
((s 2 + 2) + (u 2 2su + v 2) + 2tv )1/2.

Since v is the maximum component, s _-< v, so that

u2-- 2SU +v2 >=u2-- 2vu -1--/)2-’-(U--/))220
and t, v>0 implies that 2tv>0. Therefore, d(x,x,,)>(s2+t2)l/2=d(xc, p). But
d(x, x,,)<d(x, p). Therefore x cannot lie in Region A5. Thus x does not exist,
contradicting the assumption v-(p)= 0. Hence, the lemma.
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Xc =(-S ’t)tl

Xm=(-u,-v)

(;p=(O,O)

FIG. 3

THEOREM. D, is strongly connected.
Proof. Let v w represent the existence of a directed path from v to w in D,, and

suppose D, is the smallest graph (with respect to n) that is not strongly connected (i.e.
x7cy for some x, yeV(D,)). Consider S={sV(D,)lx-s} and T=
{t e V(D)It-y}. It must be that S f’)T or else S and T would have at least one
vertex, u, in common such that x u and u y which would imply x yna contradic-
tion. Thus no edges are directed from S to T.

Now consider the removal of T, y, from D,. That such a vertex must exist
follows directly from the definition of T and the lemma. Since there are no edges from S
to T, pie(s, t) contains at least one other vertex, where s is an arbitrary element of S. Let
s’ be closest to s in pie(s, t). Then, by definition of an edge, (s, s ’) E(D,). Furthermore,
s’ is in S (since x ---s and s --s’ imply x s’). So can be removed from D, without
changing any edges directed from elements of S. Thus S contains exactly the same
vertices in D, -{t} as it did in D,. Of course, since y S, we have that x 7c y in D, -{t},
contradicting the assumption that D, is the smallest graph that is not strongly connec-
ted. Hence, the theorem, l-]
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THE RELIABILITY OF STANDBY SYSTEMS WITH A
FAULTY SWITCH*

T. DOWNS? AND P. K. W. CHAN"

Abstract. In this paper explicit expressions are derived for the reliability of standby systems with a faulty
switch. Three modes of switch malfunction are included, and the expressions apply to hot, warm and cold
standby. The expressions are derived by finding the exponential of the state transition matrix using
constituent matrices.

In order to increase the reliability of a unit within a system, standby redundancy is
often used. One or more redundant units are attached to the "basic" unit and, when the
basic unit fails, a redundant unit takes its place. Three types of standby redundancy are
usually distinguished. In a system with hot standby, the redundant units are fully
energized and are assumed to have the same failure distribution as the basic unit. Cold
standby units are not supplied with power and it is assumed that they do not fail. Warm
standby units are partially energized and, over any finite time interval, they have a
smaller probability of failure than the basic unit.

The action of replacement of a failed basic unit by one of the redundant units is
often carded out by an automatic switch. In practice, such switches are not perfectly
reliable. The problem of switching unreliability has been considered by Gnedenko et al.
[2]. They derived the Laplace transform for the reliability of a cold standby system
whose switch was subject to three modes of malfunction. They did not proceed to invert
the Laplace transform but pointed out that a "cumbersome sum of terms" would be
obtained. It is the purpose of this paper to show that by making minor modifications to
the switch model employed in [2] (these modifications being quite justifiable from a
practical point of view) a relatively simple analytic form for the reliability function can
be obtained, not only for the cold standby case but also for hot and warm standby.

The failure distributions of the basic and redundant units are assumed exponential
with parameters a and/z, respectively. In the case of hot standby/z a, for cold standby
/z 0, for warm standby 0 </z < a.

Three modes of switch malfunction are distinguished:
(i) Ordinary failure. When the switch fails ordinarily, it is unable to detect any

faults in the basic unit and thus fails to switch to the next redundant unit when required.
Such failures are assumed exponentially distributed with parameter y.

(ii) Clingingfailure. We assume that there is a probability 1-p that the switch can
detect a failure in the basic unit but is unable to switch in the next redundant unit.

(iii) False switching. In this mode, the switch replaces the basic unit by one of the
standbys when this is not required. We assume that the time between false switching is
exponential with parameter v.

The model employed in [2] allows clinging failure and false switching to take place
simultaneously. From a practical viewpoint, this seems a most unlikely combination and
is not allowed in our model. In addition, in [2] false switching was allowed to occurwhen
no further standby units were available. This possibility is also excluded from our
model. The failures of the units, as well as the various modes of switch malfunction, are

* Received by the editors December 6, 1978, and in final form March 24, 1980.
f Department of Electrical Engineering, University of Queensland, St. Lucia. Q. 4067, Australia.

Note that we are considering a rather simple form of warm standby. More generally, the parameters of
the standby units are not all the same.
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all assumed independent. Finally, we assume that a standby unit which fails is immedi-
ately removed from the system.2

Let n be the total number of identical redundant units. Let (i, w) denote the state in
which there are "good" redundant units and the switch is in working order and let (i, f)
denote the state in which there are "good" redundant units and the switch has suffered
an ordinary failure. The state transition diagram is given in Fig. 1. It is convenient to
number the system states such that state (n + l-k, w) is assigned the number k
(1 _-<k _-<n + 1), state (i, f) is numbered n + 2 and the failure state is numbered n + 3.

(n,w)
’+v,n,u =-(n-l,w) -,n-2,w "’" "(o w)

/
(FAI ED)

FIG. 1. State transition diagram

Let P_(t) be an (n +3)-dimensional row vector whose ith entry, pi(t), is the
probability that the system is in state at time t. The state equation describing the
process is

d
P(t)=P__(t)A.,

where .A is the (n + 3) x (n + 3) state transition matrix whose element aij(i #) is given
by

(2) aq lim
/|Pr [system changes from state to] in (t,t +6t)]/\

t-,o \ 3t !

and

(3) a, aq.

In our model, the transition matrix .A is given by

(4) ..5=
--(a + v + nix + y) ap + u + nl 0

0 -[a + v + (n 1)ix + y ap + v + (n
0 0 -[a +v +(n -2)/ +y]

0 y a(1-p)-
0 y a(1-p)
0 y a(1-p)

0 3’ { (l-p)
ap+,+t.t V a(1-p)

({ + y) y a

0 0 0

0 0 0

0 0 0

2 Note that this final assumption is not realistic in some practical situations.



466 T. DOWNS AND P. K. W. CHAN

If the initial state _P(O) is known, then _P(t) can be found from the state equation

(5) _P(t) _P(0) exp (.At).

All units are assumed to be working at time t 0, so that _P(0)= (1, 0, 0,. ., 0).
Hence to find _P(t) it is only necessary to find the first row of the matrix exp (.At). In
particular, F(t) the cumulative failure distribution function is equal to pn+a(t), and is
thus given by the (1, n + 3) element of exp (.At). Explicit expressions for F(t) are given
in the following theorems which are proved using a sequence of lemmas.

THEOREM 1. For a system with n identical warm or hot standby units, the failure
distribution F(t) is given by

n+2

(6) F(t) 1 + Y. Z,o exp (A,t),
i=1

where Ai is the ith eigenvalue of A. (equal to the ith diagonal element of A. ), i.e.,

f-[(n + 1-i)/x +a + v +/] for/=<n,
(7) A, -(a +,) for/=n+ 1,

for n + 2,

and the coefficient Zio is given by

(- 1)"-iap
(8) Z,o=(i_l)!(n_i)![(n_i+l)l+y+v

(9)

(10)

I-I {j + (ap + v /Ix } for <--_ n,
=1

#n-i +

Zn+l,0 0,

THEOREM 2. For a system with n cold standby units, the.failure distribution F(t) is

given by
n-1

(11) F(t)= 1+ Z Zliti e-X’-(l+Zlo) e-’’,
i=0

where

(12)

and

(13)

A =x +/x +Y

ap(ap +v)"-k k-1

Zl,n-k (n_k)[(.y+v)k X (olP-[-I)(Y+I)k-]-I for 1-<k_-<n.
]=0

Our approach to the proof of the above theorems is based upon the following
result, taken from Gantmacher [ 1].

For any functionf which is analytic at the eigenvalues h 1, h 2, As of the matrix.A,
the fundamental formula for f(.A) can be written as

(14) f(.A) . m--I
Z f(l)(Ak).Zkh

k=l /=0

where mk is the multiplicity of the eigenvalue Ak, f(l) is the/th derivative off with respect
to A, and the matrices .Zkl, known as the constituent matrices or the components of the
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matrix .A, are independent of the function f and depend exclusively on .A. In particular,
for f(A)= exp (At), exp (.At) is given by

(15) exp (_At)
-,k-1

exp (Akt)Z.k.
k=l /=0

LEMMA 1. For the matrix A. given in (4), let

(16) .M =.A +(a + v +(n -i)/x +3,)./.

Then the first row o the matrix

(17) .P .M03.1.M2 .Mi-2
for 2 <-_ <-- n 1 has only three nonzero entries, these being entries (1, i), (1, n + 2) and
(1, n +3).

Furthermore, the (1, i) entry is given by
i-2

(18) Pl, H lap + ), +(n -j)/x].
j=0

Proof. By multiplication, this is true for 3. We will now assume it to be true for
some other in the range (4 _-< _-< n 2) and show that such an assumption implies that it
is true for + 1.

Consider the postmultiplication of .P by .M-I. Note that .Mi-1 is upper triangular
and that in its ith row there are only three nonzero entries, in positions (i, + 1), (i, n + 2)
and (i, n + 3). This immediately implies that the first row of the matrix .P.M-I will have
only three nonzero entries, in positions (1, + 1), (1, n + 2) and (1, n + 3), as required.
Furthermore, since entry (i, + 1) of .M_ is equal to (ap + ), + (n + 1 i)lx), the lemma
follows, f-]

LEMMA 2. Column n + 3 of the matrix

(19)

]’or 1 <-i <-n- 1 has entries given by
n--i

ap[3,+a(1-p)] H (ap+v+rt.), l <-k <i,
r--1

(20)
qk,n+3

cp [c + n + 1) +3, +),] -i cw + v + rtx k
r=l

0, <k -<_n + 3.

Proof. By direct multiplication it can be shown that the lemma is true for n 1.
We will now assume it to be true for some other in the range 2 _-< _-< n 2 and show that
such an assumption implies that it is true for 1.

Consider the premultiplication of Q by.M_1. Denote by q/thejth colunm of Q and
by m__k the kth row of .Mi_ 1. In addition, denote the ith entry ofm__k by mk. Now note that
for 1 _--< k _-< 1, mk has only four nonzero entries, viz. rnk.k (k i)l, mk,k /1
ap + ), +(n -k + 1)/x, ink,n/2 3’ and ink,n+3 a(1--p). Thus postmultiplication of this
row by qn+3 gives, for k _-< i- 2,

n--i+l

mkq’+3=aP[3"+a(1--P)] H (ap+v+rl)
r=l

as required.



468 T. DOWNS AND P. K. W. CHAN

Furthermore, for k i- 1

m’--lqn +3 cp{[), +a (1-p)](-/x)
n--i

+[a + (n + l)tx + V + v][p + v + (n i)tx ]} I-I (tp + v + rtx
r=l

n--i+1

=ap[+(n-i+2)tx +3,+v] 1-I (ap+v+rtx),
r=l

as required. Now m has only three nonzero entries, viz. mi,i+l, mi,n+2 and mi,n+3 and
hence miqn+3 0. And since the entries of mkqn+3 are zero for k > by assumption, the
lemma is-proved. F1

We are now in a position to prove Theorem 1. For hot or warm standby systems,
the eigenvalues of the matrix .A are all distinct and hence (16) reduces to

n+3

(21) exp (.At)= E exp (A,t).Zio.
i=1

The constituent matrices .Zo may be computed by inserting in the fundamental
formula (15) appropriate trial functions f(A). Since only the (1, n + 3) element of
exp (.At) is required, it is only necessary to calculate the (1, n + 3) elements of the
matrices .Zio. In order to keep the notation simple, let Zio be the (1, n + 3) element of the
matrix .Zo. Then we have

n+3

(22) F(t)= E exp(A,t)Zo.
i=1

For zn+ 1,o, let the trial function f(A) be

n+3

[() 1-I (x + x,).
i=1
in+l

From the fundamental formula (15)
n+3

(23) .Z,,+,o H (/,-o-y) .Mo/.1....Mn_l[ +o!],x
i=1

i#n+l

=P.M.,_Q.

From Lemmas 1 and 2, the (1, n + 3) element of the matrix .P.M-IQ is zero, and
since the product on the left side of (23) is nonzero, z./ 1,0 must be equal to zero.

To find Zk0 for k _-< n, let the trial function f(A) be

n+3

(24) f(a)= 1-I (A+A,).
i=1

#k,n+l

Substitution into (15) gives

Z. ko=P.Ql{(i 1)!(n-i)!tx"-l[(n + 1-i)tx +v +3,][a +v+(n + 1- i)/x + 3’]}.

Using Lemmas (1) and (2), this yields (8).
The remaining zi0 (viz. zn +2,0 and zn+3,0) could be found by use of trial functions in a

simila fashion, but this is not necessary since consideration of (22) as - o shows that
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Z,+3,0 1 (since ’n+3--0) and letting 0, (22) implies
n+3

Zn +2,0 Zio,
i=1

i#n+2

which gives (10).
Theorem 2 applies to a limiting case (as 0) of the situation covered by Theorem

1 but cannot be easily obtained (by substituting/x 0) from Theorem 1. For this reason
we derive Theorem 2 separately. For a system with n cold standby units, the eigenvalue
h -(a + v + y) is of multiplicity n and the other eigenvalues are distinct. Hence the
fundamental formula reduces to

(25)
f(.A) f(/ 1).7,10 +f()(h 1).Zl -[--...-+-f(n- 1)(A 1).Zl,n_l

+f(A 2).Z20 +f(A 3).Z30
In particular, exp (.At) is given by

exp (_At) eXZo+ e’Z. +... + t"-eXZ,,_
(26)

+ e .Z20 + eX’.Z30 + eX4t.Z40
As before, to find F(t) we only require the (1, n + 3) entry zq, of each of the

matrices .Zi
To find z 1i we employ the trial function

(27) J(h) (h +a +v +y)(h +a)h,

which requires us to compute the (1, n + 3) entry of the matrix .R 0), given by

(28) .R 0>= [.A + (a + v + V)!]i[.A + a.I]..

(i)Denote by
LEMMA 3. The (1, n + 3) element of R. o) is given by

(29)
ap[, +a (1-p)](ap + uY,

(j)
rl,n+3 cp(3’ q-t + v)(ap + v),

O,

0_--<j<n-1,
j=n-1,

Proof. For j _-<n, the jth row of.A + a./has four nonzero entries, viz. (j, j), (j, j + 1),
(j, n + 2) and (j, n + 3) and in particular, element (j, j + 1) is equal to ap + v, element
(j, n + 2) is equal to , and element (j, n + 3) is equal to a (l-p). The first n entries in
column n+3 of .A are equal to a(1-p), elements (n+l,n+3) and
(n+2, n+3) are equal to a and element (n+3, n+3) is equal to zero.

(0)Thus ri.n+3 =ap[y+a(1-p)] for <n and is equal to ap(a +tz +v+y) for =n. By
similar reasoning, it is easy to see that -.,+3"() 0 for > n.

The first n columns of.A + (a + v + y)./are null except for entries (i, + 1) which are
equal to ap + v (for 1 _-<i _-< n 1). Thus

(30)
(ap[3, +a (1-p)](ap + v),

.(1) ap[), +a + v](ap + v),i,n +3

0,

/<n-l,
/=n-l,
-->n,

and the lemma follows by repeated multiplication.
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In order to proceed we also require certain derivatives of the trial function (27).
Our needs are satisfied by the following lemma, which can be proved by a simple
inductive argument.

LEMMA 4. For <-- i, the/th derivative of the testing function f (h) in (27) is given by

f’t)(h)=j(l)h(h +a)(h +or + u+y) i-t +lj(t-1)(2h +a)(h +a +
(3)

+ l(l- 1)j(/-2)(A + a +/ +

where j(t) represents the falling factorial ](]- 1). (]- + 1).
In order to prove Theorem 2, we introduce one further lemma. From (26), for a

system with n cold standby units, the failure distribution F(t) is given by

(32) F(t)=e"zlo+teX"z11+. .+t"- e,’zl,,_l +eX2’Z2o+e3’z e30 -" 4IZ40"
LEMMA 5. The coefficient z20 is equal to zero and

ap(ap + v)"-k k-1

Y. (ap+=’)i(V+U)k-’-I ]’or l<-k <-n.(33) Zl..-k (n-k)!(V+u)k
,=o

Proof. Application of the testing function f, (A) (A + a + v + 3")" (A + a)A, in con-
junction with Lemmas 4 and 5, gives z20 0.

To find z 1,,-, use the testing function f,- I(A) given in (27). From Lemmas 4 and 5,
we have

ap(ap+v)"-1
zl,._ (n 1)! (3’ + v)

showing that the lemma is true for k 1. Similarly, using testing function ]’.-2(h)
it can be shown that the lemma is true for k 2. Now assume that it is true for
Zl,.-k (3 =<k -<n- 1) and show that it is true or Zl,.-k-. To find Zl,,,-k-1, use testing
function/.-k-l(A) from (27), and using lemmas 3 and 4, we obtain

(n k 1)! (a + 7 + v)(7 + v)z a..-k-a + (n k)!(a + 23, + 2v)z 1..-k(34)
+(n-k + 1)!Zl.._k+a=ap[7 +a(1--p)](ap+v)"-k-1.

On substituting z 1..-k and z 1.n-k +1 into (34) and collecting terms, we have

(35)

where

(36)

ap(ap+v)"-k-
Z 1,n-k-1 (n -k 1)! (a +y + v)(7 +/))k +1 {T1 + T2 -t- T3},

Tx [3’ +a (1 -p)](3" + v)k,
k-1

(37) T2 (ap + v)(a + 23" + 2v) Y (ap + v) (3’ + v)k-’-l,
i=0

k-2

(38) T3 -(ap + v)2 Z (ap + v) (3" + v)k-’-.
i=0

After some algebraic manipulation, this reduces to

ap(otp + v)"-k-t k

Z a..-k (n k 1)v. (3" + v )k + ,=0 (ap + V)i (a + v)k

and the lemma follows.
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By considering (32) as oo and 0, we find Z40 1 and z30 -(1 q-Z10). These
results, together with Lemma 5, prove Theorem 2. ]
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